Influence of Aging Technologies on the Volatile Profile Composition of Carignano cv Red Wines in Sardinia
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents, Samples, and Standards
2.2. Aging Conditions
2.3. Sample Preparation and Analysis
2.4. Analytical Instrumentation
2.5. Odor Activity Values (OAVs)
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayonove, C.L.; Baumes, R.L.; Crouzet, J.; Günata, Y.Z. Arômes. In Oenologie: Fondements Scientifiques et Technologiques; Flanzy, C., Ed.; Lavoisier, Tec & Doc: Paris, France, 1998; pp. 163–235. [Google Scholar]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef]
- Meng, J.; Fang, Y.; Gao, J.; Zhang, A.; Liu, J.; Guo, Z.; Zhang, Z.; Li, H. Changes in aromatic compounds of cabernet sauvignon wines during ageing in stainless steel tanks. Afr. J. Biotechnol. 2011, 10, 11640–11647. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Li, P.; Lv, Y.; Nan, H.; Wen, L.; Wang, Z. Research progress of wine aroma components: A critical review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef] [PubMed]
- Peña-Gallego, A.; Hernández-Orte, P.; Cacho, J.; Ferreira, V. S-Cysteinylated and S-glutathionylated thiol precursors in grapes. A review. Food Chem. 2011, 131, 1–13. [Google Scholar] [CrossRef]
- Liu, S.; Lou, Y.; Li, Y.; Zhao, Y.; Laaksonen, O.; Li, P.; Zhang, J.; Battino, M.; Yang, B.; Gu, Q. Aroma characteristics of volatile compounds brought by variations in microbes in winemaking. Food Chem. 2023, 420, 136075. [Google Scholar] [CrossRef]
- Di Renzo, M.; Letizia, F.; Di Martino, C.; Karaulli, J.; Kongoli, R.; Testa, B.; Avino, P.; Guerriero, E.; Albanese, G.; Monaco, M.; et al. Natural Fiano Wines Fermented in Stainless Steel Tanks, Oak Barrels, and Earthenware Amphora. Processes 2023, 11, 1273. [Google Scholar] [CrossRef]
- Carey, R. Advantages of Plastic: Evolution of the Plastic Tank in the Winery. The Free Library. Wines & Vines. 2009. Available online: https://www.thefreelibrary.com/Advantages+of+plastic%3a+evolution+of+the+plastic+tank+in+the+winery.-a0193417075 (accessed on 15 June 2025).
- Pambianchi, D. A Comparative Study on the Evolution of Wine Aged for 24 Months in a Flextank vs. a Two-Year-Old Oak Barrel. Available online: https://techniquesinhomewinemaking.com/attachments/File/Report%20on%20a%20Comparative%20Study%20on%20the%20Evolution%20of%20Wine%20Aged%20in%20a%20Flextank%20vs%20Oak%20Barrel%20(13-24%20months).pdf (accessed on 15 June 2025).
- Nevares, I.; Alamo-Sanza, M.D. Characterization of the Oxygen Transmission Rate of New-Ancient Natural Materials for Wine Maturation Containers. Foods 2021, 10, 140. [Google Scholar] [CrossRef]
- Martínez, J.; Cadahía, E.; Fernández de Simón, B.; Ojeda, S.; Rubio, P. Effect of the seasoning method on the chemical composition of oak heartwood to cooperage. J. Agric. Food Chem. 2008, 56, 3089–3096. [Google Scholar] [CrossRef]
- Gombau, J.; Cabanillas, P.; Mena, A.; Pérez-Navarro, J.; Ramos, J.; Torner, A.; Fort, F.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M. Comparative Study of Volatile Substances and Ellagitannins Released into Wine by Quercus pyrenaica, Quercus petraea and Quercus alba Barrels. OENO One 2022, 56, 243–255. [Google Scholar] [CrossRef]
- Roussey, C.; Colin, J.; du Cros, R.T.; Casalinho, J.; Perré, P. In-situ monitoring of wine volume, barrel mass, ullage pressure and dissolved oxygen for a better understanding of wine-barrel-cellar interactions. J. Food Eng. 2021, 291, 110233. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Chen, J.; Philipp, C.; Zhao, X.; Wang, J.; Liu, Y.; Suo, R. Effect of Commercial Yeast Starter Cultures on Cabernet Sauvignon Wine Aroma Compounds and Microbiota. Foods 2022, 11, 1725. [Google Scholar] [CrossRef] [PubMed]
- Khalafyan, A.; Temerdashev, Z.; Abakumov, A.; Yakuba, Y.; Sheludko, O.; Kaunova, A. Multidimensional analysis of the interaction of volatile compounds and amino acids in the formation of sensory properties of natural wine. Heliyon 2023, 9, e12814. [Google Scholar] [CrossRef] [PubMed]
- de-la-Fuente-Blanco, A.; Ferreira, V. Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods 2020, 9, 1892. [Google Scholar] [CrossRef]
- Welke, J.E.; Cardoso Hernandes, K.; Oliveira Lago, L.; Diogo Silveira, R.; Biasoto Marques, A.T.; Alcaraz Zini, C. Flavoromic analysis of wines using gas chromatography, mass spectrometry and sensory techniques. J. Chromatogr. A 2024, 1734, 465264. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Electronic Tongue Technology Applied to the Analysis of Grapes and Wines: A Comprehensive Review from Its Origins. Chemosensors 2025, 13, 188. [Google Scholar] [CrossRef]
- Geffroy, O.; Armario, M.; Fontaine, A.; Fourure, M.; Pasquier, G.; Semadeni, T.; Chervin, C. 3-Isobutyl-2-methoxypyrazine is neutrally perceived by consumers at usual concentrations in French Sauvignon and Fer wines from the Gaillac area. OENO One 2020, 54, 1133–1142. [Google Scholar] [CrossRef]
- Ribeiro, S.G.; Martins, C.; Tavares, T.; Rudnitskaya, A.; Alves, F.; Rocha, S.M. Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand? Foods 2023, 12, 2432. [Google Scholar] [CrossRef]
- Bandić, L.M.; Viskić, M.; Korenika, A.M.J.; Jero, A. Varietal thiols in grape and wine. In Closer Look at Grapes, Wines and Winemaking; Perez, J.D., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2018; pp. 43–74. [Google Scholar]
- Ollat, N.; Olivier, Y.; Lacombe, T.; Rienth, M.; Julliard, S.; Lafargue, M.; Tandonnet, J.P.; Goutouly, J.P.; Cookson, S.; De Miguel, M.; et al. Grafting, the most sustainable way to control phylloxera over 150 years. In Proceedings of the 45th OIV Congress, IVES Conference Series, OIV 2024, Dijon, France, 14–18 October 2024. [Google Scholar] [CrossRef]
- Tello, J.; Mammerler, R.; Čajić, M.; Forneck, A. Major Outbreaks in the Nineteenth Century Shaped Grape Phylloxera Contemporary Genetic Structure in Europe. Nat. Res. Sci. Rep. 2019, 9, 17540. [Google Scholar] [CrossRef]
- Mercenaro, L.; Nieddu, G.; Porceddu, A.; Pezzotti, M.; Camiolo, S. Sequence Polymorphisms and Structural Variations among Four Grapevine (Vitis vinifera L.) Cultivars Representing Sardinian Agriculture. Front. Plant Sci. 2017, 8, 1279. [Google Scholar] [CrossRef]
- Carbonaro, C.M.; Corpino, R.; Chiriu, D.; Ricci, P.C.; Rivano, S.; Salis, M.; Tuberoso, C.I.G. Exploiting combined absorption and front face fluorescence spectroscopy to chase classification: A proof of concept in the case of Sardinian red wines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 214, 378–383. [Google Scholar] [CrossRef]
- Angioni, A.; Pintore, G.A.; Caboni, P. Determination of wine aroma compounds by dehydration followed by GC/MS. J. AOAC Int. 2012, 95, 813–819. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, H.; du Toit, M.; Nieuwoudt, H.; van der Rijst, M.; Kidd, M.; Jolly, N. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines. Fermentation 2017, 3, 64. [Google Scholar] [CrossRef]
- Iacobucci, D.; Popovich, D.L.; Moon, S.; Román, S. How to calculate, use, and report variance explained effect size indices and not die trying. J. Consum. Psychol. 2023, 33, 45–61. [Google Scholar] [CrossRef]
- Atherton, H.J.; Bailey, N.J.; Zhang, W.; Taylor, J.; Major, H.; Shockcor, J.; Clarke, K.; Griffin, J.L. A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol. Genom. 2006, 27, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Du, B.; Li, J. Aroma Compounds in Wine. In Grapevine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, H.; Zhao, Q.; Zhang, F.; Ge, Q.; Li, C.; Gutiérrez Gamboa, G.; Fang, Y.; Sun, X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res. Int. 2022, 153, 110953. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, Z.; Han, Y.; Duan, Y.; Shi, B.; Ma, W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023, 28, 6522. [Google Scholar] [CrossRef]
- Pichler, A.; Ivić, I.; Mesić, J.; Drenjančević, M.; Kujundžić, T.; Marković, T.; Kopjar, M. Aroma Profile of Merlot RedWine Stored in Stainless-Steel Tanks and Wooden Barrels with Different Toasting Methods. Foods 2024, 13, 45. [Google Scholar] [CrossRef]
- White, W.; Catarino, S. How does maturation vessel influence wine quality? A critical literature review. Ciência Técnica Vitivinícola 2023, 38, 128–151. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, X.; Zhang, T.; Chen, H.; Tang, L.; Shang, Y.; Huang, Z.; Song, Y.; Qin, Y.; Ye, D.; et al. Exploring the influence of oak barrel aging on the quality of Cabernet Sauvignon wine with a high ethanol content: Interactions with wood grain and toasting level. Food Chem. X 2025, 27, 102444. [Google Scholar] [CrossRef]
- Gao, Y.T.; Zhang, Y.S.; Wen, X.; Song, X.W.; Meng, D.; Li, B.J.; Wang, M.Y.; Tao, Y.Q.; Zhao, H.; Guan, W.Q.; et al. The glycerol and ethanol production kinetics in low-temperature wine fermentation using Saccharomyces cerevisiae yeast strains. Int. J. Food Sci. Technol. 2019, 54, 102–110. [Google Scholar] [CrossRef]
- Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Bottle Aging and Storage of Wines: A Review. Molecules 2021, 26, 713. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, S.; Verret, C.; Voilley, A. The Effect of Glycerol on the Perceived Aroma of a Model Wine and a White Wine. LWT Food Sci. Technol. 2001, 34, 262–265. [Google Scholar] [CrossRef]
- Xu, X.; Niu, C.; Liu, C.; Li, Q. Unraveling the Mechanisms for Low-Level Acetaldehyde Production during Alcoholic Fermentation in Saccharomyces pastorianus Lager Yeast. J. Agric. Food Chem. 2019, 67, 2020–2027. [Google Scholar] [CrossRef]
- Han, G.; Webb, M.R.; Waterhouse, A.L. Acetaldehyde reactions during wine bottle storage. Food Chem. 2019, 290, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Marrufo-Curtido, A.; Ferreira, V.; Escudero, A. An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods 2022, 11, 476. [Google Scholar] [CrossRef]
- Baiano, A.; Varva, G. Evolution of physico-chemical and sensory characteristics of Minutolo white wines during aging in amphorae: A comparison with stainless steel tanks. LWT Food Sci. Technol. 2019, 103, 78–87. [Google Scholar] [CrossRef]
- Flecknoe-Brown, A. Oxygen-permeable polyethylene vessels: A new approach to wine maturation. Int. Wine Res. Database Aust. N. Z. Grapegrow. Winemak. 2005, 494, 53–57. [Google Scholar]
Aldehydes | Acids | Alcohols | Esters | Ketones | Lactones | |
---|---|---|---|---|---|---|
Mean ± RSD% | ||||||
0_m | 0.5 ± 1.2 | 16.1 ± 5.6 | 70.8 ± 2.1 | 9.0 ± 2.6 | 0.8 ± 12.6 | 0.2 ± 32.3 |
SS_6m * | 0.3 ± 13.4 | 12.4 ± 6.7 | 76.4 ± 1.5 | 7.1 ± 3.8 | 1.3 ± 15.0 | 0.2 ± 37.0 |
SS_12m | 0.2 ± 3.3 | 19.1 ± 4.2 | 66.4 ± 1.9 | 8.0 ± 4.2 | 3.3 ± 8.5 | 0.3 ± 1.7 |
C_6m | 0.3 ± 7.6 | 14.2 ± 4.8 | 76.3 ± 0.3 | 6.6 ± 4.9 | 0.7 ± 5.5 | 0.1 ± 13.5 |
C_12m | 0.2 ± 4.3 | 16.3 ± 2.9 | 70.0 ± 0.6 | 8.4 ± 1.5 | 1.6 ± 2.6 | 0.5 ± 11.1 |
P_6m | 0.4 ± 6.2 | 14.6 ± 5.0 | 74.8 ± 1.6 | 8.2 ± 6.9 | 0.7 ± 8.0 | 0.1 ± 7.7 |
P_12m | 0.2 ± 9.0 | 22.0 ± 5.5 | 61.6 ± 2.0 | 8.4 ± 2.7 | 5.0 ± 9.9 | 0.4 ± 4.9 |
OB_6m | 0.3 ± 15.4 | 13.7 ± 2.6 | 76.3 ± 1.5 | 7.6 ± 6.9 | 0.8 ± 9.0 | 0.1 ± 10.7 |
OB_12m | 0.2 ± 6.3 | 20.0 ± 3.4 | 66.4 ± 0.7 | 9.4 ± 2.2 | 1.4 ± 6.6 | 0.3 ± 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarais, G.; Casula, M.; Corrias, F.; Russo, M.; Pinna, B.; Argiolas, F.; Murru, M.; Angioni, A. Influence of Aging Technologies on the Volatile Profile Composition of Carignano cv Red Wines in Sardinia. Foods 2025, 14, 2290. https://doi.org/10.3390/foods14132290
Sarais G, Casula M, Corrias F, Russo M, Pinna B, Argiolas F, Murru M, Angioni A. Influence of Aging Technologies on the Volatile Profile Composition of Carignano cv Red Wines in Sardinia. Foods. 2025; 14(13):2290. https://doi.org/10.3390/foods14132290
Chicago/Turabian StyleSarais, Giorgia, Mattia Casula, Francesco Corrias, Mariateresa Russo, Barbara Pinna, Francesca Argiolas, Mariano Murru, and Alberto Angioni. 2025. "Influence of Aging Technologies on the Volatile Profile Composition of Carignano cv Red Wines in Sardinia" Foods 14, no. 13: 2290. https://doi.org/10.3390/foods14132290
APA StyleSarais, G., Casula, M., Corrias, F., Russo, M., Pinna, B., Argiolas, F., Murru, M., & Angioni, A. (2025). Influence of Aging Technologies on the Volatile Profile Composition of Carignano cv Red Wines in Sardinia. Foods, 14(13), 2290. https://doi.org/10.3390/foods14132290