Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = wavelength conflicts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1968 KB  
Article
Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling
by Lehong Huang, Yuting Gao, Bo Peng and Caiwen Ma
Photonics 2026, 13(1), 31; https://doi.org/10.3390/photonics13010031 - 30 Dec 2025
Viewed by 267
Abstract
The rapid development of detection technologies has increased the demand for multispectral camouflage materials capable of broadband concealment and effective thermal management. To address the conflicting optical requirements between infrared camouflage and LiDAR camouflage, we propose a composite design combining a germanium–ytterbium fluoride [...] Read more.
The rapid development of detection technologies has increased the demand for multispectral camouflage materials capable of broadband concealment and effective thermal management. To address the conflicting optical requirements between infrared camouflage and LiDAR camouflage, we propose a composite design combining a germanium–ytterbium fluoride (Ge/YbF3) selective emitter with an amorphous silicon (a-Si) two-dimensional periodic microstructure. The multilayer film, optimized using the transfer-matrix method and a particle swarm optimisation algorithm, achieves low emissivity in the 3–5 μm and 8–14 μm infrared atmospheric windows and high emissivity within 5–8 μm for radiative cooling, while introducing a narrowband absorption peak at 1.55 μm. Additionally, the a-Si microstructure provides strong narrowband absorption at 10.6 μm via a grating-resonance mechanism. FDTD simulations confirm low emissivity in the infrared windows, high absorptance at LiDAR wavelengths, and good angular and polarization robustness. This work demonstrates a multifunctional photonic structure capable of integrating infrared camouflage, laser camouflage, and thermal-radiation control. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

42 pages, 2218 KB  
Review
A Collection and Analysis of Simplified Data for a Better Understanding of the Complex Process of Biofilm Inactivation by Ultraviolet and Visible Irradiation
by Martin Hessling, Wendy Meulebroeck and Beatrix Alsanius
Microorganisms 2025, 13(9), 2048; https://doi.org/10.3390/microorganisms13092048 - 3 Sep 2025
Viewed by 1568
Abstract
Biofilms are communities of microorganisms that pose a problem in many areas, including the food industry, drinking water treatment, and medicine, because they can contain pathogens and are difficult to eliminate. For this reason, the possibility of biofilm reduction by ultraviolet (UV) or [...] Read more.
Biofilms are communities of microorganisms that pose a problem in many areas, including the food industry, drinking water treatment, and medicine, because they can contain pathogens and are difficult to eliminate. For this reason, the possibility of biofilm reduction by ultraviolet (UV) or visible light was investigated using data from published reports. Results for different applications, spectral ranges, and microorganisms were compared by performing MANOVA tests. Approximately 140 publications were found that dealt with the irradiation of water or surfaces for biofilm reduction or reduction in biofilm formation. Irradiation of surfaces with UV or visible light in the spectral range 200–525 nm had a positive effect on biofilm reduction and reduction in biofilm formation, although the results for irradiation of water were conflicting. Most investigations were carried out on P. aeruginosa biofilms, but other Gram-positive and Gram-negative bacteria, as well as some fungi and their biofilm sensitivities to irradiation, were also analyzed. Limited data were available for the UVB (280–315 nm) and UVA (315–400 nm) range. Most experiments to date have been carried out in the UVC (100–280 nm) or in the visible violet/blue spectral (400–500 nm) range, with the UVC range being 2–3 orders of magnitude more efficient in terms of applied irradiation dose. Other quantitative statements were difficult to make as the results from the different working groups were highly scattered. Irradiation can reduce the microorganisms in biofilms but does not completely remove biofilms. New biofilm formation can at least be delayed by surface irradiation. Whether it is also possible to prevent the formation of new biofilms in the long term is open to question. Which irradiation wavelengths are optimal for anti-biofilm measures is also still unclear. Full article
Show Figures

Figure 1

13 pages, 690 KB  
Article
Design and Optimization of Polarization-Maintaining Low-Loss Hollow-Core Anti-Resonant Fibers Based on a Multi-Objective Genetic Algorithm
by Zhiling Li, Yingwei Qin, Jingjing Ren, Xiaodong Huang and Yanan Bao
Photonics 2025, 12(8), 826; https://doi.org/10.3390/photonics12080826 - 20 Aug 2025
Viewed by 2486
Abstract
In this work, a novel polarization-maintaining hollow-core fiber structure featuring a semi-circular nested dual-ring geometry is proposed. To simultaneously optimize two inherently conflicting performance metrics, namely, birefringence and confinement loss, a multi objective genetic algorithm is employed for geometric parameter tuning, resulting in [...] Read more.
In this work, a novel polarization-maintaining hollow-core fiber structure featuring a semi-circular nested dual-ring geometry is proposed. To simultaneously optimize two inherently conflicting performance metrics, namely, birefringence and confinement loss, a multi objective genetic algorithm is employed for geometric parameter tuning, resulting in a set of Pareto-optimal solutions. At the target wavelength of 1550 nm, the first optimal design achieves birefringence exceeding 1×104 over a 1275 nm bandwidth while maintaining confinement loss around 100 dB/m; the second design maintains birefringence above 1×104 across a 1000 nm spectral range, with confinement loss on the order of 101 dB/m. These optimized designs offer a promising approach for improving the performance of polarization-sensitive applications such as interferometric sensing and high coherence laser systems. The results confirm the suitability of multi-objective genetic algorithms for integrated multi-objective fiber optimization and provide a new strategy for designing low-loss and high-birefringence fiber devices. Full article
Show Figures

Figure 1

16 pages, 2389 KB  
Article
Designing an SOI Interleaver Using Genetic Algorithm
by Michael Gad, Mostafa Fedawy, Mira Abboud, Hany Mahrous, Gamal A. Ebrahim, Mostafa M. Salah, Ahmed Shaker, W. Fikry and Michael Ibrahim
Photonics 2025, 12(8), 775; https://doi.org/10.3390/photonics12080775 - 31 Jul 2025
Viewed by 1431
Abstract
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 [...] Read more.
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 GHz, channel bandwidth of 20 GHz, free spectral range of 100 GHz, maximum channel dispersion of 30 ps/nm, and maximum crosstalk of −23 dB. The challenges for the optimization process include the lack of a closed-form expression for the device performance and the trade-off between the conflicting performance parameters. So, for this multi-objective problem, the proposed approach maneuvers to find a compromise between the performance parameters within a few minutes, saving the designer the laborious design process previously proposed in the literature, which relies on visually inspecting the Z-plane for the dynamics of the transmission poles and zeros. Designs of better performance are achieved, with fewer ring resonators, a channel dispersion as low as 1.6 ps/nm, and crosstalk as low as −30 dB. Full article
(This article belongs to the Special Issue Advanced Materials and Devices for Silicon Photonics)
Show Figures

Figure 1

49 pages, 10086 KB  
Review
A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics
by Leonardo Sollazzo, Giulio Mangherini, Valentina Diolaiti and Donato Vincenzi
Sustainability 2025, 17(5), 2206; https://doi.org/10.3390/su17052206 - 3 Mar 2025
Cited by 5 | Viewed by 7760
Abstract
In the context of rapid decarbonization, photovoltaics (PV) has played a key role. Traditionally, PV installations require large land areas, leading to competition between PV and agriculture for land use. This conflict must be addressed as the demand for both energy and food [...] Read more.
In the context of rapid decarbonization, photovoltaics (PV) has played a key role. Traditionally, PV installations require large land areas, leading to competition between PV and agriculture for land use. This conflict must be addressed as the demand for both energy and food continues to rise. Additionally, it poses broader challenges, potentially leading local communities to perceive PV energy production as a threat to their economic activities and food security. An emerging and promising solution is agrivoltaics (AV), a combination of agriculture and PV. AV comes in many different forms, ranging from the simple coexistence of crops and PV installations on the same patch of land to a full synergy of the two, producing better crops while also harvesting energy from the sun. This paper paints a complete picture of the scientific work produced so far throughout the field, with special attention to the use of third-generation PV and luminescent solar concentrators (LSCs). Both technologies minimize shading and enable wavelength selection and enrichment (when functionalized with fluorescent materials) to better align with the photosynthetic needs of plants. The viability of AV has also been evaluated from an economic standpoint. This work aims to assess the current landscape of AV research and to point out possible future developments. It also seeks to evaluate whether the advantages of semi-transparent devices are substantial enough to justify their development and employment on a scale comparable to traditional PV. Full article
Show Figures

Figure 1

15 pages, 3735 KB  
Article
Development of Smart Material Identification Equipment for Sustainable Recycling in Future Smart Cities
by Gaku Manago, Tadao Tanabe, Kazuaki Okubo, Tetsuo Sasaki and Jeongsoo Yu
Polymers 2025, 17(4), 462; https://doi.org/10.3390/polym17040462 - 10 Feb 2025
Cited by 4 | Viewed by 1979
Abstract
Waste recycling is critical for the development of smart cities. Local authorities are responsible for the disposal of waste plastics, but the extent of material recycling is insufficient, and much of the waste generated is incinerated. This conflicts with the trend of decarbonisation. [...] Read more.
Waste recycling is critical for the development of smart cities. Local authorities are responsible for the disposal of waste plastics, but the extent of material recycling is insufficient, and much of the waste generated is incinerated. This conflicts with the trend of decarbonisation. Of particular note are the effects of the COVID-19 pandemic, during and after which large quantities of waste plastics, such as plastic containers and packaging, were generated. In order to develop a sustainable smart city, we need an effective scheme where we can separate materials before they are taken to the local authorities and recyclers. In other words, if material identification can be performed at the place of disposal, the burden on recyclers can be reduced, and a smart city can be created. In this study, we developed and demonstrated smart material identification equipment for waste plastic materials made of PET, PS, PP, and PE using GaP THz and sub-THz wavelengths. As basic information, we used a GaP terahertz spectrometer to sweep frequencies from 0.5 THz to 7 THz and measure the spectrum, and the transmittance rate was measured using the sub-THz device. The sub-THz device used a specific frequency below 0.14 THz. This is a smaller, more carriable, and less expensive semiconductor electronic device than the GaP. Moreover, the sub-terahertz device used in the development of this equipment is compact, harmless to the human body, and can be used in public environments. As a result, smart equipment was developed and tested in places such as supermarkets, office entrances, and canteens. The identification of materials can facilitate material recycling. In this study, we found that measuring devices designed to identify the PET and PS components of transparent containers and packaging plastics, and the PP and PE components of PET bottle caps, could effectively identify molecular weights, demonstrating new possibilities for waste management and recycling systems in smart cities. With the ability to collect and analyse data, these devices can be powerful tools for pre-sorting. Full article
(This article belongs to the Special Issue Polymer Composites in Municipal Solid Waste Landfills)
Show Figures

Graphical abstract

27 pages, 2894 KB  
Article
New Control Algorithms for Rearrangeable Wavelength–Space–Wavelength Switches in Elastic Optical Networks
by Mariusz Żal, Enass Abuelela and Wojciech Kabaciński
Electronics 2025, 14(4), 684; https://doi.org/10.3390/electronics14040684 - 10 Feb 2025
Viewed by 1201
Abstract
The main objective of this paper is to propose a set of new algorithms for assigning frequency slots in the inter-stage links of the wavelength–space–wavelength switching networks used in nodes in elastic optical networks. The algorithms are based on decomposition of the set of [...] Read more.
The main objective of this paper is to propose a set of new algorithms for assigning frequency slots in the inter-stage links of the wavelength–space–wavelength switching networks used in nodes in elastic optical networks. The algorithms are based on decomposition of the set of inter-stage link frequency slots into subsets, which can be utilized for realizing conflict-free connections. Similar algorithms have previously been proposed for switching networks with two, three, or four inputs and outputs. The algorithms proposed in this paper have been adapted to work in switching networks with five inputs and outputs. These algorithms make it possible to reduce the required number of frequency slots in inter-stage links. From the comparison conducted in this work with the switching networks for three and four inputs and outputs, it follows that the new algorithms for networks with five inputs/outputs allow for a reduction in the number of frequency slots by about 20%. Additionally, the approximation of the proposed algorithms for switching networks with a larger number of inputs and outputs also leads to a reduction in the required frequency slots, compared to previously known algorithms. The proposed algorithms allow for reducing the number of frequency slots in inter-stage links, which is associated with reducing the capacity range of wavelength-selective switches and the tunability range of spectrum converters, and therefore also the costs of switching networks. Full article
Show Figures

Figure 1

18 pages, 4733 KB  
Systematic Review
Meta-Analysis of the Impact of Far-Red Light on Vegetable Crop Growth and Quality
by Minggui Zhang, Jun Ju, Youzhi Hu, Rui He, Jiali Song and Houcheng Liu
Plants 2024, 13(17), 2508; https://doi.org/10.3390/plants13172508 - 6 Sep 2024
Cited by 3 | Viewed by 2997
Abstract
Far-red lights (FRs), with a wavelength range between 700 and 800 nm, have substantial impacts on plant growth, especially horticultural crops. Previous studies showed conflicting results on the effects of FRs on vegetable growth and quality. Therefore, we conducted a meta-analysis on the [...] Read more.
Far-red lights (FRs), with a wavelength range between 700 and 800 nm, have substantial impacts on plant growth, especially horticultural crops. Previous studies showed conflicting results on the effects of FRs on vegetable growth and quality. Therefore, we conducted a meta-analysis on the influence of FRs on vegetable growth, aiming to provide a comprehensive overview of their effects on the growth and nutritional indicators of vegetables. A total of 207 independent studies from 55 literature sources were analyzed. The results showed that FR treatment had significant effects on most growth indicators, including increasing the fresh weight (+25.27%), dry weight (+21.99%), plant height (+81.87%), stem diameter (+12.91%), leaf area (+18.57%), as well as reducing the content of chlorophyll (−11.88%) and soluble protein (−11.66%), while increasing soluble sugar content (+19.12%). Further subgroup analysis based on various factors revealed significant differences in the effects of FR on different physiological indicators, such as FR intensity, plant species, duration of FR exposure, and the ratio of red light to FR. In general, moderate FR treatment is beneficial for vegetable growth. This study provides important references and guidelines for optimizing the application of FR in the future. Full article
(This article belongs to the Special Issue Light and Plant Nutrition)
Show Figures

Figure 1

17 pages, 10423 KB  
Article
Synthesis and Characterization of Organo-Soluble Polyimides Based on Polycondensation Chemistry of Fluorene-Containing Dianhydride and Amide-Bridged Diamines with Good Optical Transparency and Glass Transition Temperatures over 400 °C
by Xi Ren, Zhenzhong Wang, Zhibin He, Changxu Yang, Yuexin Qi, Shujun Han, Shujing Chen, Haifeng Yu and Jingang Liu
Polymers 2023, 15(17), 3549; https://doi.org/10.3390/polym15173549 - 26 Aug 2023
Cited by 7 | Viewed by 2978
Abstract
Polymeric optical films with light colors, good optical transparency and high thermal resistance have gained increasing attention in advanced optoelectronic areas in recent years. However, it is somewhat inter-conflicting for achieving the good optical properties to the conventional thermal resistant polymers, such as [...] Read more.
Polymeric optical films with light colors, good optical transparency and high thermal resistance have gained increasing attention in advanced optoelectronic areas in recent years. However, it is somewhat inter-conflicting for achieving the good optical properties to the conventional thermal resistant polymers, such as the standard aromatic polyimide (PI) films, which are well known for the excellent combined properties and also the deep colors. In this work, a series of wholly aromatic PI films were prepared via the polycondensation chemistry of one fluorene-containing dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (FDAn) and several aromatic diamines with amide linkages in the main chain, including 9,9-bis [4-(4-aminobenzamide)phenyl]fluorene (FDAADA), 2,2′-bis(trifluoromethyl)-4,4′-bis[4-(4-aminobenzamide)] biphenyl (ABTFMB), and 2,2′-bis(trifluoromethyl)-4,4′-bis[4-(4-amino-3-methyl)benzamide] biphenyl (MABTFMB). The derived FLPI-1 (FDAn-FDAADA), FLPI-2 (FDAn-ABTFMB) and FLPI-3 (FDAn-MABTFMB) resins showed good solubility in the polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO). The solution-processing FDAn-PI films exhibited good optical transmittance over 80.0% at a wavelength of 500 nm (T500), yellow indices (b*) in the range of 1.01–5.20, and haze values lower than 1.0%. In addition, the FDAn-PI films showed low optical retardance with optical retardation (Rth) values in the range of 31.7–390.6 nm. At the same time, the FDAn-PI films exhibited extremely high glass transition temperatures (Tg) over 420 °C according to dynamic mechanical analysis (DMA) tests. The FDAn-PI films showed good dimensional stability at elevated temperatures with linear coefficients of thermal expansion (CTE) in the range of (31.8–45.8) × 10−6/K. Full article
Show Figures

Figure 1

15 pages, 5106 KB  
Article
Preparation and Characterization of Light-Colored Polyimide Nanocomposite Films Derived from a Fluoro-Containing Semi-Alicyclic Polyimide Matrix and Colloidal Silica with Enhanced High-Temperature Dimensionally Stability
by Zhibin He, Xi Ren, Zhenzhong Wang, Zhen Pan, Yuexin Qi, Shujun Han, Haifeng Yu and Jingang Liu
Polymers 2023, 15(14), 3015; https://doi.org/10.3390/polym15143015 - 12 Jul 2023
Cited by 9 | Viewed by 2244
Abstract
Light-colored and transparent polyimide (PI) films with good high-temperature dimensional stability are highly desired for advanced optoelectronic applications. However, in practice, the simultaneous achievement of good optical and thermal properties in one PI film is usually difficult due to the inter-conflicting molecular design [...] Read more.
Light-colored and transparent polyimide (PI) films with good high-temperature dimensional stability are highly desired for advanced optoelectronic applications. However, in practice, the simultaneous achievement of good optical and thermal properties in one PI film is usually difficult due to the inter-conflicting molecular design of the polymers. In the present work, a series of PI-SiO2 nanocomposite films (ABTFCPI) were developed based on the PI matrix derived from hydrogenated pyromellitic anhydride (HPMDA) and an aromatic diamine containing benzanilide and trifluoromethyl substituents in the structure, 2,2′-bis(trifluoromethyl)-4,4′-bis [4-(4-aminobenzamide)]biphenyl (ABTFMB). The inorganic SiO2 fillers were incorporated into the nanocomposite films in the form of colloidal nanoparticles dispersed in the good solvent of N,N-dimethylacetamide (DMAc) for the PI matrix. The derived ABTFCPI nanocomposite films showed good film-forming ability, flexible and tough nature, good optical transparency, and good thermal properties with loading amounts of SiO2 up to 30 wt% in the system. The ABTFCPI-30 film with a SiO2 content of 30 wt% in the film showed an optical transmittance of 79.6% at the wavelength of 400 nm (T400) with a thickness of 25 μm, yellow index (b*) of 2.15, and 5% weight loss temperatures (T5%) of 491 °C, which are all comparable to those the pristine ABTFCPI-0 matrix without filler (T400 = 81.8%; b* = 1.77; T5% = 492 °C). Meanwhile, the ABTFCPI-30 film exhibited obviously enhanced high-temperature dimensional stability with linear coefficients of thermal expansion (CTE) of 25.4 × 10−6/K in the temperature range of 50 to 250 °C, which is much lower than that of the AMTFCPI-0 film (CTE = 32.7 × 10−6/K). Full article
(This article belongs to the Special Issue Feature Papers in Smart and Functional Polymers)
Show Figures

Figure 1

19 pages, 2038 KB  
Article
A Resource-Adaptive Routing Scheme with Wavelength Conflicts in Quantum Key Distribution Optical Networks
by Tao Zhao, Xiaodong Fan, Bowen Dong, Quanhao Niu and Banghong Guo
Entropy 2023, 25(5), 732; https://doi.org/10.3390/e25050732 - 28 Apr 2023
Cited by 6 | Viewed by 2434
Abstract
Quantum key distribution (QKD) has great potential in ensuring data security. Deploying QKD-related devices in existing optical fiber networks is a cost-effective way to practically implement QKD. However, QKD optical networks (QKDON) have a low quantum key generation rate and limited wavelength channels [...] Read more.
Quantum key distribution (QKD) has great potential in ensuring data security. Deploying QKD-related devices in existing optical fiber networks is a cost-effective way to practically implement QKD. However, QKD optical networks (QKDON) have a low quantum key generation rate and limited wavelength channels for data transmission. The simultaneous arrival of multiple QKD services may also lead to wavelength conflicts in QKDON. Therefore, we propose a resource-adaptive routing scheme (RAWC) with wavelength conflicts to achieve load balancing and efficient utilization of network resources. Focusing on the impact of link load and resource competition, this scheme dynamically adjusts the link weights and introduces the wavelength conflict degree. Simulation results indicate that the RAWC algorithm is an effective approach to solving the wavelength conflict problem. Compared with the benchmark algorithms, the RAWC algorithm can improve service request success rate (SR) by up to 30%. Full article
(This article belongs to the Special Issue Quantum Communication and Quantum Key Distribution)
Show Figures

Figure 1

17 pages, 569 KB  
Systematic Review
A Systematic Literature Review of Complementary and Alternative Veterinary Medicine: Laser Therapy
by Darryl L. Millis and Anna Bergh
Animals 2023, 13(4), 667; https://doi.org/10.3390/ani13040667 - 14 Feb 2023
Cited by 14 | Viewed by 16438
Abstract
Light therapy, or photobiomodulation, is a collective name for methods where tissue is irradiated with different types of light, with the aim of stimulating healing. Despite being frequently used, there is no consensus regarding the optimal treatment protocols for light therapy, nor its [...] Read more.
Light therapy, or photobiomodulation, is a collective name for methods where tissue is irradiated with different types of light, with the aim of stimulating healing. Despite being frequently used, there is no consensus regarding the optimal treatment protocols for light therapy, nor its clinical efficacy. A systematic literature review was conducted, searching the relevant literature regarding light therapy in three databases, published between 1980–2020. The risk of bias in each article was evaluated. Forty-five articles met the inclusion criteria; 24 articles were regarding dogs, 1 was regarding cats, and the rest were regarding horses. The indications for treatment were musculoskeletal and neurologic conditions, skin disease and wounds, and pain. The literature review showed conflicting study results and unclear application for clinical use. This can be explained by the wide variety of treatment parameters used in the searched studies, such as wavelength, laser class, dose, and effect, as well as the frequency and duration of treatment. Although some beneficial effects were reported for light therapy, the studies also had limited scientific quality regarding these therapies, with a high or moderate risk of bias. Full article
(This article belongs to the Collection Veterinary Rehabilitation and Sports Medicine)
Show Figures

Figure 1

20 pages, 6564 KB  
Article
Detection and Monitoring of Small-Scale Diamond and Gold Mining Dredges Using Synthetic Aperture Radar on the Kadéï (Sangha) River, Central African Republic
by Marissa A. Alessi, Peter G. Chirico, Sindhuja Sunder and Kelsey L. O’Pry
Remote Sens. 2023, 15(4), 913; https://doi.org/10.3390/rs15040913 - 7 Feb 2023
Cited by 6 | Viewed by 4529
Abstract
Diamond and gold mining has been practiced by artisanal miners in the Central African Republic (CAR) for decades. The recent introduction of riverine dredges indicates a transition from artisanal/manual digging and sorting techniques to small-scale mining methods. This study implements a remote sensing [...] Read more.
Diamond and gold mining has been practiced by artisanal miners in the Central African Republic (CAR) for decades. The recent introduction of riverine dredges indicates a transition from artisanal/manual digging and sorting techniques to small-scale mining methods. This study implements a remote sensing analysis of Synthetic Aperture Radar (SAR) data to map gold and diamond dredges operating on the Kadéï (Sangha) river in the CAR. Riverine vessels are identified in Sentinel-1 SAR data between 2015 and 2019, and their activity levels are mapped over time. The number of active dredges identified on the river increased over the five years studied, with the largest increase occurring between 2016 and 2017. Detailing a method for mapping and monitoring riverine diamond and gold dredge mining is an important step in keeping up with evolving technologies and new areas of mineral exploitation and in helping address concerns over resource governance in remote and conflict-prone terrain. The use of SAR technology, with its weather-independence, broad coverage, and available wavelength combinations, allows for higher temporal resolution and improved vessel detection in the monitoring of small-scale mining (SSM) dredges. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis)
Show Figures

Graphical abstract

18 pages, 2094 KB  
Review
Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives
by Sardar M. Z. Uddin, David E. Komatsu, Thomas Motyka and Stephanie Petterson
J. Clin. Med. 2021, 10(12), 2698; https://doi.org/10.3390/jcm10122698 - 18 Jun 2021
Cited by 54 | Viewed by 17863
Abstract
Therapeutic ultrasound has been studied for over seven decades for different medical applications. The versatility of ultrasound applications are highly dependent on the frequency, intensity, duration, duty cycle, power, wavelength, and form. In this review article, we will focus on low-intensity continuous ultrasound [...] Read more.
Therapeutic ultrasound has been studied for over seven decades for different medical applications. The versatility of ultrasound applications are highly dependent on the frequency, intensity, duration, duty cycle, power, wavelength, and form. In this review article, we will focus on low-intensity continuous ultrasound (LICUS). LICUS has been well-studied for numerous clinical disorders, including tissue regeneration, pain management, neuromodulation, thrombosis, and cancer treatment. PubMed and Google Scholar databases were used to conduct a comprehensive review of all research studying the application of LICUS in pre-clinical and clinical studies. The review includes articles that specify intensity and duty cycle (continuous). Any studies that did not identify these parameters or used high-intensity and pulsed ultrasound were not included in the review. The literature review shows the vast implication of LICUS in many medical fields at the pre-clinical and clinical levels. Its applications depend on variables such as frequency, intensity, duration, and type of medical disorder. Overall, these studies show that LICUS has significant promise, but conflicting data remain regarding the parameters used, and further studies are required to fully realize the potential benefits of LICUS. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

11 pages, 6479 KB  
Article
Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film
by Zhu-jie Xia, Hong-li Wang, Yi-fan Su, Peng Tang, Ming-jiang Dai, Huai-jun Lin, Zhi-guo Zhang and Qian Shi
Coatings 2020, 10(6), 577; https://doi.org/10.3390/coatings10060577 - 19 Jun 2020
Cited by 47 | Viewed by 5715
Abstract
Tungsten oxide (WO3) is widely used as a functional material for “smart windows” due to its excellent electrochromic properties, however it is difficult to overcome the conflict between its optical modulation and cyclic stability. In this work, WO3 thin films [...] Read more.
Tungsten oxide (WO3) is widely used as a functional material for “smart windows” due to its excellent electrochromic properties, however it is difficult to overcome the conflict between its optical modulation and cyclic stability. In this work, WO3 thin films with different crystal structures were prepared by DC reactive magnetron sputtering method. The effects of substrate temperature on the structure, composition, and electrochromic properties of WO3 films were investigated. The results show that the crystallinity of the WO3 film increases with increasing deposition temperature, indicating that temperature plays an important role in controlling the structure of the WO3 film. For WO3 thin films formed at a substrate temperature of 573 K, the film is in an amorphous state to a crystalline transition state. From X-ray diffraction (XRD) analysis, the thin film showed a weak WO3 crystallization peak, which was in the composite structure of amorphous and nanocrystalline. Which has the best electrochromic properties, with modulation amplitude of 73.1% and bleached state with a coloration efficiency of 42.9 cm2/C at a wavelength of 550 nm. Even after 1500 cycles, the optical modulation still contains 65.4%, delivering the best cyclic stability. Full article
(This article belongs to the Special Issue Advanced Thin Films Deposited by Magnetron Sputtering)
Show Figures

Figure 1

Back to TopTop