Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = wind power generation ship

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4893 KB  
Article
Motion Analysis of a Fully Wind-Powered Ship by Using CFD
by Akane Yasuda, Tomoki Taniguchi and Toru Katayama
J. Mar. Sci. Eng. 2026, 14(2), 121; https://doi.org/10.3390/jmse14020121 - 7 Jan 2026
Abstract
This study investigates the sailing performance and maneuverability of a fully wind-powered ship equipped with two rigid wing sails and a rudder, using Computational Fluid Dynamics (CFD). Unlike some conventional approaches that separately analyze above-water and underwater forces, this research employs a comprehensive [...] Read more.
This study investigates the sailing performance and maneuverability of a fully wind-powered ship equipped with two rigid wing sails and a rudder, using Computational Fluid Dynamics (CFD). Unlike some conventional approaches that separately analyze above-water and underwater forces, this research employs a comprehensive CFD model to predict ship motion and performance under various wind directions and sail angles, from a stationary state to steady sailing. The accuracy of the CFD method is confirmed through comparison with experimental drift test data. Although the simulated drift data showed some discrepancies from the observed data due to the difficulty of accurately modeling the wind field in the simulation, the results indicate that the CFD method can effectively reproduce the ship motions observed in the experiments. Simulations reveal that the previously proposed L-shaped and T-shaped sail arrangements, which were designed to maximize thrust without considering maneuvering effects, remain effective even when ship motion is included. However, the results also show that conventional sail arrangements can achieve higher steady-state speeds due to reduced leeway-related resistance, while the L-shaped and T-shaped arrangements yield distinct steady-state leeway (drift) characteristics under heading control. These findings suggest that dynamically adjusting sail arrangements according to operational requirements may help manage the ship’s trajectory (lateral offset) and mitigate maneuvering difficulties, contributing to the practical application of fully wind-powered ships. The study provides quantitative insights into the relationship between sail arrangement, acceleration, and leeway/drift behavior, supporting the design of next-generation wind-powered ships. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 6729 KB  
Article
Integrated Sail–Hull–Turbine Assessment for Wind Power Generation Ship Using Experiment and CFD
by Nguyen Thi Huyen Trang, Taiga Mitsuyuki, Yoshiaki Hirakawa, Thi Pham-Truong and Shun Yokota
J. Mar. Sci. Eng. 2026, 14(2), 111; https://doi.org/10.3390/jmse14020111 - 6 Jan 2026
Viewed by 141
Abstract
Wind power generation ships (WPG ships), which combine rigid sails for propulsion and underwater turbines for onboard power generation, have attracted increasing attention as a promising concept for utilizing renewable energy at sea. This study presents an integrated assessment of a WPG ship [...] Read more.
Wind power generation ships (WPG ships), which combine rigid sails for propulsion and underwater turbines for onboard power generation, have attracted increasing attention as a promising concept for utilizing renewable energy at sea. This study presents an integrated assessment of a WPG ship by combining towing-tank experiments, CFD simulations using ANSYS Fluent, and theoretical analysis to evaluate the coupled performance of sails, hull, and underwater turbines. First, sail thrust and bare-hull resistance were quantified to identify the effective operating-speed range under Beaufort 6–8 wind conditions, and the optimal number of rigid sails was determined. Based on a thrust–resistance balance at a representative rated operating point, two turbine configurations (two and four turbines) were preliminarily sized. The results show that ten rigid sails can provide near-maximum thrust without excessive aerodynamic interference, and the installation of turbines significantly reduces the feasible operating range compared to the bare-hull case. For the two-turbine configuration, a common effective ship-speed range of 6.58–8.0 m/s is obtained, whereas the four-turbine configuration is restricted to 6.58–7.44 m/s due to wake losses, additional appendage drag, and near-free-surface effects. The four-turbine configuration exhibits approximately 30% lower total power output than the two-turbine configuration. These findings demonstrate that an integrated, system-level evaluation is essential for WPG ship design and indicate that the two-turbine configuration offers a more favorable balance between power generation capability and operational flexibility. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1002 KB  
Article
Study on the Potential Impact of Biofuels on the Operation and Maintenance Durability of Marine Main Engine Components
by Catalin Faitar, Ionut Voicu, Mariana Panaitescu, Andra Nedelcu and Eugen Rusu
J. Mar. Sci. Eng. 2025, 13(12), 2398; https://doi.org/10.3390/jmse13122398 - 17 Dec 2025
Viewed by 248
Abstract
The maritime transportation industry is under pressure to reduce the level of emissions generated annually by commercial vessels. In order to achieve this objective, regulatory bodies, both national and international, have imposed strict limitations on the industry, and thus major changes have to [...] Read more.
The maritime transportation industry is under pressure to reduce the level of emissions generated annually by commercial vessels. In order to achieve this objective, regulatory bodies, both national and international, have imposed strict limitations on the industry, and thus major changes have to be made in a tight time frame. In the last decade, engineers and ship designers have been searching for alternatives to traditional fuels, but it is not easy to find a perfect balance between operational costs and economic efficiency. Many potential solutions are being studied, with some of them already proven and implemented, such as liquefied natural gas, solar and wind power, electric propulsion, and many more. One solution might be biofuels, and this study aims to assess the potential impact of their use on the energy performance and durability of a typical marine propulsion engine, namely the MAN B&W 6S70MC-C7, fitted on board many types of ships including large oil tankers, container ships and bulk carriers. The main topic is approached through a progressive structure, starting from the analysis of general characteristics of these fuels and the engine installation, comparative simulations, operational experience, and technical recommendations. The comparative assessment is focused on two traditional types of fuels and two biofuel types. The aim is to identify a viable solution that can sustain the operational efficiency of this main engine without a major impact on its maintenance cycle and without additional costs on the components. Even if these biofuels are more expensive than the traditional ones, in the long run, they could prove to be a better choice in terms of operational costs and compliance with regulation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 8168 KB  
Article
Data-Driven Optimization of Ship Propulsion Efficiency and Emissions Considering Relative Wind
by Sang-A Park, Min-A Je, Suk-Ho Jung and Deuk-Jin Park
J. Mar. Sci. Eng. 2025, 13(11), 2120; https://doi.org/10.3390/jmse13112120 - 9 Nov 2025
Viewed by 530
Abstract
The relative wind is a significant but underexplored influencing factor on the tradeoff between propulsion efficiency and pollutant emissions for ships. In this study, full-scale measurements obtained from four voyages of the training ship of Baekkyung were used to quantify the effects of [...] Read more.
The relative wind is a significant but underexplored influencing factor on the tradeoff between propulsion efficiency and pollutant emissions for ships. In this study, full-scale measurements obtained from four voyages of the training ship of Baekkyung were used to quantify the effects of relative wind on ship propulsion efficiency and pollutant emissions. The collected navigational, engine performance, and emission data—including parameters such as shaft power, engine load, specific fuel oil consumption (SFOC), and NOx and SOx concentrations—were synchronized and then analyzed using statistical methods and a generalized additive model (GAM). Statistical correlation analysis and a GAM were applied to capture nonlinear relationships between variables. Compared with linear models, the GAM achieved higher predictive accuracy (R2 = 0.98) and effectively identified threshold and interaction effects. The results showed that headwind conditions increased the engine load by ~12% and SFOC by 8.4 g/kWh while tailwind conditions reduced SFOC by up to 6.7 g/kWh. NOx emissions peaked under headwind conditions and exhibited nonlinear escalation beyond a relative wind speed of 12 kn. An operational window was identified for simultaneous improvement of the propulsion efficiency and reduction in pollutant emissions under beam wind and tailwind conditions at moderate relative wind speeds of 6–10 kn and an engine load of 30–40%. These findings can serve as a guide for incorporating relative wind into operational strategies for maritime autonomous surface ships. Full article
(This article belongs to the Special Issue Advanced Research on Path Planning for Intelligent Ships)
Show Figures

Figure 1

17 pages, 4656 KB  
Article
Improved Super-Twisting Sliding Mode Control of a Brushless Doubly Fed Induction Generator for Standalone Ship Shaft Power Generation Systems
by Xueran Fei, Minghao Zhou, Yingyi Jiang, Longbin Jiang, Yi Liu and Yan Yan
J. Mar. Sci. Eng. 2025, 13(7), 1358; https://doi.org/10.3390/jmse13071358 - 17 Jul 2025
Viewed by 620
Abstract
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused [...] Read more.
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused by the parameter perturbation of BDFIG systems, a mismatched uncertain model of the BDFIG is constructed. Additionally, an improved STSM control method is proposed to address the power load variation and compensate for the mismatched uncertainty through virtual control technology. Based on the direct vector control of the control winding (CW), the proposed method ensured that the voltage amplitude error of the power winding could converge to the equilibrium point rather than the neighborhood. Finally, in the experimental investigation of the BDFIG-based ship shaft independent power system, the dynamic performance in the startup and power load changing conditions were analyzed. The experimental results show that the proposed improved STSM controller has a faster dynamic response and higher steady-state accuracy than the proportional integral control and the linear sliding mode control, with strong robustness to the mismatched uncertainties caused by parameter perturbations. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

39 pages, 2307 KB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Cited by 1 | Viewed by 1258
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

21 pages, 3066 KB  
Article
Performance Evaluation of Combined Wind-Assisted Propulsion and Organic Rankine Cycle Systems in Ships
by Shibo Zhao, Kayvan Pazouki and Rosemary Norman
J. Mar. Sci. Eng. 2025, 13(7), 1287; https://doi.org/10.3390/jmse13071287 - 30 Jun 2025
Viewed by 1453
Abstract
With the increasingly stringent regulation of ship carbon emissions by the International Maritime Organization (IMO), improving ship energy efficiency has become a key research direction in the current shipping industry. This paper proposes and evaluates a comprehensive energy-saving solution that integrates a wind-assisted [...] Read more.
With the increasingly stringent regulation of ship carbon emissions by the International Maritime Organization (IMO), improving ship energy efficiency has become a key research direction in the current shipping industry. This paper proposes and evaluates a comprehensive energy-saving solution that integrates a wind-assisted propulsion system (WAPS) and an organic Rankine cycle (ORC) waste heat power generation system. By establishing an energy efficiency simulation model of a typical ocean-going cargo ship, the appropriate optimal system configuration parameters and working fluids are determined based on minimizing the total fuel consumption, and the impact of these two energy-saving technologies on fuel consumption is systematically analyzed. The simulation results show that the simultaneous use of these two energy-saving technologies can achieve the highest energy efficiency, with the maximum fuel savings of approximately 21%. This study provides a theoretical basis and engineering reference for the design of ship energy-saving systems. Full article
(This article belongs to the Special Issue Ship Performance and Emission Prediction)
Show Figures

Figure 1

26 pages, 6783 KB  
Article
Robust Optimal Power Scheduling for Fuel Cell Electric Ships Under Marine Environmental Uncertainty
by Gabin Kim, Minji Lee and Il-Yop Chung
Energies 2025, 18(11), 2837; https://doi.org/10.3390/en18112837 - 29 May 2025
Viewed by 936
Abstract
This paper presents a robust optimization-based approach for voyage and power generation scheduling to enhance the economic efficiency and reliability of electric propulsion ships powered by polymer electrolyte membrane fuel cells (PEMFCs) and battery energy storage systems (BESSs). The scheduling method is formulated [...] Read more.
This paper presents a robust optimization-based approach for voyage and power generation scheduling to enhance the economic efficiency and reliability of electric propulsion ships powered by polymer electrolyte membrane fuel cells (PEMFCs) and battery energy storage systems (BESSs). The scheduling method is formulated considering generation cost curves of PEMFCs with mixed-integer linear programming (MILP) and is extended to a robust optimization framework that accounts for marine environmental uncertainties. The robust optimization approach, implemented via the column-and-constraint generation (C&CG) method, ensures stable operation under various uncertainty scenarios, such as wave speed and direction influenced by wind and tidal currents. To validate the proposed method, a simulation was conducted under realistic operational conditions, followed by a case study comparing the MILP and robust optimization approaches in terms of economic efficiency and reliability. Additionally, the optimization model incorporated degradation costs associated with PEMFCs and BESSs to account for long-term operational efficiency. The case study assessed the performance of both methods under load variation scenarios across different marine environmental uncertainties. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

21 pages, 13466 KB  
Article
Experimental and Numerical Study on the Seakeeping Performance of a Wind-Powered Generation Ship Considering Boom Configurations
by Nguyen Thi Huyen Trang, Taiga Mitsuyuki, Yoshiaki Hirakawa, Katsuaki Sadakata and Yuki Nakamura
J. Mar. Sci. Eng. 2025, 13(3), 412; https://doi.org/10.3390/jmse13030412 - 22 Feb 2025
Cited by 3 | Viewed by 1942
Abstract
This study investigates the seakeeping performance of a wind power generation ship (WPG ship). This type of vessel uses rigid sails for propulsion and submerged turbines in the form of either two or four booms to generate energy. The research includes both tank [...] Read more.
This study investigates the seakeeping performance of a wind power generation ship (WPG ship). This type of vessel uses rigid sails for propulsion and submerged turbines in the form of either two or four booms to generate energy. The research includes both tank tests and simulations using Ansys AQWA, validated with the new strip method (NSM). The vessel used in this study is the container ship KCS. Overall, the power generator increases the ship’s stability and reduces roll but has almost no impact on pitch. The findings show that the 4-boom configuration offers better stability and seakeeping than the 2-boom configuration. The ship’s speed has a significant impact on the ship’s RAO, especially roll and pitch, both for the bare hull and the hull with power generation equipment. When the ship’s speed increases slightly, the roll RAO tends to decrease, but as the speed becomes higher, the RAO tends to increase. Wind conditions notably increase the roll RAO peak, reducing stability, while pitch changes are minimal. The KCS model maintains operational capability in winds up to Beaufort scale 11. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4678 KB  
Review
Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power
by Liufei Shen, Cheng Zhang, Feiyue Shan, Long Chen, Shuai Liu, Zhiqiang Zheng, Litong Zhu, Jinduo Wang, Xingzheng Wu and Yujia Zhai
Energies 2025, 18(1), 19; https://doi.org/10.3390/en18010019 - 24 Dec 2024
Cited by 5 | Viewed by 1678
Abstract
Hydrogen production from renewable energy sources is a crucial pathway to achieving the carbon peak target and realizing the vision of carbon neutrality. The hydrogen production from offshore superconducting wind power (HPOSWP) integrated systems, as an innovative technology in the renewable energy hydrogen [...] Read more.
Hydrogen production from renewable energy sources is a crucial pathway to achieving the carbon peak target and realizing the vision of carbon neutrality. The hydrogen production from offshore superconducting wind power (HPOSWP) integrated systems, as an innovative technology in the renewable energy hydrogen production field, holds significant market potential and promising development prospects. This integrated technology, based on research into high-temperature superconducting generator (HTSG) characteristics and electrolytic water hydrogen production (EWHP) technology, converts offshore wind energy (OWE) into hydrogen energy locally through electrolysis, with hydrogen storage being shipped and controlled liquid hydrogen (LH2) circulation ensuring a stable low-temperature environment for the HTSGs’ refrigeration system. However, due to the significant instability and intermittency of offshore wind power (OWP), this HPOSWP system can greatly affect the dynamic adaptability of the EWHP system, resulting in impure hydrogen production and compromising the safety of the LH2 cooling system, and reduce the fitness of the integrated system for wind electricity–hydrogen heat multi-field coupling. This paper provides a comprehensive overview of the fundamental structure and characteristics of this integrated technology and further identifies the key challenges in its application, including the dynamic adaptability of electrolytic water hydrogen production technology, as well as the need for large-capacity, long-duration storage solutions. Additionally, this paper explores the future technological direction of this integrated system, highlighting the need to overcome the limitations of electrical energy adaptation within the system, improve product purity, and achieve large-scale applications. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 3329 KB  
Article
Distributionally Robust Optimal Scheduling of Hybrid Ship Microgrids Considering Uncertain Wind and Wave Conditions
by Fang Lu, Yubin Tian, Hongda Liu and Chuyuan Ling
J. Mar. Sci. Eng. 2024, 12(11), 2087; https://doi.org/10.3390/jmse12112087 - 19 Nov 2024
Cited by 2 | Viewed by 1673
Abstract
A hybrid ship uses integrated generators, an energy storage system (ESS), and photovoltaics (PV) to match its propulsion and service loads, and together with optimal power and voyage scheduling, this can lead to a substantial improvement in ship operation cost, ensuring compliance with [...] Read more.
A hybrid ship uses integrated generators, an energy storage system (ESS), and photovoltaics (PV) to match its propulsion and service loads, and together with optimal power and voyage scheduling, this can lead to a substantial improvement in ship operation cost, ensuring compliance with the environmental constraints and enhancing ship sustainability. During the operation, significant uncertainties such as waves, wind, and PV result in considerable speed loss, which may lead to voyage delays and operation cost increases. To address this issue, a distributionally robust optimization (DRO) model is proposed to schedule power generation and voyage. The problem is decoupled into a bi-level optimization model, the slave level can be solved directly by commercial solvers, the master level is further formulated as a two-stage DRO model, and linear decision rules and column and constraint generation algorithms are adopted to solve the model. The algorithm aims at minimizing the operation cost, limiting greenhouse gas (GHG) emissions, and satisfying the technical and operational constraints considering the uncertainty. Extensive simulations demonstrate that the expected total cost under the worst-case distribution is minimized, and compared with the conventional robust optimization methods, some distribution information can be incorporated into the ambiguity sets to generate fewer conservative results. This method can fully ensure the on-time arrival of hybrid ships in various uncertain scenarios while achieving expected operation cost minimization and limiting greenhouse gas (GHG) emissions. Full article
Show Figures

Figure 1

17 pages, 2450 KB  
Article
Modeling the Underwater Sound of Floating Offshore Windfarms in the Central Mediterranean Sea
by Marzia Baldachini, Robin D. J. Burns, Giuseppa Buscaino, Elena Papale, Roberto Racca, Michael A. Wood and Federica Pace
J. Mar. Sci. Eng. 2024, 12(9), 1495; https://doi.org/10.3390/jmse12091495 - 29 Aug 2024
Cited by 3 | Viewed by 2720
Abstract
In the shift toward sustainable energy production, offshore wind power has experienced notable expansion. Several projects to install floating offshore wind farms in European waters, ranging from a few to hundreds of turbines, are currently in the planning stage. The underwater operational sound [...] Read more.
In the shift toward sustainable energy production, offshore wind power has experienced notable expansion. Several projects to install floating offshore wind farms in European waters, ranging from a few to hundreds of turbines, are currently in the planning stage. The underwater operational sound generated by these floating turbines has the potential to affect marine ecosystems, although the extent of this impact remains underexplored. This study models the sound radiated by three planned floating wind farms in the Strait of Sicily (Italy), an area of significant interest for such developments. These wind farms vary in size (from 250 MW to 2800 MW) and environmental characteristics, including bathymetry and seabed substrates. Propagation losses were modeled in one-third-octave bands using JASCO Applied Sciences’ Marine Operations Noise Model, which is based on the parabolic equation method, combined with the BELLHOP beam-tracing model. Two sound speed profiles, corresponding to winter and summer, were applied to simulate seasonal variations in sound propagation. Additionally, sound from an offshore supply ship was incorporated with one of these wind farms to simulate maintenance operations. Results indicate that sound from operating wind farms could reach a broadband sound pressure level (Lp) of 100 dB re 1 µPa as far as 67 km from the wind farm. Nevertheless, this sound level is generally lower than the ambient sound in areas with intense shipping traffic. The findings are discussed in relation to local background sound levels and current guidelines and regulations. The implications for environmental management include the need for comprehensive monitoring and mitigation strategies to protect marine ecosystems from potential acoustic disturbances. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 2812 KB  
Article
Markovian Maintenance Planning of Ship Propulsion System Accounting for CII and System Degradation
by Yordan Garbatov and Petar Georgiev
Energies 2024, 17(16), 4123; https://doi.org/10.3390/en17164123 - 19 Aug 2024
Cited by 3 | Viewed by 1909
Abstract
The study’s objective is to create a method to select the best course of maintenance action for each state of ship propulsion system degradation while considering both the present and future costs and associated carbon intensity indicator, CII, rates. The method considers the [...] Read more.
The study’s objective is to create a method to select the best course of maintenance action for each state of ship propulsion system degradation while considering both the present and future costs and associated carbon intensity indicator, CII, rates. The method considers the effects of wind and wave action when considering fouling and ageing. The ship resistance in calm, wave, and wind conditions has been defined using standard operating models, which have also been used to estimate the required engine power, service speed, fuel consumption, generated CO2, CII, and subsequent maintenance costs. The maintenance takes into consideration the effects of profit loss because of lost opportunities and efficiency over time. Any maintenance choice has total costs associated with it, including extra fuel, upkeep, and missed opportunities. Using a discrete-time Markov chain, the ship’s propulsion system maintenance schedule is optimized. A decision has been reached regarding the specific maintenance measures to be undertaken for each state of the Markov chain among various alternatives. The choice of optimal maintenance is related to a Markov decision process and is made by considering both the current and future costs. The developed method can forecast the propulsion system’s future states and any required maintenance activities. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

20 pages, 5610 KB  
Article
Study of Photovoltaic Double-Skin Façade Windows in Passenger Ships
by Song Lv and Yin Lai
Sustainability 2024, 16(9), 3724; https://doi.org/10.3390/su16093724 - 29 Apr 2024
Cited by 5 | Viewed by 1894
Abstract
The ship-mounted photovoltaic (PV) system was an approach to solve the problem of pollution caused by excessive energy consumption during navigation. However, PV systems used on ships faced problems such as small installation areas, which prevented PV power generation from being utilized on [...] Read more.
The ship-mounted photovoltaic (PV) system was an approach to solve the problem of pollution caused by excessive energy consumption during navigation. However, PV systems used on ships faced problems such as small installation areas, which prevented PV power generation from being utilized on a large scale. This article proposes a space-saving photovoltaic double-skin façade (PV-DSF) window system, which could be used in conjunction with ships to address the insufficient ship-mounted photovoltaics. In this paper, we propose a space-saving photovoltaic double-skinned façade (PV-DSF) window system that could be used in conjunction with a ship to solve the problem of insufficient space for onboard photovoltaics. According to the working principle of the system, we established a mathematical model corresponding to the actual heat transfer process and, at the same time built up a corresponding experimental test rig for thermoelectric performance measurement, and verified the accuracy of the proposed mathematical model based on the experimental results. Finally, the effect of different parameters on the performance of the system and the energy performance of the system on board the ship was discussed using a mathematical model. The simulation data showed that the increase of solar radiation intensity, wind speed, and PV coverage had a positive effect on the system’s power generation, while the ambient temperature had a negative effect. The system, in combination with a passenger ship, was able to provide 53.2 kWh of annual electricity generation and reduced CO2 emissions by 17 kg. Full article
Show Figures

Figure 1

30 pages, 3819 KB  
Article
Energy Management in a Super-Tanker Powered by Solar, Wind, Hydrogen and Boil-Off Gas for Saving CO2 Emissions
by Michael E. Stamatakis, Erofili E. Stamataki, Anastasios P. Stamelos and Maria G. Ioannides
Electronics 2024, 13(8), 1567; https://doi.org/10.3390/electronics13081567 - 19 Apr 2024
Cited by 2 | Viewed by 2199
Abstract
In terms of energy generation and consumption, ships are autonomous isolated systems, with power demands varying according to the type of ship: passenger or commercial. The power supply in modern ships is based on thermal engines-generators, which use fossil fuels, marine diesel oil [...] Read more.
In terms of energy generation and consumption, ships are autonomous isolated systems, with power demands varying according to the type of ship: passenger or commercial. The power supply in modern ships is based on thermal engines-generators, which use fossil fuels, marine diesel oil (MDO) and liquefied natural gas (LNG). The continuous operation of thermal engines on ships during cruises results in increased emissions of polluting gases, mainly CO/CO2. The combination of renewable energy sources (REs) and triple-fuel diesel engines (TFDEs) can reduce CO/CO2 emissions, resulting in a “greener” interaction between ships and the ecosystem. This work presents a new control method for balancing the power generation and the load demands of a ship equipped with TFDEs, fuel cells (FCs), and REs, based on a real and accurate model of a super-tanker and simulation of its operation in real cruise conditions. The new TFDE technology engines are capable of using different fuels (marine diesel oil, heavy fuel oil and liquified natural gas), producing the power required for ship operation, as well as using compositions of other fuels based on diesel, aiming to reduce the polluting gases produced. The energy management system (EMS) of a ship is designed and implemented in the structure of a finite state machine (FSM), using the logical design of transitions from state to state. The results demonstrate that further reductions in fossil fuel consumption as well as CO2 emissions are possible if ship power generation is combined with FC units that consume hydrogen as fuel. The hydrogen is produced locally on the ship through electrolysis using the electric power generated by the on-board renewable energy sources (REs) using photovoltaic systems (PVs) and wind energy conversion turbines (WECs). Full article
(This article belongs to the Special Issue Design and Control of Smart Renewable Energy Systems)
Show Figures

Figure 1

Back to TopTop