Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,077)

Search Parameters:
Keywords = weighted h-index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2483 KiB  
Article
Relations of Insulin Resistance, Body Weight, Vitamin D Deficiency, SHBG and Androgen Levels in PCOS Patients
by Zsófi Balogh, Szilvia Csehely, Mónika Orosz, Harjit Pal Bhattoa, Zoárd Tibor Krasznai, Tamás Deli and Attila Jakab
Biomedicines 2025, 13(8), 1803; https://doi.org/10.3390/biomedicines13081803 - 23 Jul 2025
Abstract
Background: The most common female endocrinopathy is polycystic ovary syndrome (PCOS), affecting 10–20% of women of reproductive age. It is associated with a wide range of hormonal and biochemical abnormalities and long-term metabolic and cardiovascular risks. It is characterized by infertility due to [...] Read more.
Background: The most common female endocrinopathy is polycystic ovary syndrome (PCOS), affecting 10–20% of women of reproductive age. It is associated with a wide range of hormonal and biochemical abnormalities and long-term metabolic and cardiovascular risks. It is characterized by infertility due to chronic anovulation, hyperandrogenism, polycystic ovarian morphology, and is often associated with insulin resistance (IR) and obesity. Hyperinsulinemia further increases androgen production and reduces sex hormone-binding globulin (SHBG) levels, thereby aggravating symptoms. In addition, vitamin D deficiency is often present in PCOS patients, and increasing evidence suggests that it may also be associated with insulin resistance and hyperandrogenism. Objective: This study aimed to evaluate the relationships between insulin resistance, vitamin D deficiency, body mass index (BMI), and androgen levels in women with PCOS. Method: A cross-sectional study was conducted in which data from 195 women diagnosed with PCOS and not yet receiving therapy at a gynecologic endocrinology unit of a university-based tertiary clinical center, between 2019 and 2024, were analyzed. The parameters recorded were age, body mass index (BMI), 25(OH) vitamin D levels, androgen hormone levels (testosterone, androstenedione), glucose-insulin responses during a 3-point oral glucose tolerance test (OGTT). Statistical analyses, including linear regression, Pearson, and Spearman correlation tests were used to assess associations between variables. Results: The mean age of the patients was 24.8 years (18–42), and the mean BMI was 30.6 kg/m2 (17–51). Vitamin D deficiency was observed in 84.1% of patients, hyperandrogenism in 45.8%, and insulin resistance in 44.5%. A significant inverse correlation was found between BMI and vitamin D levels (r = −0.31, p =< 0.01) indicating that higher BMI is associated with lower vitamin D status. Similarly, BMI also showed a significant negative correlation with SHBG levels (r = –0.45, p < 0.01), suggesting that increasing body weight is linked to reduced SHBG concentrations. In addition, BMI was significantly positively correlated with 2 h insulin levels (r = 0.43, p =< 0.01) and with testosterone levels (r = 0.21, p = 0.01). These findings suggest that increased adiposity intensifies insulin resistance and is linked to both vitamin D deficiency and elevated androgen levels. Moreover, the combination of hyperinsulinemia and low vitamin D further disrupts hormonal balance by promoting ovarian androgen production and decreasing SHBG levels, thereby increasing the bioavailability of testosterone. A significant inverse correlation was found between vitamin D levels and 2 h insulin levels (r = −0.28, p =< 0.01), indicating that lower vitamin D status is associated with increased insulin resistance. Furthermore, 2 h insulin levels showed a significant positive correlation with testosterone levels (r = 0.32, p =< 0.01), suggesting that greater insulin resistance is linked to higher androgen production. Additionally, vitamin D levels were inversely correlated with testosterone (r = −0.18, p = 0.02), demonstrating that a lower vitamin D status may further contribute to the hyperandrogenic environment. Vitamin D levels also showed a significant positive correlation with SHBG concentrations (r = 0.29, p < 0.01), indicating that a higher vitamin D status may be associated with increased SHBG levels. In contrast, 2 h insulin levels were inversely correlated with SHBG (r = −0.43, p < 0.01), reflecting the suppressive effect of hyperinsulinemia on SHBG production. Conclusions: Insulin resistance, BMI, and vitamin D deficiency are closely related to each other and to the severity of PCOS, which is confirmed by the correlations with androgen levels. The revealed relationships draw attention to the special importance of vitamin D supplementation and the correction of carbohydrate metabolism in alleviating the symptoms of the disease and reducing long-term health risks. Full article
Show Figures

Figure 1

20 pages, 1716 KiB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

19 pages, 3772 KiB  
Article
Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
by Shiheng Zheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding and Tao Chen
Plants 2025, 14(14), 2249; https://doi.org/10.3390/plants14142249 - 21 Jul 2025
Viewed by 213
Abstract
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen [...] Read more.
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen high-yield, high-oil germplasms. The phenotypic diversity index for fruit (H’ = 1.36–1.44) was significantly higher than for leaf (H’ = 1.31) and flower (H’ < 1), indicating genetic diversity concentrated in reproductive traits, suggesting potential genetic variability in these traits. Fruit quantitative traits (e.g., single fruit weight CV = 35.37%, fresh seed weight CV = 38.93%) showed high genetic dispersion. Principal component analysis confirmed the fruit factor and economic factor as main phenotypic differentiation drivers. Quantitative traits were classified morphologically, and correlation analysis integrated them into 13 key indicators classified using LSD and range methods. Finally, TOPSIS evaluation selected 10 excellent germplasms like TQ122 and TQ49, with fruit weight, fresh seed yield, and kernel oil content significantly exceeding the population average. This study provides data for C. oleifera DUS test guidelines and proposes a multi-trait breeding strategy, supporting high-yield variety selection and germplasm resource protection. Full article
(This article belongs to the Special Issue Genetic Diversity and Germplasm Innovation in Woody Oil Crops)
Show Figures

Figure 1

19 pages, 4307 KiB  
Article
A Scalable Machine Learning Framework for Hydrological Water Quality Monitoring Using Physicochemical and Microbial Parameters
by Priyam Nath Bhowmik, Kezia Saini, Nunna Tagore Sai Priya, Pradyut Anand and Bayram Ateş
Water 2025, 17(14), 2158; https://doi.org/10.3390/w17142158 - 20 Jul 2025
Viewed by 316
Abstract
Monitoring river water quality is essential for environmental sustainability and public health. This study proposes a machine learning (ML)-based framework to model, predict, and classify the Water Quality Index (WQI) using river water samples collected across India. The dataset includes eight physicochemical and [...] Read more.
Monitoring river water quality is essential for environmental sustainability and public health. This study proposes a machine learning (ML)-based framework to model, predict, and classify the Water Quality Index (WQI) using river water samples collected across India. The dataset includes eight physicochemical and microbial parameters: Temperature, pH, Dissolved Oxygen, Biological Oxygen Demand (BOD), Conductivity, Nitrate/Nitrite, Fecal Coliform, and Total Coliform. The WQI was calculated using weighted aggregation and categorized into Excellent, Good, Medium, and Poor classes. Regression and classification models—such as Linear Regression, Random Forest, Gradient Boosting, and Logistic Regression—were evaluated using MAE, RMSE, R2, Accuracy, Precision, Recall, and F1-score. Spatial mapping and exploratory data analysis were conducted to identify regional patterns. Feature importance (Gini and permutation-based) and error analysis enhanced interpretability. The framework achieved over 95% agreement with manual WQI classification, highlighting its effectiveness for real-time, scalable water quality monitoring and policy support. Full article
Show Figures

Figure 1

18 pages, 6313 KiB  
Article
Unveiling PM2.5 Transport Pathways: A Trajectory-Channel Model Framework for Spatiotemporally Quantitative Source Apportionment
by Yong Pan, Jie Zheng, Fangxin Fang, Fanghui Liang, Mengrong Yang, Lei Tong and Hang Xiao
Atmosphere 2025, 16(7), 883; https://doi.org/10.3390/atmos16070883 - 18 Jul 2025
Viewed by 141
Abstract
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory [...] Read more.
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory analysis, TCTM enables the precise identification of source regions, the delineation of key transport corridors, and a quantitative assessment of regional contributions to receptor sites. Focusing on four Yangtze River Delta cities (Hangzhou, Shanghai, Nanjing, Hefei) during a January 2020 pollution event, the results demonstrate that TCTM’s Weighted Concentration Source (WCS) and Source Pollution Characteristic Index (SPCI) outperform traditional PSCF and CWT methods in source-attribution accuracy and resolution. Unlike receptor-based statistical approaches, TCTM reconstructs pollutant transport processes, quantifies spatial decay, and assigns contributions via physically interpretable metrics. This innovative framework offers actionable insights for targeted air-quality management strategies, highlighting its potential as a robust tool for pollution mitigation planning. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

12 pages, 351 KiB  
Article
Associations Between Sleep, Appetite, and Food Reward over 6 Months in Black Emerging Adults—Findings from the Sleep, Health Outcomes and Body Weight (SHOW) Pilot Study
by Hannah R. Koch, Jesse N. L. Sims, Stephanie Pickett, Graham Finlayson, Laurie Wideman and Jessica McNeil
Nutrients 2025, 17(14), 2305; https://doi.org/10.3390/nu17142305 - 13 Jul 2025
Viewed by 256
Abstract
Background/Objectives: Imposed sleep restriction leads to increased feelings of appetite and hedonic eating behaviors (or food rewards). No study to date has assessed home-based measures of sleep with appetite and food rewards exclusively in Black emerging adults (ages 18–28 years), despite higher [...] Read more.
Background/Objectives: Imposed sleep restriction leads to increased feelings of appetite and hedonic eating behaviors (or food rewards). No study to date has assessed home-based measures of sleep with appetite and food rewards exclusively in Black emerging adults (ages 18–28 years), despite higher risks of short sleep and obesity in this population. We examined associations between 6-month changes in sleep with changes in appetite and food reward in Black emerging adults. Methods: Fifteen Black emerging adults (12 females; age, 21 ± 2.5 years; body mass index, 25.7 ± 4.5 kg/m2; body fat, 25.8 ± 11.9%) completed two identical 7-day measurement bursts at baseline and 6 months. Sleep (duration, efficiency, and architecture) was captured via 7 days of actigraphy and 2 nights of in-home polysomnography. During a laboratory visit, participants completed appetite measures (desire to eat, hunger, fullness, and prospective food consumption) via visual analog scales before and for 3 h following standard breakfast intake. The food reward for the fat and sweet categories of food was measured before lunch with the Leeds Food Preference Questionnaire. Results: Fasting fullness scores decreased from baseline to 6 months (−8.9 mm, p < 0.01) despite increases in body weight (2.6 kg, p < 0.01) and waist circumference (2.4 cm, p = 0.03). Increases in actigraph-measured sleep duration were associated with decreases in fasting desire to eat (r = −0.58, p = 0.04). Increases in actigraph-measured sleep efficiency were also associated with decreases in explicit liking for sweet foods (r = −0.60, p = 0.03). Conclusions: Our findings suggest that improvements in sleep duration and sleep efficiency may lead to decreased feelings of appetite and food reward in Black emerging adults. Full article
Show Figures

Figure 1

16 pages, 671 KiB  
Article
Dietary Aluminum Exposure Is More Closely Linked to Antioxidant Dynamics than to Body Mass Index
by Ozge Yesildemir, Ceren Filiz Ozsoz, Mensure Nur Celik, Ozge Aydin Guclu, Anil Ozgur, Duygu Ağagündüz and Ferenc Budán
Toxics 2025, 13(7), 578; https://doi.org/10.3390/toxics13070578 - 9 Jul 2025
Viewed by 298
Abstract
The association between aluminum exposure and obesity remains uncertain. This study investigated whether aluminum exposure (dietary, serum, and urinary) is linked to obesity and whether dietary antioxidant capacity moderates this relationship. A total of 54 adult women (26 obese, 28 normal weight) were [...] Read more.
The association between aluminum exposure and obesity remains uncertain. This study investigated whether aluminum exposure (dietary, serum, and urinary) is linked to obesity and whether dietary antioxidant capacity moderates this relationship. A total of 54 adult women (26 obese, 28 normal weight) were recruited from a private weight loss clinic in Türkiye. Dietary aluminum exposure was estimated using 24 h dietary recalls and literature values, and antioxidant capacity was calculated through a food frequency questionnaire. Serum and spot urine samples were collected, and aluminum levels were measured using inductively coupled plasma optical emission spectrometry. No significant differences were observed between normal weight and obese groups in serum aluminum (127.7 ± 102.42 vs. 122.9 ± 88.37 µg/L, p > 0.05), urinary aluminum (28.1 ± 12.73 vs. 14.1 ± 10.77 µg/L, p > 0.05), or weekly dietary aluminum exposure (0.61 ± 0.45 vs. 0.45 ± 0.24 mg/kg bw/week, p > 0.05). Dietary aluminum exposure correlated positively with total antioxidant capacity (r = 0.665, p < 0.001). Regression analysis revealed that dietary aluminum exposure was inversely associated with body mass index (β = −0.27, p < 0.05), while antioxidant capacity did not moderate this relationship, nor did the age difference. These results suggest dietary aluminum exposure reflects diet quality and/or food preparation methods, etc., rather than directly influencing obesity. Full article
Show Figures

Graphical abstract

14 pages, 1775 KiB  
Article
Characterization of Recycled Aggregates from Building Demolition Waste for Use in Road Infrastructures
by Majid Ahmadpour, Davood Akbarimehr, Mohammad Rahai and Ali Momeni
Infrastructures 2025, 10(7), 167; https://doi.org/10.3390/infrastructures10070167 - 1 Jul 2025
Viewed by 229
Abstract
In light of rising environmental concerns, the rapid industrial recycling of building demolition waste material (BDWM) is now capable of supporting sustainable development in metropolitan regions. From this perspective, the current study investigated the geotechnical properties and applications of BDWMs as substitutes for [...] Read more.
In light of rising environmental concerns, the rapid industrial recycling of building demolition waste material (BDWM) is now capable of supporting sustainable development in metropolitan regions. From this perspective, the current study investigated the geotechnical properties and applications of BDWMs as substitutes for natural materials (NMs) in road engineering infrastructures. For this purpose, the physical and geotechnical characteristics of both types of materials were initially examined, and then compared using laboratory-scale material comprehensive assessments such as sieve analysis (SA), the flakiness index (FI), the specific gravity test (Gs), the Los Angeles abrasion test (LAAT), Atterberg limits (AL), the water absorption test (WAT), the California bearing ratio (CBR), the direct shear test (DST), and the Proctor soil compaction test (PSCT). The BDWMs were collected from two locations in Iran. According to the results, the collected samples consisted of concrete, bricks, mortar, tile materials, and others. The CBR values for the waste material from the two sites were 69 and 73%, respectively. Furthermore, the optimum water content (OWC) and maximum dry unit weight (MDD) from the two sites were reported as 9.3 and 9.9% and 20.8 and 21 kN/m3, respectively, and the hydrogen potential (pH) as 9 and 10. The shear strength and CBR values indicated that the BDWM had a suitable strength compared to the NM. In terms of road infrastructure applications, the shear strengths were adequate for the analysis of common sub-base materials used in filling and road construction. Furthermore, the study’s findings revealed that BDWMs were suitable replacements for the NM used in road engineering operations and could make a significant contribution to sustainable development. Full article
Show Figures

Figure 1

17 pages, 937 KiB  
Article
The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players
by Hakkı Mor, Ahmet Mor, Mekki Abdioğlu, Dragoș Ioan Tohănean, Cătălin Vasile Savu, Gizem Ceylan Acar, Cristina Elena Moraru and Dan Iulian Alexe
Nutrients 2025, 17(13), 2156; https://doi.org/10.3390/nu17132156 - 28 Jun 2025
Viewed by 521
Abstract
Background/Objectives: Despite extensive research on caffeine’s (CAF’s) ergogenic effects, evidence regarding its impact on anaerobic performance in female athletes remains limited and inconclusive. The aim of this study was to investigate the acute effects of 6 mg/kg−1 caffeine on anaerobic performance, functional [...] Read more.
Background/Objectives: Despite extensive research on caffeine’s (CAF’s) ergogenic effects, evidence regarding its impact on anaerobic performance in female athletes remains limited and inconclusive. The aim of this study was to investigate the acute effects of 6 mg/kg−1 caffeine on anaerobic performance, functional strength, agility, and ball speed in female soccer players. Methods: A randomized, double-blind, placebo-controlled crossover design was employed. Thirteen moderately trained female soccer players (age: 21.08 ± 1.11 years; height: 161.69 ± 6.30 cm; weight: 59.69 ± 10.52 kg; body mass index (BMI): 22.77 ± 3.50 kg/m2; training age: 7.77 ± 1.16 years; habitual caffeine intake: 319 ± 160 mg/day) completed two experimental trials (caffeine vs. placebo (PLA)), separated by at least 48 h. Testing sessions included performance assessments in vertical jump (VJ), running-based anaerobic sprint test (RAST), bilateral leg strength (LS), handgrip strength (HS), single hop for distance (SH), medial rotation (90°) hop for distance (MRH), change of direction (COD), and ball speed. Rating of perceived exertion (RPE) was also recorded. Results: CAF ingestion significantly improved minimum (p = 0.011; d = 0.35) and average power (p = 0.007; d = 0.29) during RAST. A significant increase was also observed in SHR (single leg hop for distance right) performance (p = 0.045; d = 0.44). No significant differences were found in VJ, COD, ball speed, LS, HS, SHL, MRHR, or MRHL (p > 0.05). RPE showed a moderate effect size (d = 0.65) favoring the CAF condition, though not statistically significant (p = 0.110). Conclusions: In conclusion, acute CAF intake at a dose of 6 mg/kg−1 may enhance anaerobic capacity and lower-limb functional strength in female soccer players, with no significant effects on jump height, agility, or upper-body strength. Full article
(This article belongs to the Special Issue Nutrition, Physical Activity and Women’s Health)
Show Figures

Figure 1

15 pages, 790 KiB  
Article
The Role of Artificial Weathering Protocols on Abiotic and Bacterial Degradation of Polyethylene
by Pauline F. De Bigault De Cazanove, Alena Vdovchenko, Ruth S. Rose and Marina Resmini
Polymers 2025, 17(13), 1798; https://doi.org/10.3390/polym17131798 - 27 Jun 2025
Viewed by 431
Abstract
Plastic pollution poses significant environmental challenges due to its persistence and contribution to the microplastic formation, with polyethylene being among the materials more abundantly found. Understanding how different artificial weathering protocols influence the degradation of plastics is crucial for assessing their environmental impact. [...] Read more.
Plastic pollution poses significant environmental challenges due to its persistence and contribution to the microplastic formation, with polyethylene being among the materials more abundantly found. Understanding how different artificial weathering protocols influence the degradation of plastics is crucial for assessing their environmental impact. This study investigates the effects of three distinct artificial weathering protocols—continuous UV-A irradiation (ML), cyclic UV-dark exposure (MC[L→D]), and sequential UV-dark phase (ML→D)—on the physicochemical properties of plastics, using oxo-low-density polyethylene as the model material. Surface oxidation, measured by quantification of the carbonyl index, was most pronounced under the MC[L→D] protocol despite the shortest time of overall UV exposure, indicating that oxidative reactions continue during the dark phases. Vinyl group formation, however, required continuous or cyclic UV exposure, highlighting the critical role of light in this chemical process. Alterations in the surface hydrophilicity, measured by contact angle, and changes in molecular weight were quantified and found to closely link to the weathering conditions, with increased oxidations enhancing the surface hydrophilicity and the chain scission balanced by crosslinking with extended UV durations. These findings emphasize the importance of weathering protocols when trying to simulate conditions in the lab that are closer to the ones in the environment to understand plastic degradation mechanisms. Biodegradation experiments with Rhodococcus rhodochrous demonstrated that weathered oxo-LDPE samples with higher surface oxidation levels (ΔCI > 1) supported an increased CO2 production by Rhodococcus rhodochrous, with the MC[L→D]—360 h protocol yielding the highest biodegradation rates—31–43% higher than the control. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

10 pages, 847 KiB  
Article
Impact of a 12-Week Hypocaloric Weight Loss Diet with Mixed Tree Nuts vs. Pretzels on Trimethylamine-N-Oxide (TMAO) Levels in Overweight Adults
by Onkei Lei, Jieping Yang, Hannah H. Kang and Zhaoping Li
Nutrients 2025, 17(13), 2137; https://doi.org/10.3390/nu17132137 - 27 Jun 2025
Viewed by 397
Abstract
Trimethylamine N-oxide (TMAO), a gut microbiome metabolite linked to cardiovascular health, can be influenced by dietary factors like choline intake and diet quality. This study compared the effects of mixed tree nuts (MTNs) and pretzels, as part of a 12-week hypocaloric weight loss [...] Read more.
Trimethylamine N-oxide (TMAO), a gut microbiome metabolite linked to cardiovascular health, can be influenced by dietary factors like choline intake and diet quality. This study compared the effects of mixed tree nuts (MTNs) and pretzels, as part of a 12-week hypocaloric weight loss diet, on TMAO levels and identified dietary predictors. Methods: Plasma samples from 95 overweight individuals consuming either 1.5 oz. of mixed tree nuts (MTNs, n = 56) or isocaloric pretzels (n = 39) daily for 12 weeks were analyzed. Nutritional data were collected at baseline and week 12 through dietary recall using the Automated Self-Administered 24 h Dietary Assessment Tool (ASA24), and the overall diet quality was assessed via the Healthy Eating Index (HEI) score. TMAO levels were determined and analyzed using linear mixed-effect models, adjusting for covariates. Wilcoxon signed-rank tests compared baseline and week 12 TMAO and weight. Multiple linear regression identified baseline predictors of TMAO. Results: Baseline demographics, anthropometric measures, HEI scores, and dietary choline intake were similar between the MTN and pretzel groups. A significant positive association was observed between baseline dietary choline and plasma TMAO levels (p = 0.012). The 12-week hypocaloric diet led to significant weight reduction in both groups (p < 0.01), but the magnitude of weight loss did not differ significantly between the MTN (−3.47 lbs) and pretzel (−4.25 lbs) groups (p = 0.18). Plasma TMAO levels decreased significantly in both groups (p < 0.01), but the between-group difference in reduction was not significant. (MTNs: −0.34 vs. pretzels: −0.37; p = 0.43). HEI scores and dietary choline intake remained unchanged, with no significant time–intervention interaction. Participants with low baseline HEI scores (≤53.72) had a more pronounced reduction in TMAO levels in the MTN group compared to the pretzel group (MTN: −0.54 vs. pretzel: −0.23; p = 0.045) over 12 weeks, despite similar weight loss. This difference was not observed in participants with higher HEI scores. Conclusions: The 12-week hypocaloric diet reduced body weight and plasma TMAO levels similarly in both MTN and pretzel groups. Participants with lower dietary quality saw a greater reduction in TMAO levels in the MTN group, suggesting MTNs may better modulate TMAO levels, especially for those with poorer baseline diets. Full article
(This article belongs to the Special Issue Impact of Optimized Nutritional Strategies on Weight Control)
Show Figures

Figure 1

13 pages, 751 KiB  
Article
Potential Associations Between Anthropometric Characteristics, Biomarkers, and Sports Performance in Regional Ultra-Marathon Swimmers: A Quasi-Experimental Study
by Iasonas Zompanakis, Konstantinos Papadimitriou and Nikolaos Koutlianos
Appl. Sci. 2025, 15(13), 7210; https://doi.org/10.3390/app15137210 - 26 Jun 2025
Viewed by 292
Abstract
Background/Objectives: This study aimed to investigate the associations of anthropometric characteristics with performance and potential biomarker changes resulting from a continuous 10 h ultra-marathon swimming effort in regional-level swimmers. Methods: Nine adult male swimmers (age: 43 ± 6 years) participated in a 10 [...] Read more.
Background/Objectives: This study aimed to investigate the associations of anthropometric characteristics with performance and potential biomarker changes resulting from a continuous 10 h ultra-marathon swimming effort in regional-level swimmers. Methods: Nine adult male swimmers (age: 43 ± 6 years) participated in a 10 h swim in a 50 m outdoor pool, self-managing their nutrition and hydration breaks. Pre- and post-swim measurements included body weight (BW), body fat percentage (BF%), limb lengths (LL), circumferences (C), lean mass (LM), body mass index (BMI), skinfold thicknesses, heart rate (HR) and blood pressure (BP). Results: A significant reduction was observed in bicep skinfold thickness (Fb) (p = 0.022), while both HR and systolic BP increased post-effort (p = 0.030 and p = 0.045, respectively). Also, most anthropometric parameters, such as BMI, LM, and some C, remained unchanged (p ≥ 0.05). A statistically significant negative correlation was found between post-swim hip circumference (Ph) and total swimming distance (r = –0.682, p = 0.043). Conclusions: While most anthropometric traits remained stable and unrelated to performance, isolated changes in specific biomarkers indicate a physiological response to prolonged exertion. Although pacing and nutritional strategies were not directly examined, observational data—such as consistent swimming rhythm, time allocation for active recovery (AR), and structured carbohydrate intake—suggest these factors may have contributed to performance maintenance and probably the lack of body composition differences after the ultra-marathon effort. These insights are interpretive and align with the existing literature, highlighting the need for future studies with targeted experimental designs. Full article
Show Figures

Figure 1

38 pages, 5287 KiB  
Article
Comparative Analysis of Throughput Prediction Models in SAG Mill Circuits: A Geometallurgical Approach
by Madeleine Guillen, Guillermo Iriarte, Hector Montes, Gerardo San Martín and Nicole Fantini
Mining 2025, 5(3), 37; https://doi.org/10.3390/mining5030037 - 20 Jun 2025
Viewed by 376
Abstract
This study was conducted on a copper porphyry deposit located in Espinar, Cusco (Peru), with the objective of developing and comparing predictive models for processing capacity in SAG grinding circuits. A total of 174 samples were used for the JK Drop Weight Test [...] Read more.
This study was conducted on a copper porphyry deposit located in Espinar, Cusco (Peru), with the objective of developing and comparing predictive models for processing capacity in SAG grinding circuits. A total of 174 samples were used for the JK Drop Weight Test (JKDWT) and 1172 for the Bond Work Index (BWi), along with 36 months of operational plant data. Three modeling methodologies were evaluated: DWi-BWi, SGI-BWi, and SMC-BWi (Mia, Mib), all integrated into a geometallurgical block model. Validation was performed through reconciliation with actual plant data, considering operational constraints such as transfer size (T80) and maximum throughput (TPH). The model based on SMC parameters and BWi showed the best predictive performance, with a root mean square error (RMSE) of 143 t/h and a mean relative deviation of 1.5%. This approach enables more accurate throughput forecasting, improving mine planning and operational efficiency. The results highlight the importance of integrating geometallurgical and operational data to build robust models that are adaptable to ore variability and applicable to both short- and long-term planning scenarios. Full article
Show Figures

Figure 1

15 pages, 2861 KiB  
Article
Agronomic and Quality Traits of 30 Eggplant Germplasm Resources from China
by Jian Lyu, Li Jin, Xianglan Ma, Yansu Li, Mintao Sun, Ning Jin, Shuya Wang, Linli Hu and Jihua Yu
Plants 2025, 14(12), 1838; https://doi.org/10.3390/plants14121838 - 15 Jun 2025
Viewed by 358
Abstract
(1) Background: Eggplant is a widely grown, high-value vegetable crop whose commercial demand has increased in recent years owing to its unique nutritional features. Variations in its agronomic and nutritional traits are of great importance in the selection of eggplant varieties. (2) Methods: [...] Read more.
(1) Background: Eggplant is a widely grown, high-value vegetable crop whose commercial demand has increased in recent years owing to its unique nutritional features. Variations in its agronomic and nutritional traits are of great importance in the selection of eggplant varieties. (2) Methods: In this study, 30 different eggplant varieties were evaluated concerning the morphological characteristics and nutritional value of their fruits. (3) Results: Among the eight morphological characteristics evaluated, the coefficient of variation was highest for fruit calyx thorns, pericarp brightness, and fruit shape index. The diversity index (H’) for pulp color was the largest, followed by pericarp brightness, but was the smallest for fruit weight. Principal component analysis showed that the morphological characteristics contributed 73.20% for the observed diversity among the 30 eggplant varieties, whereas eggplant fruit quality traits had a minor effect. Of note, significant differences in the soluble protein, vitamin C, nitrate, soluble sugar, organic acid, and mineral contents was observed within the samples, with organic acids, vitamin C, and hardness contributing more to the total variation observed. Multiple sets of correlations among the indices were found, with significant positive correlations between transverse diameter and hardness, fruit weight and fruit shape index, as well as between malic acid, fructose, and sucrose; (4) Conclusions: Altogether, these findings may help create breeding strategies to promote the selection of superior genotypes and help guide future germplasm collection. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 3483 KiB  
Article
Design and Activity Evaluation of Berberine-Loaded Dual pH and Enzyme-Sensitive Colon-Targeting Microparticles
by Jingqi Sun, Xinlong Chai, Xiwen Zeng, Qingwei Wang, Yanwen Ling, Lihong Wang and Jin Su
Pharmaceutics 2025, 17(6), 778; https://doi.org/10.3390/pharmaceutics17060778 - 13 Jun 2025
Viewed by 552
Abstract
Ulcerative colitis (UC) is a multifactorial disorder, and conventional oral berberine (BBR) suffers from poor colonic targeting. This study aimed to develop a colon-targeted microparticle system (BBR-ES MPs) based on chitosan (CS) and Eudragit S-100 to enhance BBR delivery efficiency and therapeutic efficacy [...] Read more.
Ulcerative colitis (UC) is a multifactorial disorder, and conventional oral berberine (BBR) suffers from poor colonic targeting. This study aimed to develop a colon-targeted microparticle system (BBR-ES MPs) based on chitosan (CS) and Eudragit S-100 to enhance BBR delivery efficiency and therapeutic efficacy in UC. Methods: BBR-CS nanocarriers were prepared via ionotropic gelation and coated with Eudragit S-100 to form pH/enzyme dual-responsive MPs. Colon-targeting performance was validated through in vitro release assays. SPF-grade male KM mice (Ethics Approval No.: JMSU-2021090301) with dextran sulfate sodium (DSS)-induced UC were divided into normal, model, BBR, and BBR-ES MPs groups. Therapeutic outcomes were evaluated by monitoring body weight, disease activity index (DAI), colon length, histopathology, inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-10), and myeloperoxidase (MPO) activity via ELISA. Gut microbiota diversity was analyzed using 16S rRNA sequencing. Results: BBR-ES MP treatment significantly reduced DAI scores (p < 0.01), restored colon length, downregulated pro-inflammatory cytokines (IL-1β, IL-6, TNF-α; p < 0.05), and upregulated anti-inflammatory IL-10. Microbiota analysis revealed that the Bacteroidetes/Firmicutes ratio, which decreased in the model group, was restored post-treatment, with alpha/beta diversity approaching normal levels. BBR-ES MPs outperformed free BBR at equivalent doses. Conclusion: BBR-ES MPs achieved colon-targeted drug delivery via pH/enzyme dual-responsive mechanisms, effectively alleviating UC inflammation and modulating gut dysbiosis, offering a safe and precise therapeutic strategy for UC management. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

Back to TopTop