Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = wavelength meter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2471 KiB  
Article
Spectral and Photometric Studies of NGC 3516 in the Optical Range
by Saule Shomshekova, Alexander Serebryanskiy, Ludmila Kondratyeva, Nazim Huseynov, Samira Rahimli, Vitaliy Kim, Laura Aktay and Yerlan Aimuratov
Galaxies 2025, 13(3), 60; https://doi.org/10.3390/galaxies13030060 - 16 May 2025
Viewed by 777
Abstract
This paper presents the results of the photometric and spectral monitoring of the galaxy NGC 3516, which is an active galactic nucleus (AGN) of type Sy 1.5 with a changing look. Observations were carried out at the Fesenkov Astrophysical Institute (FAI, Almaty, Kazakhstan) [...] Read more.
This paper presents the results of the photometric and spectral monitoring of the galaxy NGC 3516, which is an active galactic nucleus (AGN) of type Sy 1.5 with a changing look. Observations were carried out at the Fesenkov Astrophysical Institute (FAI, Almaty, Kazakhstan) and the Shamakhy Astrophysical Observatory (ShAO, Shamakhy, Azerbaijan). Spectral monitoring of this galaxy in the wavelength range 4000–7000 Å began in 2020, while photometric observations have been conducted since 2014. During the observation period, estimates of the galaxy’s brightness in the B, V and Rc filters were obtained, as well as measurements of the emission line and continuum fluxes. The light curve shows increased brightness of NGC 3516 in 2016 and 2019. The increase of emission line fluxes of Hβ and Hα and continuum began in 2019 and continued until spring 2020, when these characteristics reached their maximal values. A powerful X-ray flare took place on 1 April 2020. A new phase of brightening began in 2021 and has continued until 2025. After reaching their maxima in 2020, the emission fluxes of Hβ and Hα decreased by a factor of 1.5–2 and remained at a low level until 2022–2023, when they began to increase again. Medium-resolution spectra obtained on 20 April 2020, with the 1-meter “West” telescope (TSHAO) were used to study the broad components of the Hβ and Hα emission line profiles. Model calculations showed that the broad profile of the Hα line consists of a central unshifted component and two (blue and red) components shifted symmetrically relative to the central component by a velocity of v=980±20 km s1. The Hβ emission line was relatively weak, so the radial velocity of its components was determined with a large uncertainty: 900±600 km s1. Full article
Show Figures

Figure 1

11 pages, 2536 KiB  
Article
Parts-per-Billion Detection of Hydrogen Sulfide via Cavity Ring-Down Spectroscopy
by Wei Xu, Xuejun Wang, Lei Zhao, Jun Zou and Bing Chen
Photonics 2025, 12(3), 284; https://doi.org/10.3390/photonics12030284 - 20 Mar 2025
Viewed by 618
Abstract
Rapid and precise detection of hydrogen sulfide (H2S) at trace levels is critical for industrial safety and environmental air quality monitoring, yet existing methods often struggle with cost, speed, or sensitivity. A cost-effective cavity ring-down spectroscopy (CRDS) analyzer is presented, incorporating [...] Read more.
Rapid and precise detection of hydrogen sulfide (H2S) at trace levels is critical for industrial safety and environmental air quality monitoring, yet existing methods often struggle with cost, speed, or sensitivity. A cost-effective cavity ring-down spectroscopy (CRDS) analyzer is presented, incorporating a novel digital locking circuit for sequential laser-cavity mode matching. This system demonstrates rapid and precise hydrogen sulfide (H2S) detection capability at parts-per-billion (ppb) concentration levels. Compared to traditional wavelength meters, our system delivers a 140-fold improvement in frequency interval precision (0.07 MHz, 0.027% relative uncertainty). Allan variance analysis under vacuum conditions demonstrates a sensitivity limit of 3 × 10−12 cm−1 at a 60-s averaging time. Validated through calibrated gas dilution tests, the analyzer detects a 4 ppb H2S absorption signal with a signal-to-noise ratio (SNR) > 6, establishing a 2 ppb detection limit (3σ criterion). This innovative approach meets stringent industrial and environmental requirements, offering a significant advancement in trace gas-sensing technology. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

9 pages, 2407 KiB  
Proceeding Paper
Investigation of Structural, Optical, and Frequency-Dependent Dielectric Properties of Barium Zirconate (BaZrO3) Ceramic Prepared via Wet Chemical Auto-Combustion Technique
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Eng. Proc. 2025, 87(1), 22; https://doi.org/10.3390/engproc2025087022 - 19 Mar 2025
Cited by 1 | Viewed by 334
Abstract
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray [...] Read more.
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray diffractometer, a scanning electron microscope (SEM)-EDAX, an LCR meter, and a UV–visible spectrometer were employed to study the structural, morphological, optical, and electrical properties of the prepared barium zirconate sample. Using data derived from XRD, the perovskite phase was confirmed, and the average value of the crystallite size was found to be 17.68 nm. The lattice constant, crystallinity, unit cell volume, tolerance factor, and X-ray density were also calculated. SEM-EDAX confirmed the elemental composition of the product and verified that it contained only the major constituents (Ba, Zr, and O). The vibrational modes of the prepared sample were investigated using FTIR in wavelengths ranging from 400 to 4000 cm−1. Energy bandgap was observed using Tauc’s plot, where a graph was prepared for photon energy (hυ) and (αhυ)2. The powder sample was blended with PVA and made into pellets of 13 mm diameter using a pelletizer to explore dielectric parameters like the dielectric constant, while the loss factor was recorded at a frequency ranging from 100 Hz to 4 MHz at room temperature. With its high dielectric constant and low dielectric loss factor, barium zirconate ceramic stands as an excellent material for several microwave applications. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

10 pages, 7682 KiB  
Proceeding Paper
Maximum Tolerable Multipath for Successful Meta-Signal Sub-Carrier Ambiguity Fixing
by Mohamed Bochkati, Ece Kayacilar, Muhammad S. Hameed, Markel Arizabaleta-Diez and Thomas Pany
Eng. Proc. 2025, 88(1), 3; https://doi.org/10.3390/engproc2025088003 - 14 Mar 2025
Viewed by 261
Abstract
The prospect of GNSS meta-signal tracking promises the synergy of both code reliability and the high precision of sub-carrier observations. The latter has the advantage, in comparison to carrier-phase observations, of having wavelengths in the order of a few meters instead of cm-level. [...] Read more.
The prospect of GNSS meta-signal tracking promises the synergy of both code reliability and the high precision of sub-carrier observations. The latter has the advantage, in comparison to carrier-phase observations, of having wavelengths in the order of a few meters instead of cm-level. This realizes the possibility of resolving sub-carrier-phase ambiguities without the need for a reference station providing positioning solutions with a sub-meter level of accuracy. In the frame of the HANDS-CD project led by IGASPIN GmbH, a synthetic meta-signal observation formed from Galileo E5a and E5b signals using the widelaning concept will be demonstrated in this contribution. This analysis is performed based on a simulated kinematic trajectory. The synthetic meta-signal observations are fed into an extended Kalman filter-based positioning engine called the meta-signal positioning engine (M-SiPE-tool), which applies the least-squares ambiguity decorrelation adjustment (LAMBDA) ambiguity fixing method to resolve the sub-carrier ambiguities. To assess the robustness of the positioning filter against signal impairments, the observations of many Galileo satellites are synthetically contaminated by multipath reflection with different amplitudes. The outcome of the positioning engine exhibits successful sub-carrier ambiguity fixing and provides a sub-decimeter positioning accuracy for a code multipath amplitude of less than 30 m, or for a sub-carrier multipath amplitude of less than 0.5 m. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

14 pages, 4118 KiB  
Article
Differentiation of Soybean Genotypes Concerning Seed Physiological Quality Using Hyperspectral Bands
by Izabela Cristina de Oliveira, Dthenifer Cordeiro Santana, Victoria Toledo Romancini, Ana Carina da Silva Cândido Seron, Charline Zaratin Alves, Paulo Carteri Coradi, Carlos Antônio da Silva Júnior, Regimar Garcia dos Santos, Fábio Henrique Rojo Baio, Paulo Eduardo Teodoro and Larissa Ribeiro Teodoro
AgriEngineering 2024, 6(4), 4752-4765; https://doi.org/10.3390/agriengineering6040272 - 9 Dec 2024
Viewed by 1046
Abstract
The use of summarized spectral data in bands obtained by hyperspectral sensors can make it possible to obtain biochemical information about seeds and, thus, relate the results to seed viability and vigor. Thus, the hypothesis of this work is based on the possibility [...] Read more.
The use of summarized spectral data in bands obtained by hyperspectral sensors can make it possible to obtain biochemical information about seeds and, thus, relate the results to seed viability and vigor. Thus, the hypothesis of this work is based on the possibility of obtaining information about the physiological quality of seeds through hyperspectral bands and distinguishing seed lots regarding their quality through wavelengths. The objective was then to evaluate the possibility of differentiating soybean genotypes regarding the physiological quality of seeds using spectral data. The experiment was conducted during the 2021/2022 harvest at the Federal University of Mato Grosso do Sul in a randomized block design with four replicates and 10 F3 soybean populations (G1, G8, G12, G15, G19, G21, G24, G27, G31, and G36). After the maturation of each genotype, seeds were harvested from the central rows of each plot, which consisted of five one-meter rows. Seed samples from each experimental unit were placed in a Petri dish to collect spectral data. Readings were performed in the laboratory at a temperature of 26 °C and using two 60 W halogen lamps as the light source, positioned 15 cm between the sensor and the sample. The sensor used was the Ocean Optics (Florida, USA) model STS-VIS-L-50-400-SMA, which captured the reflectance of the seed sample at wavelengths between 450 and 824 nm. After readings from the hyperspectral sensor, the seeds were subjected to tests for water content, germination, first germination count, electrical conductivity, and tetrazolium. The data obtained were subjected to an analysis of variance and the means were compared by the Scott–Knott test at 5% probability, analyzed using R software version 4.2.3 (Auckland, New Zealand). The data on the physiological quality of the seeds of the soybean genotypes were subjected to principal component analysis (PCA) and associated with the K-means algorithm to form groups according to the similarity and distinction between the genetic materials. After the formation of these groups, spectral curve graphs were constructed for each soybean genotype and for the groups that were formed. The physiological quality of the soybean genotypes can be differentiated using hyperspectral bands. The spectral bands, therefore, provide important information about the physiological quality of soybean seeds. Through the use of hyperspectral sensors and the observation of specific bands, it is possible to differentiate genotypes in terms of seed quality, complementing and/or replacing traditional tests in a fast, accurate, and non-destructive way, reducing the time and investment spent on obtaining information on seed viability and vigor. The results found in this study are promising, and further research is needed in future studies with other species and genotypes. The interval between 450 and 649 nm was the main spectrum band that contributed to the differentiation between soybean genotypes of superior and inferior physiological quality. Full article
Show Figures

Figure 1

11 pages, 7029 KiB  
Article
Meter-Scale Long Connectorized Paper-like Polymer Waveguide Film for 100 Gbps Board-Level Optical Interconnects Application
by Xu Liu, Lin Ma, Ying Shi, Qiancheng Yu, Motoya Kaneta, Xu Sun and Zuyuan He
Polymers 2024, 16(23), 3350; https://doi.org/10.3390/polym16233350 - 29 Nov 2024
Cited by 1 | Viewed by 1127
Abstract
We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under [...] Read more.
We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under the strictest overfilled launch condition with a maximum length of 2.1 m and 10-dB insertion loss. The fabricated waveguide films are as flexible as regular printing paper and can be conveniently interfaced with standard mechanically transferable (MT) fiber connectors with low loss. The average insertion loss of the connectorized waveguide is about 0.042 dB/cm with inter-channel crosstalk as low as −46.4 dB, and the bending loss is less than 1 dB at a bending radius of 1 mm under the overfilled launch condition. We also demonstrate a vertical-cavity surface-emitting laser (VCSEL)-based single-lane 100 Gbps PAM4 transmission. Our results show that the meter-scale long paper-like polymer waveguide film has both excellent optical properties and large bandwidth and is ideal for high-speed board-level optical interconnects application with a single-lane data rate of 100 Gbps and beyond, especially those that have a strict requirement on the length of connection and compactness. Full article
Show Figures

Figure 1

29 pages, 1326 KiB  
Review
Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review
by Ali M. Ali, Haytham M. Salem and Bijay-Singh
Nitrogen 2024, 5(4), 828-856; https://doi.org/10.3390/nitrogen5040054 - 27 Sep 2024
Cited by 10 | Viewed by 3009
Abstract
The efficient management of nitrogen (N) on a site-specific basis is critical for the improvement of crop yield and the reduction of environmental impacts. This review examines the application of three primary technologies—canopy reflectance sensors, chlorophyll meters, and leaf color charts—in the context [...] Read more.
The efficient management of nitrogen (N) on a site-specific basis is critical for the improvement of crop yield and the reduction of environmental impacts. This review examines the application of three primary technologies—canopy reflectance sensors, chlorophyll meters, and leaf color charts—in the context of site-specific N fertilizer management. It delves into the development and effectiveness of these tools in assessing and managing crop N status. Reflectance sensors, which measure the reflection of light at specific wavelengths, provide valuable data on plant N stress and variability. The advent of innovative sensor technology, exemplified by the GreenSeeker, Crop Circle sensors, and Yara N-Sensor, has facilitated real-time monitoring and precise adjustments in fertilizer N application. Chlorophyll meters, including the SPAD meter and the atLeaf meter, quantify chlorophyll content and thereby estimate leaf N levels. This indirect yet effective method of managing N fertilization is based on the principle that the concentration of chlorophyll in leaves is proportional to the N content. These meters have become an indispensable component of precision agriculture due to their accuracy and ease of use. Leaf color charts, while less sophisticated, offer a cost-effective and straightforward approach to visual N assessment, particularly in developing regions. This review synthesizes research on the implementation of these technologies, emphasizing their benefits, constraints, and practical implications. Additionally, it explores integration strategies for combining these tools to enhance N use efficiency and sustainability in agriculture. The review culminates with recommendations for future research and development to further refine the precision and efficacy of N management practices. Full article
Show Figures

Figure 1

31 pages, 7057 KiB  
Article
Local Gravity and Geoid Improvements around the Gavdos Satellite Altimetry Cal/Val Site
by Georgios S. Vergos, Ilias N. Tziavos, Stelios Mertikas, Dimitrios Piretzidis, Xenofon Frantzis and Craig Donlon
Remote Sens. 2024, 16(17), 3243; https://doi.org/10.3390/rs16173243 - 1 Sep 2024
Cited by 1 | Viewed by 2654
Abstract
The isle of Gavdos, and its wider area, is one of the few places worldwide where the calibration and validation of altimetric satellites has been carried out during the last, more than, two decades using dedicated techniques at sea and on land. The [...] Read more.
The isle of Gavdos, and its wider area, is one of the few places worldwide where the calibration and validation of altimetric satellites has been carried out during the last, more than, two decades using dedicated techniques at sea and on land. The sea-surface calibration employed for the determination of the bias in the satellite altimeter’s sea-surface height relies on the use of a gravimetric geoid in collocation with data from tide gauges, permanent global navigation satellite system (GNSS) receivers, as well as meteorological and oceanographic sensors. Hence, a high-accuracy and high-resolution gravimetric geoid model in the vicinity of Gavdos and its surrounding area is of vital importance. The existence of such a geoid model resides in the availability of reliable, in terms of accuracy, and dense, in terms of spatial resolution, gravity data. The isle of Gavdos presents varying topographic characteristics with heights larger than 400 m within small spatial distances of ~7 km. The small size of the island and the significant bathymetric variations in its surrounding marine regions make the determination of the gravity field and the geoid a challenging task. Given the above, the objective of the present work was two-fold. First, to collect new land gravity data over the isle of Gavdos in order to complete the existing database and cover parts of the island where voids existed. Relative gravity campaigns have been designed to cover as homogenously as possible the entire island of Gavdos and especially areas where the topographic gradient is large. The second focus was on the determination of a high-resolution, 1×1, and high-accuracy gravimetric geoid for the wider Gavdos area, which will support activities on the determination of the absolute altimetric bias. The relative gravity campaigns have been designed and carried out employing a CG5 relative gravity meter along with geodetic grade GNSS receivers to determine the geodetic position of the acquired observations. Geoid determination has been based on the newly acquired and historical gravity data, GNSS/Leveling observations, and topography and bathymetry databases for the region. The modeling was based on the well-known remove–compute–restore (RCR) method, employing least-squares collocation (LSC) and fast Fourier transform (FFT) methods for the evaluation of the Stokes’ integral. Modeling of the long wavelength contribution has been based on EIGEN6c4 and XGM2019e global geopotential models (GGMs), while for the contribution of the topography, the residual terrain model correction has been employed using both the classical, space domain, and spectral approaches. From the results achieved, the final geoid model accuracy reached the ±1–3 cm level, while in terms of the absolute differences to the GNSS/Leveling data per baseline length, 28.4% of the differences were below the 1cmSij [km] level and 55.2% below the 2cmSij [km]. The latter improved drastically to 52.8% and 81.1%, respectively, after deterministic fit to GNSS/Leveling data, while in terms of the relative differences, the final geoid reaches relative uncertainties of 11.58 ppm (±1.2 cm) for baselines as short as 0–10 km, which improves to 10.63 ppm (±1.1 cm) after the fit. Full article
Show Figures

Figure 1

10 pages, 6197 KiB  
Article
Damage Characteristics Analysis of Laser Ablation Triple-Junction Solar Cells Based on Electroluminescence Characteristics
by Wei Guo, Jifei Ye, Hao Chang and Chenghao Yu
Sensors 2024, 24(15), 4886; https://doi.org/10.3390/s24154886 - 27 Jul 2024
Viewed by 1534
Abstract
To study the physical property effects of the laser on GaInP/GaAs/Ge solar cells and their sub-cell layers, a pulsed laser with a wavelength of 532 nm was used to irradiate the solar cells under various energy conditions. The working performance of the cell [...] Read more.
To study the physical property effects of the laser on GaInP/GaAs/Ge solar cells and their sub-cell layers, a pulsed laser with a wavelength of 532 nm was used to irradiate the solar cells under various energy conditions. The working performance of the cell was measured with a source meter. The electroluminescence (EL) characteristics were assessed using an ordinary and an infrared camera. Based on the detailed balance theory, in the voltage characteristics of an ideal pristine cell, the GaInP layer made the most significant voltage contribution, followed by the GaAs layer, with the Ge layer contributing the least. When a bias voltage was applied to the pristine cell, the top GaInP cell emitted red light at 670 nm, the middle GaAs cell emitted near-infrared light at 926 nm, and the bottom Ge cell emitted infrared light at 1852 nm. In the experiment, the 532 nm laser wavelength within the response spectrum bands of the GaInP layer and the laser passed through the glass cover slip and directly interacted with the GaInP layer. The experimental results indicated that the GaInP layer first exhibited different degrees of damage under laser irradiation, and the cell voltage was substantially attenuated. The GaInP/GaAs/Ge solar cell showed a decrease in electrical and light emission characteristics. As the laser energy increased, the cell’s damage intensified, gradually leading to a loss of photoelectric conversion capability, the near-complete disappearance of red light emission, and a gradual degradation of near-infrared emission properties. The EL imaging revealed varying damage states across the triple-junction gallium arsenide solar cell’s sub-cells. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 2143 KiB  
Article
The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence
by Vashkar Palma, Daniel MacDonald and Mehdi Raessi
Fluids 2024, 9(8), 171; https://doi.org/10.3390/fluids9080171 - 27 Jul 2024
Viewed by 1063
Abstract
Direct numerical simulation (DNS) has been employed with success in a variety of oceanographic applications, particularly for investigating the internal dynamics of Kelvin–Helmholtz (KH) billows. However, it is difficult to relate these results directly with observations of ocean turbulence due to [...] Read more.
Direct numerical simulation (DNS) has been employed with success in a variety of oceanographic applications, particularly for investigating the internal dynamics of Kelvin–Helmholtz (KH) billows. However, it is difficult to relate these results directly with observations of ocean turbulence due to the significant scale differences involved (ocean shear layers are typically on the order of tens to hundreds of meters in thickness, compared to DNS studies, with layers on the order of one to tens of centimeters). As efforts continue to inform our understanding of geophysical-scale turbulence by extrapolating DNS results, it is important to understand the impact of model setup and initial conditions on the resulting turbulent quantities. Given that geophysical-scale measurements, whether through microstructures or other techniques, can only provide estimates of averaged TKE quantities (e.g., TKE dissipation or buoyancy flux), it may be necessary to compare mean turbulent quantities derived from DNS (i.e., across one or more complete billow evolutions) with ocean measurements. In this study, we analyze the effect of domain length and initial velocity noise on resulting turbulent quantities. Domain length is important, as dimensions that are not integer multiples of the natural KH billow wavelength may compress or stretch the billows and impact their energetics. The addition of random noise in the initial velocity field is often used to trigger turbulence and suppress secondary instabilities; however, the impact of noise on the resulting turbulent energetics is largely unknown. In this study, we conclude that domain lengths on the order of 1.5 times the natural wavelength or less can affect the resulting turbulent energetics by a factor of two or more. We also conclude that increasing the amplitude of random initial velocity noise decreases the resulting turbulent energetics, but that different realizations of the random noise field may have an even greater impact than amplitude. These results should be considered when designing a DNS experiment. Full article
(This article belongs to the Collection Advances in Geophysical Fluid Dynamics)
Show Figures

Figure 1

20 pages, 15082 KiB  
Article
Characterization of Overtopping Volumes from Focused Wave Groups over Smooth Dikes with an Emerged Toe: Insights from Physical Model Tests
by Corrado Altomare and Xavi Gironella
J. Mar. Sci. Eng. 2024, 12(7), 1143; https://doi.org/10.3390/jmse12071143 - 8 Jul 2024
Cited by 1 | Viewed by 1359
Abstract
This research examines the overtopping volumes associated with focused wave groups on smooth dikes with an emerged toe. Focused wave groups are employed to represent the highest waves of random sea states in a compact form, obviating the need to model the entire [...] Read more.
This research examines the overtopping volumes associated with focused wave groups on smooth dikes with an emerged toe. Focused wave groups are employed to represent the highest waves of random sea states in a compact form, obviating the need to model the entire irregular wave train. This study investigates how overtopping volumes are affected by focus location and phase. A total of 418 experimental tests were gathered and analyzed. Data with overtopping volumes below 600 L per meter (prototype conditions) were excluded in order to focus on extreme overtopping events, resulting in 324 relevant test cases. The experiments used first-order wave generation theory to analyze structural response. Subsequent studies will address the errors induced by this approximation and compare it with second-order wave generation. The experiments simulated extreme wave impacts on an idealized coastal layout, comprising a 1:6.3 foreshore slope and three different dike slopes, including vertical structures, with the initial still water level set below the dike toe. This study employed the NewWave theory to generate focused wave groups, with the objective of extending recent research on wave overtopping under varied conditions. The results, analyzed in both dimensional and non-dimensional forms, indicate that overtopping volumes are significantly influenced by the focus phase. Critical focus locations were identified at a distance of one-third of the deep-water wavelength from the toe. Full article
(This article belongs to the Special Issue Wave Interactions with Coastal Structures II)
Show Figures

Figure 1

19 pages, 3476 KiB  
Article
Early Detection of Rubber Tree Powdery Mildew by Combining Spectral and Physicochemical Parameter Features
by Xiangzhe Cheng, Mengning Huang, Anting Guo, Wenjiang Huang, Zhiying Cai, Yingying Dong, Jing Guo, Zhuoqing Hao, Yanru Huang, Kehui Ren, Bohai Hu, Guiliang Chen, Haipeng Su, Lanlan Li and Yixian Liu
Remote Sens. 2024, 16(9), 1634; https://doi.org/10.3390/rs16091634 - 3 May 2024
Cited by 4 | Viewed by 1999
Abstract
Powdery mildew significantly impacts the yield of natural rubber by being one of the predominant diseases that affect rubber trees. Accurate, non-destructive recognition of powdery mildew in the early stage is essential for the cultivation management of rubber trees. The objective of this [...] Read more.
Powdery mildew significantly impacts the yield of natural rubber by being one of the predominant diseases that affect rubber trees. Accurate, non-destructive recognition of powdery mildew in the early stage is essential for the cultivation management of rubber trees. The objective of this study is to establish a technique for the early detection of powdery mildew in rubber trees by combining spectral and physicochemical parameter features. At three field experiment sites and in the laboratory, a spectroradiometer and a hand-held optical leaf-clip meter were utilized, respectively, to measure the hyperspectral reflectance data (350–2500 nm) and physicochemical parameter data of both healthy and early-stage powdery-mildew-infected leaves. Initially, vegetation indices were extracted from hyperspectral reflectance data, and wavelet energy coefficients were obtained through continuous wavelet transform (CWT). Subsequently, significant vegetation indices (VIs) were selected using the ReliefF algorithm, and the optimal wavelengths (OWs) were chosen via competitive adaptive reweighted sampling. Principal component analysis was used for the dimensionality reduction of significant wavelet energy coefficients, resulting in wavelet features (WFs). To evaluate the detection capability of the aforementioned features, the three spectral features extracted above, along with their combinations with physicochemical parameter features (PFs) (VIs + PFs, OWs + PFs, WFs + PFs), were used to construct six classes of features. In turn, these features were input into support vector machine (SVM), random forest (RF), and logistic regression (LR), respectively, to build early detection models for powdery mildew in rubber trees. The results revealed that models based on WFs perform well, markedly outperforming those constructed using VIs and OWs as inputs. Moreover, models incorporating combined features surpass those relying on single features, with an overall accuracy (OA) improvement of over 1.9% and an increase in F1-Score of over 0.012. The model that combines WFs and PFs shows superior performance over all the other models, achieving OAs of 94.3%, 90.6%, and 93.4%, and F1-Scores of 0.952, 0.917, and 0.941 on SVM, RF, and LR, respectively. Compared to using WFs alone, the OAs improved by 1.9%, 2.8%, and 1.9%, and the F1-Scores increased by 0.017, 0.017, and 0.016, respectively. This study showcases the viability of early detection of powdery mildew in rubber trees. Full article
(This article belongs to the Special Issue Advancements in Remote Sensing for Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 3362 KiB  
Article
The Influence of the Wavelength of Laser Light on the Non-Contact Measurement of the Roughness of Shiny Cut Surfaces on Stainless Steel A304 Material
by Juraj Ružbarský
Appl. Sci. 2024, 14(6), 2420; https://doi.org/10.3390/app14062420 - 13 Mar 2024
Cited by 3 | Viewed by 1577
Abstract
The article is focused on the study of the effect of laser light with three wavelengths used in a laser profilometer for the measurement of selected roughness parameters of the shiny surface of stainless steel A304 material. The measured results were compared with [...] Read more.
The article is focused on the study of the effect of laser light with three wavelengths used in a laser profilometer for the measurement of selected roughness parameters of the shiny surface of stainless steel A304 material. The measured results were compared with the results we achieved with the reference contact roughness meter (SJ-400). The findings presented are relevant to the parameters of the experiment outlined within the article. In general, the obtained results make it possible to state that when measuring the roughness of shiny cut surfaces using non-contact laser profilometry, reflections of laser light occur. The relatively best results of measuring the parameters of the roughness of a shiny cut surface on the evaluated material (A304) were achieved by laser light with a wavelength of λ = 445 nm. In contrast, as the surface roughness of the cutting surface of the used material increased, the reflection of laser light decreased. Furthermore, we can state that the values of the roughness parameters Ra and Rz of the shiny surface measured by laser profilometry were several times higher than the values measured by the reference method. In contrast, the non-contact method of laser profilometry is not suitable for accurate measurements of the roughness parameters of shiny surfaces. Full article
Show Figures

Figure 1

18 pages, 3653 KiB  
Communication
Open Meter Duo: Low-Cost Instrument for Fluorimetric Determination of Cholinesterase Activity
by Ondřej Keresteš, Juan Daniel Mozo and Miroslav Pohanka
Sensors 2024, 24(6), 1774; https://doi.org/10.3390/s24061774 - 9 Mar 2024
Cited by 2 | Viewed by 1935
Abstract
Environmental screening is essential due to the increased occurrence of harmful substances in the environment. Open Meter Duo (OMD) is an open-source field photo/fluorimeter that uses an RGB diode that imitates a color according to the selected wavelength and uses a UV LED [...] Read more.
Environmental screening is essential due to the increased occurrence of harmful substances in the environment. Open Meter Duo (OMD) is an open-source field photo/fluorimeter that uses an RGB diode that imitates a color according to the selected wavelength and uses a UV LED from the security kit diode as an excitation light source. The prepared PCB shield with a 3D-printed aperture was connected to Arduino UNO R4 WiFi. This system was used for the fluorescent detection of cholinesterase activity with the indoxyl acetate method. Carbofuran—a toxic pesticide—and donepezil—a drug used to treat Alzheimer’s disease—were tested as model inhibitors of cholinesterase activity. The limit of detection of indoxyl acetate was 11.6 μmol/L, and the IC50 values of the inhibitors were evaluated. This system is optimized for wireless use in field analysis with added cloud support and power source. The time of analysis was 5 min for the fluorimetric assay and 20 min for the optional photometric assay. The time of field operation was approximately 4 h of continuous measurement. This system is ready to be used as a cheap and easy control platform for portable use in drug control and point-of-care testing. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 1002 KiB  
Article
Evaluation of pH and Optical Properties of Dual Rinse HEDP Irrigating Solution
by Andjelka Simic, Mirjana V. Papic, Ana Nikitovic, Aleksandar Kocovic, Renata Petrovic, Irena Melih, Suzana Zivanovic, Milos Papic and Milica Popovic
Appl. Sci. 2024, 14(4), 1675; https://doi.org/10.3390/app14041675 - 19 Feb 2024
Viewed by 2418
Abstract
This study investigates the pH values and optical characteristics of Dual Rinse HEDP, either independently or combined with sodium hypochlorite (NaOCl), and compares them to other irrigants used in endodontics. The solutions used in this study were commercially acquired and prepared, followed by [...] Read more.
This study investigates the pH values and optical characteristics of Dual Rinse HEDP, either independently or combined with sodium hypochlorite (NaOCl), and compares them to other irrigants used in endodontics. The solutions used in this study were commercially acquired and prepared, followed by pH measurements using a pH meter and spectral analysis using UV/Vis spectrophotometry in specified wavelengths of the ultraviolet (UV) C (190–280 nm), UVB (281–315 nm), UVA (316–400 nm), visible light (VL) (401–780 nm), and near-infrared (NIR) spectra (781–1100 nm). The pH analysis revealed alkaline values for NaOCl, EDTA, Dual Rinse HEDP, and the HEDP + NaOCl combination, an acidic value for citric acid, and nearly neutral values for chlorhexidine and distilled water. Spectral analysis revealed the notable absorption characteristics of endodontic irrigants. In the UV range, all solutions exhibited higher absorption values to water (p < 0.05), with Dual Rinse HEDP resembling EDTA and citric acid, and HEDP + NaOCl resembling NaOCl. The NIR region highlights absorption peaks around 975 nm for all solutions, including NaOCl and Dual Rinse HEDP + NaOCl, suggesting potential applications in laser-activated irrigation. This study provides comprehensive insights into the pH and optical features of endodontic irrigants, emphasizing their potential roles in enhancing disinfection strategies and optimizing laser-activated irrigation protocols. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

Back to TopTop