Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = wetland pretreatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4797 KiB  
Article
Effects of Recycled Biochar Addition on Methane Production Performance in Anaerobic Fermentation of Pig and Cow Manure
by Jianling Xu, Xinyu Wang, Jitian Sun, Wenqiu Zhang, Ruixiang Huang and Yue Chen
Fermentation 2025, 11(7), 372; https://doi.org/10.3390/fermentation11070372 - 28 Jun 2025
Cited by 1 | Viewed by 448
Abstract
Anaerobic fermentation has been recognized as an effective approach to harness livestock manure resources. In the present study, cow dung and pig manure were employed as fermentation substrates. These were subjected to co-fermentation experiments with sodium hydroxide-pretreated corn straw. Additionally, biochar derived from [...] Read more.
Anaerobic fermentation has been recognized as an effective approach to harness livestock manure resources. In the present study, cow dung and pig manure were employed as fermentation substrates. These were subjected to co-fermentation experiments with sodium hydroxide-pretreated corn straw. Additionally, biochar derived from artificial wetland substrate was introduced as a conditioner to investigate the impact of varying addition quantities on the pretreated anaerobic co-fermentation process. Our findings indicate that for the anaerobic co-fermentation of cow dung, an optimal addition of 4% biochar reduced the gas production cycle by 35–45%, although the total methane yield remained relatively unchanged. Conversely, in the anaerobic co-fermentation of pig manure, a 6% biochar addition proved most effective. This adjustment, while not significantly altering the gas production cycle, led to a marked increase in the total methane content, ranging from 18.53% to 150.18%. The PCA analysis results of the cow manure experimental group showed a significant positive correlation between the addition of biochar and ammonia nitrogen. For the pig manure fermentation system, the addition of biochar can increase the final methane production potential, from 47.43 mL/g VS to 122.24 mL/g VS in the P2C experimental group. Biochar mainly regulates the activity of anaerobic bacteria through changes in pH and conductivity, thereby affecting methane production. Full article
(This article belongs to the Special Issue Biogas and Biochemical Production from Anaerobic Digestion)
Show Figures

Figure 1

17 pages, 1437 KiB  
Article
pH-Dependent Ozonation of Diclofenac: Molecular Insights and Implications for Water Quality and Nature-Based Water Reuse Systems
by Natalia Villota, Unai Duoandicoechea and Enzo Valentin Tosi-Zarate
Clean Technol. 2025, 7(2), 47; https://doi.org/10.3390/cleantechnol7020047 - 5 Jun 2025
Viewed by 553
Abstract
Diclofenac (DCF), a widely consumed non-steroidal anti-inflammatory drug, presents significant environmental challenges due to its persistence and toxicity in aquatic ecosystems. This study investigates the pH-dependent ozonation of DCF in aqueous media, focusing on degradation kinetics, transformation pathways, and effects on key water [...] Read more.
Diclofenac (DCF), a widely consumed non-steroidal anti-inflammatory drug, presents significant environmental challenges due to its persistence and toxicity in aquatic ecosystems. This study investigates the pH-dependent ozonation of DCF in aqueous media, focusing on degradation kinetics, transformation pathways, and effects on key water quality indicators. Ozonation experiments were conducted across a broad pH range (2.0–13.0), using a multi-scale analytical approach combining UV/Vis spectroscopy, colorimetry, turbidity, and aromaticity measurements. The results show that pH strongly influences DCF degradation efficiency: acidic conditions favor selective reactions with molecular ozone, while an alkaline pH enhances non-selective oxidation via hydroxyl radicals. Spectroscopic analyses revealed the progressive breakdown of aromatic structures, the transient formation of quinonoid and phenolic intermediates, and eventual mineralization to inorganic by-products such as nitrate. Low-pH conditions also induced turbidity due to precipitation of neutral DCF species. These findings underline the importance of pH control in optimizing ozonation performance and minimizing toxic by-products. Furthermore, this study proposes ozonation as a viable pre-treatment step within Nature-Based Solutions (NBSs), potentially improving the performance of downstream biological systems such as constructed wetlands. The results contribute to the development of integrated and sustainable water treatment strategies for pharmaceutical contaminant removal and water reuse. Full article
(This article belongs to the Special Issue Nature-Based Solutions for Water Reuse and Contaminant Reduction)
Show Figures

Figure 1

26 pages, 8292 KiB  
Article
Low-Carbon Hybrid Constructed Wetland System for Rural Domestic Sewage: Substrate–Plant–Microbe Synergy and Annual Performance
by Jiawei Wang, Gang Zhang, Dejian Wang, Yuting Zhao, Lingyu Wu, Yunwen Zheng and Qin Liu
Water 2025, 17(10), 1421; https://doi.org/10.3390/w17101421 - 9 May 2025
Viewed by 708
Abstract
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen [...] Read more.
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen and phosphorus removal, the potential of six readily accessible industrial and agricultural waste byproducts—including plastic fiber (PF), hollow brick crumbs (BC), blast furnace steel slag (BFS), a zeolite–blast furnace steel slag composite (ZBFS), zeolite (Zeo), and soil—was systematically evaluated individually as substrates in vertical subsurface flow constructed wetlands (VSSFCWs) under varying hydraulic retention times (HRTs, 0–120 h). The synergy among substrates, plants, and microbes, coupled with the effects of hydraulic retention time (HRT) on pollutant degradation performance, was clarified. Results showed BFS achieved optimal comprehensive pollutant removal efficiencies (97.1% NH4+-N, 76.6% TN, 89.7% TP, 71.0% COD) at HRT = 12 h, while zeolite excelled in NH4+-N/TP removal (99.5%/94.5%) and zeolite–BFS specializing in COD reduction (80.6%). System-wide microbial analysis revealed organic load (sludges from the sedimentation tank [ST] and anaerobic tanks [ATs]), substrate type, and rhizosphere effects critically shaped community structure, driving specialized pathways like sulfur autotrophic denitrification (Nitrospira) and iron-mediated phosphorus removal. Annual engineering validation demonstrated that the optimized strategy of “pretreatment unit for phosphorus control—vertical wetland for enhanced nitrogen removal” achieved stable effluent quality compliance with Grade 1-A standard for rural domestic sewage discharge after treatment facilities, without the addition of external carbon sources or exogenous microbial inoculants. This low-carbon operation and long-term stability position it as an alternative to energy-intensive activated sludge or membrane-based systems in resource-limited settings. Full article
(This article belongs to the Special Issue Constructed Wetlands: Enhancing Contaminant Removal and Remediation)
Show Figures

Figure 1

19 pages, 2640 KiB  
Article
Efficiency of an Ultrafiltration Process for the Depollution of Pretreated Olive Mill Wastewater
by Mohammed Zine, Noureddine Touach, El Mostapha Lotfi and Philippe Moulin
Membranes 2025, 15(3), 67; https://doi.org/10.3390/membranes15030067 - 20 Feb 2025
Viewed by 1092
Abstract
The depollution of constructed wetland-pretreated olive mill wastewater (OMW) using a membrane filtration system was experimentally studied. Dead-end filtration (DEF) was employed to evaluate suitable MF/UF membranes and select the appropriate molecular weight cut-off for optimal OMW treatment. Removal efficiencies for COD (chemical [...] Read more.
The depollution of constructed wetland-pretreated olive mill wastewater (OMW) using a membrane filtration system was experimentally studied. Dead-end filtration (DEF) was employed to evaluate suitable MF/UF membranes and select the appropriate molecular weight cut-off for optimal OMW treatment. Removal efficiencies for COD (chemical oxygen demand) and TOC (total organic carbon) using DEF reached maximum values of 88.14% and 11.17%, respectively. Adsorption of raw and pretreated OMW on granular activated carbon was also carried out for a comparative study against DEF and pretreatment. The semi-industrial-scale experiments were conducted using commercial ceramic ultrafiltration (UF) membranes (150 and 50 kDa) in cross-flow filtration (CFF) mode at a permeate flux around 200 L h−1 m−2 and a trans-membrane pressure (TMP) of 3.5–3.8 bars. This post-treatment had a significant impact on COD removal efficiency from pretreated OMW, reaching 78.5%. The coupled process proposed in this study achieved removal efficiencies of 97%, 97%, and 99.9% of COD, TOC, and turbidity, respectively. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

18 pages, 2229 KiB  
Article
Occurrence, Transport, and Risk Assessment of Brominated Flame Retardants in Northern Wetland Multimedia
by Bo Meng, Xi-Mei Lu, Jing-Wen Jia, Fei Chen, Zhi-Zhong Zhang, Shan-Shan Jia, Ming-Song Wu, Zi-Feng Zhang and Yi-Fan Li
Processes 2025, 13(2), 423; https://doi.org/10.3390/pr13020423 - 5 Feb 2025
Cited by 1 | Viewed by 1245
Abstract
Current studies have paid extensive attention to the occurrence of brominated flame retardants (BFRs) in aquatic environments; however, there is a lack of exploration of BFRs in ice media in freshwater environments, and there are fewer studies on the distribution patterns and ecological [...] Read more.
Current studies have paid extensive attention to the occurrence of brominated flame retardants (BFRs) in aquatic environments; however, there is a lack of exploration of BFRs in ice media in freshwater environments, and there are fewer studies on the distribution patterns and ecological risks of BFRs in different media. In order to fill this gap in the current research status, this study conducted four seasonal samplings in the Songhua River wetland in Northeast China. The distribution and risk of 14 polybrominated diphenyl ethers (PBDEs) and 22 new brominated flame retardants (NBFRs) in water, ice, sediment, and soil were analyzed using liquid–liquid extraction sample pretreatment and gas chromatography–mass spectrometry instrumentation. A total of 18, 5, 8, 19, and 18 BFRs were detected in non-ice-covered water, ice-covered water, ice, sediment, and soil, respectively. NBFRs dominated contaminant concentrations in each medium. Significant correlations were found between BFRs in ice and subglacial water, suggesting that the sources of BFRs in these two media are similar and there is an exchange between them. The ice enrichment factor (IEF) revealed the water–ice distribution mechanism of BFRs, indicating that wetland ice acts as a temporary sink for 2-(Allyloxy)-1,3,5-tribromobenzene (ATE), 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (α-TBECH), 1,2,5,6-Tetrabromocyclooctane (TBCO), and 2-Bromoallyl 2,4,6-tribromophenyl ether (BATE). In order to achieve dynamic equilibrium, the exchange profile of BFRs between water and sediment requires the release of BFRs into water. The risk quotient (RQ) indicated that TBCO in water and ice poses a moderate risk to aquatic organisms, and its potential impact on wetland ecology cannot be ignored. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Graphical abstract

20 pages, 2758 KiB  
Article
Impact of an Integral Management System with Constructed Wetlands in Pig Slurry Traceability and GHG/NH3 Emissions
by Melisa Gómez-Garrido, Martire Angélica Terrero Turbí, Oumaima El bied and Ángel Faz Cano
Water 2024, 16(16), 2351; https://doi.org/10.3390/w16162351 - 21 Aug 2024
Viewed by 1488
Abstract
The sustainable management of pig slurry (PS) in intensive farms is essential to reduce adverse environmental impacts and reduce the ecological footprint. If not managed properly, PS can release GHG/NH3 gases into the atmosphere and contaminate waters. This study evaluates the impact [...] Read more.
The sustainable management of pig slurry (PS) in intensive farms is essential to reduce adverse environmental impacts and reduce the ecological footprint. If not managed properly, PS can release GHG/NH3 gases into the atmosphere and contaminate waters. This study evaluates the impact of an integral management system with physical and biological stages to mitigate the impact of PS. The system resulted in effective PS traceability, studying its physicochemical properties. The synergism in the whole system allowed a decrease in the most analyzed parameters during the autumn, spring, and summer. The pretreatment contributed significantly to obtaining an appreciable percentage of reduction in the constructed wetlands of SS (99–100%), COD (56–87%), TN (50–57%), and PO43− (88–100%). The emission values (g/m2/day) were 0–2.14 (CH4), 0–473.76 (CO2), 0–179.77 (H2O), 0–0.265 (N2O), and 0–0.195 (NH3), highlighting the raw, separated and manure fractions with the highest values. It is concluded that the system proves to be a practical, low-cost, and efficient technique for the treatment of PS. It significantly reduces the concentration of nutrients, and the intercepted byproducts can be valuable for application to the soil. In addition, the system effectively reduces GHG/NH3 emissions in decanted, purified, and wetland PS fractions. Full article
Show Figures

Figure 1

16 pages, 2121 KiB  
Article
Development of a Constructed Wetland for Greywater Treatment for Reuse in Arid Regions: Case Study in Rural Burkina Faso
by Ynoussa Maiga, Cheik Omar Tidiane Compaoré, Martine Diallo/Koné, Seyram Kossi Sossou, Hermann YempalaSomé, Mamady Sawadogo, Issa Nagalo, James R. Mihelcic and Aboubakar Sidiki Ouattara
Water 2024, 16(13), 1927; https://doi.org/10.3390/w16131927 - 6 Jul 2024
Cited by 4 | Viewed by 2388
Abstract
This study implemented and assessed, over a period of four weeks, a full-scale constructed wetland designed to collect and treat the greywater for a rural household located in an arid environment typical of Africa’s Sahel region. The system was constructed from local materials [...] Read more.
This study implemented and assessed, over a period of four weeks, a full-scale constructed wetland designed to collect and treat the greywater for a rural household located in an arid environment typical of Africa’s Sahel region. The system was constructed from local materials and consisted of a shower room, a receiving basin, a pre-treatment filter, and a subsurface horizontal flow wetland planted with Chrysopogon zizanioides. Results showed the overall removal of organic matter was greater than 90%, and orthophosphate and ammonium were reduced by 73% and 60%, respectively, allowing for the treated water to retain some embedded nutrients. The removal efficiency of fecal bacteria varied from 3.41 (enterococci) to 4.19 (fecal coliforms) log10 units which meets World Health Organization Guidelines for restricted irrigation. Our assessment of the full-scale household constructed wetland technology adds to the relatively low number of constructed wetland studies conducted outside a laboratory setting. Furthermore, it supports efforts to promote safe reuse of an underutilized resource at the rural household level in Sub-Saharan Africa and other arid regions in the developing world, supporting prospects for using treated greywater for agricultural reuse in regions that experience water scarcity, climate variability, and land degradation. Full article
(This article belongs to the Special Issue Water Management in Arid and Semi-arid Regions)
Show Figures

Graphical abstract

11 pages, 588 KiB  
Article
Swine Wastewater Treatment System Using Constructed Wetlands Connected in Series
by Amalia García-Valero, José Alberto Acosta, Ángel Faz, María Dolores Gómez-López, Dora María Carmona, Martire Angélica Terrero, Oumaima El Bied and Silvia Martínez-Martínez
Agronomy 2024, 14(1), 143; https://doi.org/10.3390/agronomy14010143 - 7 Jan 2024
Cited by 6 | Viewed by 2162
Abstract
The main objective of this study was to analyze the efficiency of CWs for purifying swine wastewater in order to reduce its pollutant load. The system included a pretreatment module (raw swine wastewater tank, phase separator, and settlement tank), and three constructed wetlands [...] Read more.
The main objective of this study was to analyze the efficiency of CWs for purifying swine wastewater in order to reduce its pollutant load. The system included a pretreatment module (raw swine wastewater tank, phase separator, and settlement tank), and three constructed wetlands connected in series and planted with Phragmites australis and Suaeda vera. Three treatment cycles were carried out with a total hydraulic retention time in the wetland of 21 days for each cycle. Pig slurry samples were collected in triplicate after each treatment module, and physical–chemical analyses were performed. The results showed that the phase separator decreased the suspended solids, turbidity, and the chemical oxygen demand in the treated swine wastewater. The system enabled considerable nitrogen reductions (Kjeldahl nitrogen, NH4+, and organic nitrogen), and the highest removal was reported in the wetlands. However, the cations and anions showed different efficiencies. In some cases (Ca, Mg, and Na), the final concentrations were increased, which could be explained by their release from the substrate; however, there were no statistical differences among the CW effluents and the raw pig slurry. Therefore, the integral pig slurry treatment system with constructed wetlands increased the quality of the treated swine wastewater and thus can be used for its sustainable agronomic valorization. This thereby enables savings in inorganic fertilizers and irrigation water. Full article
Show Figures

Figure 1

18 pages, 2862 KiB  
Article
Application Potential of Constructed Wetlands on Different Operation Mode for Biologically Pre-Treatment of Rural Domestic Wastewater
by Siyu Wang, Yifei Teng, Fangkui Cheng and Xiwu Lu
Sustainability 2023, 15(3), 1799; https://doi.org/10.3390/su15031799 - 17 Jan 2023
Cited by 10 | Viewed by 2984
Abstract
In order to satisfy the requirements of rural domestic sewage, a bio-ecological combination system was proposed, including a biological treatment section (anaerobic hydrolysis tank and aerobic tank) and an ecological post-treatment section. This study observed the application potential of constructed wetlands (CW) on [...] Read more.
In order to satisfy the requirements of rural domestic sewage, a bio-ecological combination system was proposed, including a biological treatment section (anaerobic hydrolysis tank and aerobic tank) and an ecological post-treatment section. This study observed the application potential of constructed wetlands (CW) on different operation modes for biologically pre-treated rural domestic wastewater. The organics and nutrient removal efficiency of the tidal flow constructed wetland (TFCW) and the horizontal subsurface flow constructed wetland (HFCW) were compared at a temperature range of 20–40 °C. During the stable phase, the higher chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total phosphorus (TP) removal efficiencies existed in TFCW than HFCW, corresponding to the efficiency of COD 69.46%, NH4+-N 96.47%, and TP 57.38%, but lower performance on COD (61.43%), NH4+-N (84.99%), and TP (46.75%) removal in HFCW, which should be attributed to the increasement of aerobic heterotrophic bacteria (Arthrobact and Sphingomonas), nitrifiers (Nitrospira), and phosphate accumulating organisms (PAOs) (Pseudomonas). The microbial biomass was also increased from 2.13 ± 0.14 mg/g (HFCW) to 4.64 ± 0.18 mg/g (TFCW), which proved to strengthen the formation and growth of biofilm under a better oxygen supplement. Based on the relative abundance of functional genera in the microbial community, it showed that TFCW was more favorable for promoting the growth of heterotrophic bacteria, nitrifiers, and phosphate-accumulating organisms (PAOs). When temperature changed from −4 °C to 15 °C, the two-stage constructed wetlands (TFCW-HFCW and HFCW-TFCW) were used for improving the performance of pollutants removal. The results demonstrated that the effluent concentrations of TFCW-HFCW and HFCW-TFCW met the Class 1A discharge standard of DB32/3462-2020 in JiangSu Province, China. Therefore, this study will provide a useful and easy-to-implement technology for the operation as an ecological post-treatment section. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 1208 KiB  
Article
Optimized Production of Second-Generation Bioethanol from a Spent C4 Grass: Vetiver (Chrysopogon zizanioides)
by Sameer Neve, Dibyendu Sarkar, Zhiming Zhang and Rupali Datta
Energies 2022, 15(24), 9597; https://doi.org/10.3390/en15249597 - 17 Dec 2022
Cited by 8 | Viewed by 2627
Abstract
Vetiver grass (Chrysopogon zizanioides) is well-known for its contaminant phytoextraction potential and its capacity to reduce soil erosion, owing to its massive, dense root system. However, the shoots are not major contributors to either of these processes, and are either not [...] Read more.
Vetiver grass (Chrysopogon zizanioides) is well-known for its contaminant phytoextraction potential and its capacity to reduce soil erosion, owing to its massive, dense root system. However, the shoots are not major contributors to either of these processes, and are either not utilized at all or they become part of the waste stream. It is well-recognized that lignocellulosic biomass can serve as a source of raw material to produce second-generation bioethanol. This study investigated the simultaneous saccharification and fermentation (SSF) of acid–alkali pretreated vetiver (VG) shoots by Saccharomyces cerevisiae. Vetiver shoots were obtained from three sources: (1) shoots from VG grown in clean potting soil, (2) shoots from VG used for antibiotics phytoextraction from a constructed wetland setup, and (3) shoots from VG used for lead phytoextraction during soil remediation. Bioethanol yield from the shoots from clean soil was the highest (19.58 g/L), followed by the one used for lead phytoextraction (19.50 g/L) and the one used for antibiotics phytoextraction (19.17 g/L). Bioethanol yield and quality obtained from these three VG shoots was superior or similar to other C4 grasses used for bioethanol generation. This study successfully demonstrated that spent vetiver biomass after phytoextraction applications can be repurposed to generate high-quality bioethanol. Full article
(This article belongs to the Topic Sustainable Environmental Technologies)
Show Figures

Figure 1

20 pages, 1030 KiB  
Review
Tertiary Wastewater Treatment Technologies: A Review of Technical, Economic, and Life Cycle Aspects
by Dimitris P. Zagklis and Georgios Bampos
Processes 2022, 10(11), 2304; https://doi.org/10.3390/pr10112304 - 5 Nov 2022
Cited by 48 | Viewed by 13408
Abstract
The activated sludge process is the most widespread sewage treatment method. It typically consists of a pretreatment step, followed by a primary settling tank, an aerobic degradation process, and, finally, a secondary settling tank. The secondary effluent is then usually chlorinated and discharged [...] Read more.
The activated sludge process is the most widespread sewage treatment method. It typically consists of a pretreatment step, followed by a primary settling tank, an aerobic degradation process, and, finally, a secondary settling tank. The secondary effluent is then usually chlorinated and discharged to a water body. Tertiary treatment aims at improving the characteristics of the secondary effluent to facilitate its reuse. In this work, through a literature review of the most prominent tertiary treatment methods, a benchmarking of their technical efficiency, economic feasibility, and environmental impact was carried out. The photo-Fenton method proved to be the most technically efficient process, significantly reducing the microbial load and pharmaceutical content (by 4.9 log and 84%, respectively) of the secondary effluent. Chlorination and UV irradiation exhibited the lowest treatment costs (0.004 EUR/m−3) and the lowest global warming potential (0.04 and 0.09 kg CO2eq. m−3, respectively). After all the data were aggregated, a decision-making tool was constructed in the form of a ternary diagram, which indicates the most appropriate tertiary treatment method according to the weight-per-process aspect (technical, economic, and environmental) selected by the user, with chlorination, UV irradiation, ozonation, microalgae cultivation, and constructed wetlands prevailing in the final results. Full article
Show Figures

Figure 1

15 pages, 1932 KiB  
Article
Assessing the Reliability of Treated Grey Water Irrigation on Soil and Tomatoes (Solanum lycopersicum L.)
by Hichem Hajlaoui, Rawaa Akrimi, Anis Guesmi and Mohamed Hachicha
Horticulturae 2022, 8(10), 981; https://doi.org/10.3390/horticulturae8100981 - 21 Oct 2022
Cited by 3 | Viewed by 2389
Abstract
Under a water scarcity situation, it is expected to manage water more efficiently. This study aims to evaluate the effect of treated grey water (from laundry and tableware), pre-treated through a wetland mini-reactor with a horizontal underground flow, on soil and tomatoes. The [...] Read more.
Under a water scarcity situation, it is expected to manage water more efficiently. This study aims to evaluate the effect of treated grey water (from laundry and tableware), pre-treated through a wetland mini-reactor with a horizontal underground flow, on soil and tomatoes. The experiment included two tomato cultivars (Dart and Firenze), planted in completely randomized bloc design, and irrigated with treated grey water (TGW) vs. ground water (C) as control. Soil, tomato leaves and fruits were assessed for microbial contamination. Tomato yield, physico-chemical characteristics and antioxidant contents were studied. Results showed that TGW met the standards for irrigation water for most water quality variables. Irrigation with TGW increased the concentrations of phosphorus (P), iron (Fe) and copper (Cu) in the soil. Although, the soil ionic composition was still in the suitable range for agriculture. Opportunely, there was no contamination by fecal coliforms, streptococcus and E. coli in soil and tomatoes. Dart cultivar seems to be more responsive to TGW and had higher fruit number and weight. This response was accompanied by an effective antioxidant response, higher water and juice content. The findings of this study emphasize that TGW may provide a way to preserve water resources and to avoid soil contamination. Full article
(This article belongs to the Topic Innovation and Solution for Sustainable Agriculture)
Show Figures

Graphical abstract

10 pages, 1836 KiB  
Article
Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design
by An Liu, Prasanna Egodawatta and Ashantha Goonetilleke
Water 2022, 14(8), 1296; https://doi.org/10.3390/w14081296 - 15 Apr 2022
Cited by 7 | Viewed by 3955
Abstract
Bioretention basins, constructed wetlands and roadside swales are among the most common Water-Sensitive Urban Design (WSUD) or stormwater quality treatment systems. Although these systems can reduce stormwater quantity and improve quality, their hydraulic and water quality treatment performances are different. The aim of [...] Read more.
Bioretention basins, constructed wetlands and roadside swales are among the most common Water-Sensitive Urban Design (WSUD) or stormwater quality treatment systems. Although these systems can reduce stormwater quantity and improve quality, their hydraulic and water quality treatment performances are different. The aim of this study was to investigate the hydraulic and water quality performance of a bioretention basin, a constructed wetland and a roadside swale by analyzing monitored water quantity and quality data from a range of rainfall events using a ranking approach. The study outcomes showed that a bioretention basin performed better in relation to peak flow and runoff volume reduction while the constructed wetland tended to produce better outflow water quality. The roadside swale had a relatively lower capacity for treating stormwater. These results suggest that a bioretention basin could be the preferred option when the primary requirement is water quantity improvement. However, if water quality improvement is the primary consideration, a constructed wetland could be more efficient. Additionally, when designing a treatment train, it appears to be preferable to place a bioretention basin prior to a constructed wetland. Further, a swale appears to be more appropriate for use as a pretreatment device. The research study outcomes will contribute to effective stormwater treatment design. Full article
Show Figures

Figure 1

16 pages, 3110 KiB  
Article
Exploring Different Pretreatment Methodologies for Allowing Microalgae Growth in Undiluted Piggery Wastewater
by Alice Ferreira, Daniel Figueiredo, Rodrigo Cardeiras, Rui Nabais, Francisca Ferreira, Belina Ribeiro, Cláudia M. d. S. Cordovil, F. Gabriel Acién and Luisa Gouveia
Agronomy 2022, 12(3), 580; https://doi.org/10.3390/agronomy12030580 - 26 Feb 2022
Cited by 15 | Viewed by 3643
Abstract
The overapplication of manure on agricultural soils leads to nitrogen and phosphorus discharge into the aquatic environment, resulting in serious eutrophication problems and decreased water quality. Piggery wastewater (PWW) can be treated by microalgae to recycle nutrients, but the toxic levels of ammonia [...] Read more.
The overapplication of manure on agricultural soils leads to nitrogen and phosphorus discharge into the aquatic environment, resulting in serious eutrophication problems and decreased water quality. Piggery wastewater (PWW) can be treated by microalgae to recycle nutrients, but the toxic levels of ammonia and organic matter hinder their growth. Fresh water is usually used to dilute PWW, but it is a scarce resource. The implementation of a pretreatment step before microalgae-based treatment could make PWW suitable for microalgae growth. Electrocoagulation, ammonia stripping, photo-Fenton, and constructed wetlands were evaluated as pretreatment methods to reduce ammonia, chemical oxygen demand (COD), color, and total suspended solids. Moreover, the pretreated PWWs were tested to grow the microalga Tetradesmus obliquus. Photo-Fenton showed the best results among the other pretreatments, achieving removal efficiencies above 90%, except for ammonia. This resulted in T. obliquus being capable of growing on undiluted PWW, even at higher ammonia levels, achieving similar biomass productivity to synthetic medium (66.4 ± 17.8 mg·L−1·day−1 and 60.1 ± 10.4 mg·L−1·day−1, respectively) almost doubling with pH control (116.5 mg·L−1·day−1). Thus, this pretreatment seems to be the most promising one to incorporate into microalgae-based treatment systems and must be further explored. Full article
(This article belongs to the Special Issue Good Agricultural Management to Higher Nutrient Use Efficiency)
Show Figures

Graphical abstract

14 pages, 1463 KiB  
Article
Turbidity and Chemical Oxygen Demand Reduction from Pig Slurry through a Coagulation Flocculation Process
by Oumaima El bied, Mathieu Kessler, Martire Angélica Terrero, Taoufiq Fechtali, Angel Faz Cano and José A. Acosta
Agronomy 2021, 11(11), 2158; https://doi.org/10.3390/agronomy11112158 - 27 Oct 2021
Cited by 8 | Viewed by 2859
Abstract
Pig slurry is considered a high-risk effluent that causes several environmental problems if it is not adequately managed and treated. White Iberian pig farms in the southeast of Spain treat their slurry in situ using separation, double filtration, decantation, and constructed wetland treatments. [...] Read more.
Pig slurry is considered a high-risk effluent that causes several environmental problems if it is not adequately managed and treated. White Iberian pig farms in the southeast of Spain treat their slurry in situ using separation, double filtration, decantation, and constructed wetland treatments. However, the pretreatment process does not successfully reduce solids, which leads to clogging in the constructed wetlands (CWs). The main objective of this research paper is to reduce the turbidity and chemical oxygen demand (COD) from the effluent to make it appropriate for CW treatment. Optimization of the coagulation–flocculation (CF) process using iron chloride and a cationic flocculent DKFLOCC-1598 was investigated by a central composite design method (CCD). The effects of coagulant concentration, pH, and flocculent on the COD and turbidity removal were evaluated. The best results were found using 0.024 mol L−1 iron chloride and 0.164 mL L−1 flocculent at pH 7.5, which reduced COD by 96% and delivered turbidity removal of 97%. Therefore, the results indicate the high efficiency of the treatment method in reducing the COD and suspended solids. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Graphical abstract

Back to TopTop