A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification of AV Systems
2.2. Quantitative Parameters and Key Concepts
3. Evolution of Agrivoltaics Research and Interest
4. AV Literature Results
4.1. I Generation
4.2. II and III Generation
LSCs
4.3. Other
5. Further Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AV | Agrivoltaic |
BIPV | Building-integrated photovoltaics |
BPE | Bubbled polyethylene |
CPV | Concentrated photovoltaics |
CR | Coverage ratio |
CSSE | Ca40Sr59S:Eu2+ |
d-EPSSS | Dual elliptical paraboloid solar spectrum splitter |
DoS | Degree of synergy |
DSSC | Dye-sensitized solar cells |
EASSS | Elliptical array solar spectrum splitter |
F | Fixed |
FPVC | Rose/pink polyvinyl chloride-based fluorescent |
LCOE | Levelized cost of energy |
LDPE | Low density polyethylene |
LER | Land equivalent ratio |
LSC | Luminescent solar concentrator |
M | Monoaxial |
MPF | Multilayer polymer film |
NZE | Net zero emissions |
OE | Optical efficiency |
OPV | Organic photovoltaic |
PAR | Photosynthetically active radiation |
PCE | Power to conversion efficiency |
PE | Photosynthetic efficiency |
PERC | Passivated emitter rear contact |
PMMA | Polymethylmethacrylate |
PPFD | Photosynthetic photon flux density |
PV | Photovoltaics |
RS | Reinforced structure |
SG | Smart glass |
SOG | Silicone-on-glass |
SPAD | Soil-plant analysis development |
STO | See-through opaque |
STPV | Semi-transparent photovoltaic |
T | Tracker |
TIR | Total internal reflection |
TPE | Thermal polyethylene |
TSM | Tracker stilt-mounted |
VM | Vertically mounted |
VPVC | Violet polyvinyl chloride |
WUE | Water use efficiency |
References
- Ritchie, H.; Roser, M. Half of the World’s Habitable Land is Used for Agriculture. Available online: https://ourworldindata.org/global-land-for-agriculture (accessed on 4 December 2024).
- Land Statistics 2001–2022. Global, Regional and Country Trends. Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/land-statistics-2001-2022.-global--regional-and-country-trends/en (accessed on 4 December 2024).
- IEA. World Energy Outlook 2024; IEA: Paris, France, 2024. [Google Scholar]
- Agri-Environmental Indicator—Energy Use. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_energy_use (accessed on 14 January 2025).
- IEA PVPS Reporting Countries; Becquerel Institute; Kaizuka, I.; Jäger-Waldau, A.; Donoso, J.; Masson, G.; Bosch, E.; Van Rechem, A.; de l’Epine, M. Snapshot of Global PV Markets—2023; IEA: Paris, France, 2023; ISBN 978-3-907281-43-7. [Google Scholar]
- Masson, G.; Bosch, E.; Rechem, A.V.; de l’Epine, M. Snapshot 2024; IEA: Paris, France, 2024. [Google Scholar]
- North Kesteven: Protest Staged Over Plans for Huge Solar Farm. 22 February 2024. Available online: https://www.bbc.com/news/uk-england-lincolnshire-68363229 (accessed on 4 December 2024).
- Citizen Activists Take on “Destructive” Solar Power Plants in France’s Provence Region. Available online: https://www.france24.com/en/europe/20240603-citizen-activists-take-on-destructive-solar-power-plants-in-france-s-provence-region (accessed on 4 December 2024).
- Water-Energy-Food-Ecosystem Nexus—European Commission. Available online: https://international-partnerships.ec.europa.eu/policies/climate-environment-and-energy/water-energy-food-ecosystem-nexus_en (accessed on 14 January 2025).
- Mangherini, G.; Diolaiti, V.; Bernardoni, P.; Andreoli, A.; Vincenzi, D. Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings. Energies 2023, 16, 6901. [Google Scholar] [CrossRef]
- Mangherini, G.; Bernardoni, P.; Baccega, E.; Andreoli, A.; Diolaiti, V.; Vincenzi, D. Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel. Sustainability 2023, 15, 9146. [Google Scholar] [CrossRef]
- Bernardoni, P.; Mangherini, G.; Andreoli, A.; Diolaiti, V.; Marrazzo, R.; Melchiorre, F.; Zanardi, S.; Vincenzi, D. Design of a Color Neutral Nonpatterned Photovoltaic Window Based on Luminescent Solar Concentrator. Sol. RRL 2024, 8, 2400195. [Google Scholar] [CrossRef]
- Boschetti, M.; Vincenzi, D.; Mangherini, G.; Bernardoni, P.; Andreoli, A.; Gjestila, M.; Camattari, R.; Fugattini, S.; Caramori, S.; Cristino, V.; et al. Modular stand-alone photoelectrocatalytic reactor for emergent contaminant degradation via solar radiation. Sol. Energy 2021, 228, 120–127. [Google Scholar] [CrossRef]
- Yano, A.; Onoe, M.; Nakata, J. Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosyst. Eng. 2014, 122, 62–73. [Google Scholar] [CrossRef]
- Debije, M.G.; Verbunt, P.P.C. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment. Adv. Energy Mater. 2012, 2, 12–35. [Google Scholar] [CrossRef]
- Meek, D.W.; Hatfield, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A Generalized Relationship between Photosynthetically Active Radiation and Solar Radiation. Agron. J. 1984, 76, 939–945. [Google Scholar] [CrossRef]
- Boyer, J.S. Advances in Drought Tolerance in Plants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 1996; Volume 56, pp. 187–218. [Google Scholar]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Trommsdorff, M. Performance Indices for Parallel Agriculture and PV. In Proceedings of the EU PVSEC 2020, Lisbon, Portugal, 7–11 September 2020. [Google Scholar]
- Scopus—Document Search. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 6 December 2024).
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Apriani, S.; Mangkuto, R.A.; Saputro, A.G.; Chow, E.C. Performance prediction and optimisation of even-lighting agrivoltaic systems with semi-transparent PV module in the tropical region. Sol. Energy 2024, 283, 113013. [Google Scholar] [CrossRef]
- Blando, F.; Gerardi, C.; Renna, M.; Castellano, S.; Serio, F. Characterisation of bioactive compounds in berries from plants grown under innovative photovoltaic greenhouses. J. Berry Res. 2018, 8, 55–69. [Google Scholar] [CrossRef]
- Tang, Y.; Ma, X.; Li, M.; Wang, Y. The effect of temperature and light on strawberry production in a solar greenhouse. Sol. Energy 2020, 195, 318–328. [Google Scholar] [CrossRef]
- Buttaro, D.; Renna, M.; Gerardi, C.; Blando, F.; Santamaria, P.; Serio, F. Soilless Production of Wild Rocket as Affected by Greenhouse Coverage with Photovoltaic Modules. Acta Sci. Pol. Hortorum Cultus 2016, 15, 129–142. [Google Scholar]
- Colantoni, A.; Monarca, D.; Marucci, A.; Cecchini, M.; Zambon, I.; Di Battista, F.; Maccario, D.; Saporito, M.G.; Beruto, M. Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth. Sustainability 2018, 10, 855. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 4 February 2025).
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Ezzaeri, K.; Fatnassi, H.; Bouharroud, R.; Gourdo, L.; Bazgaou, A.; Wifaya, A.; Demrati, H.; Bekkaoui, A.; Aharoune, A.; Poncet, C.; et al. The effect of photovoltaic panels on the microclimate and on the tomato production under photovoltaic canarian greenhouses. Sol. Energy 2018, 173, 1126–1134. [Google Scholar] [CrossRef]
- Ezzaeri, K.; Fatnassi, H.; Wifaya, A.; Bazgaou, A.; Aharoune, A.; Poncet, C.; Bekkaoui, A.; Bouirden, L. Performance of photovoltaic canarian greenhouse: A comparison study between summer and winter seasons. Sol. Energy 2020, 198, 275–282. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Ming, L. Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth. Int. J. Agric. Biol. Eng. 2017, 10, 11–22. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Yin, F. The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production. Renew. Energy 2018, 121, 377–388. [Google Scholar] [CrossRef]
- Tani, A.; Shiina, S.; Nakashima, K.; Hayashi, M. Improvement in lettuce growth by light diffusion under solar panels. J. Agric. Meteorol. 2014, 70, 139–149. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur. J. Agron. 2013, 50, 38–51. [Google Scholar] [CrossRef]
- Gonocruz, R.A.; Nakamura, R.; Yoshino, K.; Homma, M.; Doi, T.; Yoshida, Y.; Tani, A. Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan. Environments 2021, 8, 65. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the experimental cultivation of peppers in low-energy-demand greenhouses. An interdisciplinary study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef]
- Gadhiya, G.; Patel, U.; Chauhan, P.; Giri, N.C.; Yin, G.-Z.; Khargotra, R. Development of agrivoltaic insect net house to enhance sustainable energy-food production: A techno-economic assessment. Results Eng. 2024, 24, 103228. [Google Scholar] [CrossRef]
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 2017, 23, 104–110. [Google Scholar] [CrossRef]
- Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’acob, A.M.; Jaafar, H.Z.E. Embracing new agriculture commodity through integration of Java Tea as high Value Herbal crops in solar PV farms. J. Clean. Prod. 2015, 91, 71–77. [Google Scholar] [CrossRef]
- Othman, N.F.; Jamian, S.; Su, A.S.M.; Ya’acob, M.E. Tropical field assessment on pests for Misai Kucing cultivation under agrivoltaics farming system. AIP Conf. Proc. 2019, 2129, 020002. [Google Scholar] [CrossRef]
- Othman, N.F.; Yaacob, M.E.; Mat Su, A.S.; Jaafar, J.N.; Hizam, H.; Shahidan, M.F.; Jamaluddin, A.H.; Chen, G.; Jalaludin, A. Modeling of Stochastic Temperature and Heat Stress Directly Underneath Agrivoltaic Conditions with Orthosiphon Stamineus Crop Cultivation. Agronomy 2020, 10, 1472. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Sforza, E.; Barbera, E.; Bertucco, A. Improving the photoconversion efficiency: An integrated photovoltaic-photobioreactor system for microalgal cultivation. Algal Res. 2015, 10, 202–209. [Google Scholar] [CrossRef]
- Nakatani, M.; Osawa, T. Assessment of suitability for photovoltaic power generation in periurban seminatural grasslands: Toward the coexistence of seminatural grasslands and photovoltaic power generation. Discov. Sustain. 2024, 5, 141. [Google Scholar] [CrossRef]
- Bambara, J.; Athienitis, A.K. Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding. Renew. Energy 2019, 131, 1274–1287. [Google Scholar] [CrossRef]
- Cossu, M.; Cossu, A.; Deligios, P.A.; Ledda, L.; Li, Z.; Fatnassi, H.; Poncet, C.; Yano, A. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe. Renew. Sustain. Energy Rev. 2018, 94, 822–834. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, J.; Isabella, O.; Santbergen, R.; Tan, H.; Zeman, M.; Zhang, G. Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality. Appl. Energy 2019, 233–234, 424–442. [Google Scholar] [CrossRef]
- Vadiee, A.; Yaghoubi, M.; Martin, V.; Bazargan-Lari, Y. Energy analysis of solar blind system concept using energy system modelling. Sol. Energy 2016, 139, 297–308. [Google Scholar] [CrossRef]
- Williams, H.J.; Hashad, K.; Wang, H.; Max Zhang, K. The potential for agrivoltaics to enhance solar farm cooling. Appl. Energy 2023, 332, 120478. [Google Scholar] [CrossRef]
- Jamil, U.; Hickey, T.; Pearce, J.M. Solar energy modelling and proposed crops for different types of agrivoltaics systems. Energy 2024, 304, 132074. [Google Scholar] [CrossRef]
- Riaz, M.H.; Imran, H.; Younas, R.; Alam, M.A.; Butt, N.Z. Module Technology for Agrivoltaics: Vertical Bifacial Versus Tilted Monofacial Farms. IEEE J. Photovolt. 2021, 11, 469–477. [Google Scholar] [CrossRef]
- Jones, G.F.; Evans, M.E.; Shapiro, F.R. Reconsidering beam and diffuse solar fractions for agrivoltaics. Sol. Energy 2022, 237, 135–143. [Google Scholar] [CrossRef]
- Katsikogiannis, O.A.; Ziar, H.; Isabella, O. Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach. Appl. Energy 2022, 309, 118475. [Google Scholar] [CrossRef]
- Varo-Martínez, M.; López-Bernal, A.; Fernández de Ahumada, L.M.; López-Luque, R.; Villalobos, F.J. Simulation model for electrical and agricultural productivity of an olive hedgerow Agrivoltaic system. J. Clean. Prod. 2024, 477, 143888. [Google Scholar] [CrossRef]
- El Kolaly, W.; Ma, W.; Li, M.; Darwesh, M. The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect. Renew. Energy 2020, 159, 506–518. [Google Scholar] [CrossRef]
- Lytle, W.; Meyer, T.K.; Tanikella, N.G.; Burnham, L.; Engel, J.; Schelly, C.; Pearce, J.M. Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. J. Clean. Prod. 2021, 282, 124476. [Google Scholar] [CrossRef]
- Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á.-J.; Díaz-Pérez, M. Morphology, yield and quality of greenhouse tomato cultivation with flexible photovoltaic rooftop panels (Almería-Spain). Sci. Hortic. 2019, 257, 108768. [Google Scholar] [CrossRef]
- Osterthun, N.; Helamieh, M.; Berends, D.; Neugebohrn, N.; Gehrke, K.; Vehse, M.; Kerner, M.; Agert, C. Influence of spectrally selective solar cells on microalgae growth in photo-bioreactors. AIP Conf. Proc. 2021, 2361, 070001. [Google Scholar] [CrossRef]
- Osterthun, N.; Neugebohrn, N.; Gehrke, K.; Vehse, M.; Agert, C. Spectral engineering of ultrathin germanium solar cells for combined photovoltaic and photosynthesis. Opt. Express 2021, 29, 938–950. [Google Scholar] [CrossRef]
- Pérez-Alonso, J.; Pérez-García, M.; Pasamontes-Romera, M.; Callejón-Ferre, A.J. Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renew. Sustain. Energy Rev. 2012, 16, 4675–4685. [Google Scholar] [CrossRef]
- Barbera, E.; Sforza, E.; Guidobaldi, A.; Di Carlo, A.; Bertucco, A. Integration of dye-sensitized solar cells (DSC) on photobioreactors for improved photoconversion efficiency in microalgal cultivation. Renew. Energy 2017, 109, 13–21. [Google Scholar] [CrossRef]
- Aira, J.-R.; Gallardo-Saavedra, S.; Eugenio-Gozalbo, M.; Alonso-Gómez, V.; Muñoz-García, M.-Á.; Hernández-Callejo, L. Analysis of the Viability of a Photovoltaic Greenhouse with Semi-Transparent Amorphous Silicon (a-Si) Glass. Agronomy 2021, 11, 1097. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Chavan, S.G.; Maier, C.; Alagoz, Y.; Filipe, J.C.; Warren, C.R.; Lin, H.; Jia, B.; Loik, M.E.; Cazzonelli, C.I.; Chen, Z.H.; et al. Light-limited photosynthesis under energy-saving film decreases eggplant yield. Food Energy Secur. 2020, 9, e245. [Google Scholar] [CrossRef]
- Cho, C.; Nam, K.; Kim, G.-Y.; Seo, Y.H.; Hwang, T.G.; Seo, J.-W.; Kim, J.P.; Han, J.-I.; Lee, J.-Y. Multi-bandgap Solar Energy Conversion via Combination of Microalgal Photosynthesis and Spectrally Selective Photovoltaic Cell. Sci. Rep. 2019, 9, 18999. [Google Scholar] [CrossRef]
- Li, Z.; Yano, A.; Cossu, M.; Yoshioka, H.; Kita, I.; Ibaraki, Y. Shading and electric performance of a prototype greenhouse blind system based on semi-transparent photovoltaic technology. J. Agric. Meteorol. 2018, 74, 114–122. [Google Scholar] [CrossRef]
- Chang, S.-Y.; Cheng, P.; Li, G.; Yang, Y. Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond. Joule 2018, 2, 1039–1054. [Google Scholar] [CrossRef]
- Dos Reis Benatto, G.A.; Corazza, M.; Roth, B.; Schütte, F.; Rengenstein, M.; Gevorgyan, S.A.; Krebs, F.C. Inside or Outside? Linking Outdoor and Indoor Lifetime Tests of ITO-Free Organic Photovoltaic Devices for Greenhouse Applications. Energy Technol. 2017, 5, 338–344. [Google Scholar] [CrossRef]
- Magadley, E.; Teitel, M.; Peretz, M.F.; Kacira, M.; Yehia, I. Outdoor behaviour of organic photovoltaics on a greenhouse roof. Sustain. Energy Technol. Assess. 2020, 37, 100641. [Google Scholar] [CrossRef]
- Waller, R.; Kacira, M.; Magadley, E.; Teitel, M.; Yehia, I. Evaluating the Performance of Flexible, Semi-Transparent Large-Area Organic Photovoltaic Arrays Deployed on a Greenhouse. AgriEngineering 2022, 4, 969–992. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, P.; Li, T.; Wang, R.; Li, Y.; Chang, S.-Y.; Zhu, Y.; Cheng, H.-W.; Wei, K.-H.; Zhan, X.; et al. Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis. ACS Nano 2019, 13, 1071–1077. [Google Scholar] [CrossRef]
- Friman Peretz, M.; Geoola, F.; Yehia, I.; Ozer, S.; Levi, A.; Magadley, E.; Brikman, R.; Rosenfeld, L.; Levy, A.; Kacira, M.; et al. Testing organic photovoltaic modules for application as greenhouse cover or shading element. Biosyst. Eng. 2019, 184, 24–36. [Google Scholar] [CrossRef]
- Friman-Peretz, M.; Ozer, S.; Geoola, F.; Magadley, E.; Yehia, I.; Levi, A.; Brikman, R.; Gantz, S.; Levy, A.; Kacira, M.; et al. Microclimate and crop performance in a tunnel greenhouse shaded by organic photovoltaic modules—Comparison with conventional shaded and unshaded tunnels. Biosyst. Eng. 2020, 197, 12–31. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Hao, Y.; Cui, Y.; Wang, W.; Ji, T.; Shi, F.; Wei, B. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application. Appl. Opt. 2015, 54, 10232–10239. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, E.; Booth, R.E.; Saravitz, C.; Sederoff, H.; Ade, H.W.; O’Connor, B.T. Achieving Net Zero Energy Greenhouses by Integrating Semitransparent Organic Solar Cells. Joule 2020, 4, 490–506. [Google Scholar] [CrossRef]
- Kussul, E.; Baydyk, T.; Mammadova, M.; Rodriguez, J.L. Development of a model of combination of solar concentrators and agricultural fields. East.-Eur. J. Enterp. Technol. 2022, 6, 16–25. [Google Scholar] [CrossRef]
- Liu, L.; Guan, C.; Zhang, F.; Li, M.; Lv, H.; Liu, Y.; Yao, P.; Ingenhoff, J.; Liu, W. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics. AIP Conf. Proc. 2017, 1881, 080008. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L.; Guan, C.; Zhang, F.; Li, M.; Lv, H.; Yao, P.; Ingenhoff, J. A novel agricultural photovoltaic system based on solar spectrum separation. Sol. Energy 2018, 162, 84–94. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Zhang, W.; Li, M.; Liu, W.; Ali Abaker Omer, A.; Zheng, J.; Zhang, X.; Liu, W. Spectral-splitting concentrator agrivoltaics for higher hybrid solar energy conversion efficiency. Energy Convers. Manag. 2023, 276, 116567. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, T.; Zhang, X.; Liu, Y.; Zhao, H.; Li, M.; Liu, W.; Zhu, X.-G. Solar spectral splitting for improved photosynthetic yield and energy polygeneration. J. Clean. Prod. 2024, 442, 140948. [Google Scholar] [CrossRef]
- Sato, D.; Yamada, N. Design and testing of highly transparent concentrator photovoltaic modules for efficient dual-land-use applications. Energy Sci. Eng. 2020, 8, 779–788. [Google Scholar] [CrossRef]
- Shalom, B.A.; Mittelman, G.; Kribus, A.; Vitoshkin, H. Optical and electrical performance of an agrivoltaic field with spectral beam splitting. Renew. Energy 2023, 219, 119438. [Google Scholar] [CrossRef]
- Detweiler, A.M.; Mioni, C.E.; Hellier, K.L.; Allen, J.J.; Carter, S.A.; Bebout, B.M.; Fleming, E.E.; Corrado, C.; Prufert-Bebout, L.E. Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res. 2015, 9, 170–177. [Google Scholar] [CrossRef]
- Pedron, F.; Grifoni, M.; Barbafieri, M.; Petruzzelli, G.; Franchi, E.; Samà, C.; Gila, L.; Zanardi, S.; Palmery, S.; Proto, A.; et al. New Light on Phytoremediation: The Use of Luminescent Solar Concentrators. Appl. Sci. 2021, 11, 1923. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Moheimani, N.R. Can luminescent solar concentrators increase microalgal growth on anaerobically digested food effluent? J. Appl. Phycol. 2020, 32, 3703–3710. [Google Scholar] [CrossRef]
- Goti, G.; Reginato, G.; Coppola, C.; Dessì, A.; Franchi, D.; Mordini, A.; Picchi, A.; Pucci, A.; Sinicropi, A.; Zani, L.; et al. Green Light-Responsive D-π-A-π-D Quinoxaline Emitters for Luminescent Solar Concentrators: Potential Integration in Agrivoltaic Systems. Eur. J. Org. Chem. 2024, 27, e202400112. [Google Scholar] [CrossRef]
- Loik, M.E.; Carter, S.A.; Alers, G.; Wade, C.E.; Shugar, D.; Corrado, C.; Jokerst, D.; Kitayama, C. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus. Earth’s Future 2017, 5, 1044–1053. [Google Scholar] [CrossRef]
- Keil, J.; Liu, Y.; Kortshagen, U.; Ferry, V.E. Bilayer Luminescent Solar Concentrators with Enhanced Absorption and Efficiency for Agrivoltaic Applications. ACS Appl. Energy Mater. 2021, 4, 14102–14110. [Google Scholar] [CrossRef]
- Siripurapu, M.; Meinardi, F.; Brovelli, S.; Carulli, F. Environmental Effects on the Performance of Quantum Dot Luminescent Solar Concentrators. ACS Photonics 2023, 10, 2987–2993. [Google Scholar] [CrossRef]
- Vasiliev, M.; Rosenberg, V.; Lyford, J.; Goodfield, D. Field Performance Monitoring of Energy-Generating High-Transparency Agrivoltaic Glass Windows. Technologies 2023, 11, 95. [Google Scholar] [CrossRef]
- Xu, Z.; Portnoi, M.; Papakonstantinou, I. Micro-cone arrays enhance outcoupling efficiency in horticulture luminescent solar concentrators. Opt. Lett. 2023, 48, 183–186. [Google Scholar] [CrossRef]
- Talebzadeh, N.; Rostami, M.; O’Brien, P.G. Elliptic paraboloid-based solar spectrum splitters for self-powered photobioreactors. Renew. Energy 2021, 163, 1773–1785. [Google Scholar] [CrossRef]
- Talebzadeh, N.; O’Brien, P.G. Elliptic Array Luminescent Solar Concentrators for Combined Power Generation and Microalgae Growth. Energies 2021, 14, 5229. [Google Scholar] [CrossRef]
- Zdražil, L.; Kalytchuk, S.; Holá, K.; Petr, M.; Zmeškal, O.; Kment, Š.; Rogach, A.L.; Zbořil, R. A carbon dot-based tandem luminescent solar concentrator. Nanoscale 2020, 12, 6664–6672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; et al. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci. 2021, 14, 396–406. [Google Scholar] [CrossRef]
- Hemming, S.; van Os, E.A.; Hemming, J.; Dieleman, J.A.; Ur, W. The Effect of New Developed Fluorescent Greenhouse Films on the Growth of Fragaria x ananassa ‘Elsanta’. Eur. J. Hort. Sci. 2006, 71, 145–154. [Google Scholar]
- Xia, Q.; Batentschuk, M.; Osvet, A.; Richter, P.; Häder, D.P.; Schneider, J.; Brabec, C.J.; Wondraczek, L.; Winnacker, A. Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material. Opt. Express 2013, 21, A909–A916. [Google Scholar] [CrossRef]
- Stallknecht, E.J.; Herrera, C.K.; Yang, C.; King, I.; Sharkey, T.D.; Lunt, R.R.; Runkle, E.S. Designing plant–transparent agrivoltaics. Sci. Rep. 2023, 13, 1903. [Google Scholar] [CrossRef]
- Kittas, C.; Baille, A. Determination of the Spectral Properties of Several Greenhouse Cover Materials and Evaluation of Specific Parameters Related to Plant Response. J. Agric. Eng. Res. 1998, 71, 193–202. [Google Scholar] [CrossRef]
- Shen, L.; Lou, R.; Park, Y.; Guo, Y.; Stallknecht, E.J.; Xiao, Y.; Rieder, D.; Yang, R.; Runkle, E.S.; Yin, X. Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nat. Food 2021, 2, 434–441. [Google Scholar] [CrossRef]
- Ding, X.-D.; Zhou, X.-W.; Meng, J.-W.; Wang, H.-X.; Wu, T.; Hua, Y.; Chen, C.; Cheng, M. NH4PF6 assisted buried interface defect passivation for planar perovskite solar cells with efficiency exceeding 21%. Rare Met. 2023, 42, 3399–3409. [Google Scholar] [CrossRef]
- Both, L.; Hauschild, D.; Blankenship, M.; Steininger, R.; Witte, W.; Hariskos, D.; Paetel, S.; Powalla, M.; Heske, C.; Weinhardt, L. Impact of a RbF post-deposition treatment on the chemical structure of wide-gap CuIn0.1Ga0.9Se2 thin-film solar cell absorber surfaces. Appl. Phys. Lett. 2025, 126, 021603. [Google Scholar] [CrossRef]
- Hu, Q.; Ma, C.; Zhang, J.; Dai, J. Optimized perovskite photodetector achieved through optical manipulation via biomimetic nanostructure. Appl. Phys. Lett. 2025, 126, 043510. [Google Scholar] [CrossRef]
- Shi, C.; Wang, D.; Li, W.; Fang, X.; Zhang, B.; Wang, D.; Hao, Y.; Fang, D.; Zhao, H.; Du, P.; et al. Atomic imaging and optical properties of InAs/In0.5Ga0.5As0.5Sb0.5 type II superlattice. Appl. Phys. Lett. 2024, 124, 251101. [Google Scholar] [CrossRef]
- Dawnbreaker and Department of Energy. Market Research Study—Agrivoltaics. Department of Energy: Washington, DC, USA, 2022. Available online: https://science.osti.gov/-/media/sbir/pdf/Market-Research/SETO---Agrivoltaics-August-2022-Public.pdf (accessed on 28 January 2025).
- Trommsdorff, M.; Dhal, I.S.; Özdemir, Ö.E.; Ketzer, D.; Weinberger, N.; Rösch, C. Agrivoltaics: Solar power generation and food production. In Solar Energy Advancements in Agriculture and Food Production Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–210. ISBN 978-0-323-89866-9. [Google Scholar]
- Ghosh, A. Nexus between agriculture and photovoltaics (agrivoltaics, agriphotovoltaics) for sustainable development goal: A review. Sol. Energy 2023, 266, 112146. [Google Scholar] [CrossRef]
- Imtiaz Hussain, M.; Ali, A.; Lee, G.H. Multi-module concentrated photovoltaic thermal system feasibility for greenhouse heating: Model validation and techno-economic analysis. Sol. Energy 2016, 135, 719–730. [Google Scholar] [CrossRef]
- Kant, K.; Biwole, P.; Shamseddine, I.; Tlaiji, G.; Pennec, F. Chapter 3—Advances in solar greenhouse systems for cultivation of agricultural products. In Solar Energy Advancements in Agriculture and Food Production Systems; Gorjian, S., Campana, P.E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 77–111. ISBN 978-0-323-89866-9. [Google Scholar]
- Diolaiti, V.; Andreoli, A.; Bernardoni, P.; Mangherini, G.; Ouelhazi, M.A.; Venczia, E.; Ricci, M.; Proietti, R.Z.; Vincenzi, D. Nanostructured Germanium Anode for Lithium-ion Batteries for Aerospace Technologies. In Proceedings of the 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 4–8 July 2022; pp. 56–59. [Google Scholar]
- Diolaiti, V.; Andreoli, A.; Chauque, S.; Bernardoni, P.; Mangherini, G.; Ricci, M.; Zaccaria, R.P.; Ferroni, M.; Vincenzi, D. Comparison of Porous Germanium Thin Films on SS and Mo as Anode for High-Performance LIBs. IEEE Trans. Nanotechnol. 2023, 22, 552–557. [Google Scholar] [CrossRef]
- Zhu, A.-Z.; Shan, H.; Cai, S.-M.; Chang, C.-C.; Yang, L.; Deng, C.-H.; Zhou, N.-N.; Hu, K.-H.; Yu, H.; Lv, J.-G.; et al. Co-optimization of CuBi2O4 photocathode by heterojunction and hole-selective layer for efficient photoelectrochemical water splitting. Rare Met. 2025, 44, 998–1013. [Google Scholar] [CrossRef]
- Vollprecht, J.; Trommsdorff, M.; Hermann, C. Legal framework of agrivoltaics in Germany. AIP Conf. Proc. 2021, 2361, 020002. [Google Scholar] [CrossRef]
- Impianti Agri-Voltaici: Pubblicate le Linee Guida|Ministero Dell’ambiente e Della Sicurezza Energetica. Available online: https://www.mase.gov.it/notizie/impianti-agri-voltaici-pubblicate-le-linee-guida (accessed on 28 January 2025).
- Tajima, M.; Iida, T. Evolution of agrivoltaic farms in Japan. AIP Conf. Proc. 2021, 2361, 030002. [Google Scholar] [CrossRef]
Name | Definition | Acronym(s) |
---|---|---|
Openness | A field is open if it is exposed to the surrounding environment and closed when it is encased in a structure that completely separates it from the environment. | - |
Structure | Denotes the geometry of how the PV modules are mounted in relation to the crops.
The structure can include additional parameters such as module elevation, tilt angle, facing direction, employment of solar tracking, etc. | - |
Transparency | Optical transparency of the devices:
| a STO b STPV |
Coverage Ratio c | Fraction of ground area covered by the considered AV device; | c CR |
PV Generation | Generation of the employed PV devices:
| - |
Degree of Synergy e | Relationship between the PV system and the crops.
| e DoS |
Study | Study Type | PV Device and Structure | Tilt Angle | Field Type | Coverage Ratio | Crops | Plant Results | Electrical/Optical/Thermal Results |
---|---|---|---|---|---|---|---|---|
Apriani et al. [23] | Exp. | Opaque and STO mc-Si modules Overhead | 0° | Open | 100% | Bok choy | +1.4–1.8% mean crop yield under STPV | Higher irradiance uniformity under STO, better PCE for opaque PV |
Blando et al. [24] | Exp. | Opaque and STO pc-Si modules Roof-mounted | 19° | Greenhouse | 0%, 25%, 100% | Red raspberry, wild strawberry, blackberry | Anthocyanin content: highest in 25% CR raspberries, 100% CR strawberries, and 100% CR blackberries 25% CR strawberries had higher glucose and fructose content than other CRs Glucose in 25% CR blackberries was lower than 0% CR and 100% CR | N/A |
Tang et al. [25] | Exp. | Opaque pc-Si panels Roof-mounted | 30° | Greenhouse | ~50% | Strawberry | +17% yield per plant +10% average fruit mass 16.4% solid soluble content per fruit vs. 13.1% of control | Reduced temperature inside the greenhouse Excess light shielded |
Buttaro et al. [26] | Exp. | Opaque pc-Si modules Roof-mounted | 19° | Greenhouse | 0%, 25%, 100% | Wild rocket | Crop yield and dry weight were lowest under 100% CR, and comparable between under 25% CR and the full polycarbonate cover | Both 25% CR and 100% CR were able to supply more energy than needed by the greenhouse appliances |
Colantoni et al. [27] | Exp. | STOPV Roof-mounted, some of them being movable for variable CR | - | Greenhouse | 33% (on days with low irradiance) and 66% on days with high irradiance | Iberis, petunia, cyclamen | Iberis: no significant difference in plant height, diameter, and number of flowers between both conditions Petunia: slightly higher plant diameter under PV Cyclamen: under PV, there was a small increase in plant height, significant increase in diameter, and small decrease in number of flowers | N/A |
Cossu et al. (2014) [29] | Exp. | Opaque pc-Si PV Roof-mounted | 30° | Greenhouse | 50% | Tomatoes | Negative effect on yield due to uneven lighting, then balanced with supplementary artificial lighting | Strong shading and uneven lighting caused by the roof configuration PV modules unable to provide enough energy for supplementary lighting and heating in winter |
Ezzaeri et al. [30,31] | Exp. | Opaque PV Roof-mounted | 10° | Greenhouse | 10% | Tomatoes | No statistically significant difference between tomatoes of control group | Lower temperature (up to 1.47 °C) and relative humidity inside the AV greenhouse |
Hassanien et al. [32,33] | Exp. | Opaque mc-Si panels Roof-mounted | 30° | Greenhouse | 20–40% | Tomatoes Lettuce | No change in fresh and dry weight for both tomatoes and lettuce. Decrease in the number of leaves per plant for lettuce. Bigger leaves for both crops. | Lower temperature of the AV greenhouse compared to the polyethylene one only on sunny days between noon and 2:00 PM (1–3 °C difference) 30–35% of the outside irradiance inside the AV greenhouse |
Tani et al. [34] | Exp. | STO mc-Si panels Roof-mounted with and without diffusing film | - | Greenhouse | 50% | Lettuce | Reduced lettuce growth under STPV with direct light due to uneven lighting Better results under diffuse light (still slightly lower than control results) Lowest ascorbic acid content under diffuse light | N/A |
Marrou et al. [35] | Exp. | Opaque PV Overhead at | 25° | Open field | 50%, 30%, 0% | Crisphead lettuce (2 varieties) Cutting lettuce (2 varieties) Cucumber | WUE higher under 50% CR for every crop except “Bassoon” lettuce when compared to 30% CR Relative dry matter accumulation and actual evapotranspiration higher under 50% CR Overall, saved 14–29% of evapotranspire water depending on the CR | N/A |
Gonocruz et al. [36] | Exp. | Opaque mc-Si modules Stilt-mounted | - | Open field | 14%, 29%, 30%, 34%, 39% | Rice | Up to ~36% CR the crop yield is >80% of the yield of crops grown with no PV | Large-scale implementation with these characteristics could supply up to 29% of electricity demand in Japan |
Sekiyama and Nagashima et al. [37] | Exp. | Opaque PV Stilt-mounted overhead | 30° | Open field | Low-density, high-density | Corn | Increased average fresh weight, biomass and yield (+5–6% each) under low-density configuration −3% average fresh weight, biomass. and yield under high-density configuration | More energy produced under the high-density configuration at the expense of sunlight available to the crops |
Kavga et al. [38] | Exp. | Opaque pc-Si panels Roof-mounted | - | Greenhouse | 20% | Pepper | No difference between AV and control pepper in terms of fruit weight, size, thickness, phenolic content, and antioxidant activity Slightly higher yield in AV greenhouse | No temperature difference between AV and control (glass) greenhouse |
Gadhiya et al. [39] | Exp. | Opaque pc-Si PV Overhead | 19.75° | Insect net semi-open house | 50% | Capsicum | Increased yield in the net house (15.60 t/ha vs. 10.20 t/ha of the open field) LER 1.97 | Lower temperature than open field (average decrease of 1–2 °C) |
Malu et al. [40] | Num. An. | Opaque pc-Si modules Interspersed | 21° | Open field | ~26% | Grape | N/A | Potential to produce 3 GW with a large-scale implementation in India |
Othman et al. [41,42,43] | Exp. Num. An. | Opaque mc-Si Overhead | 7.6° | Open field | N/A | Java tea | Lower heat stress on plants, lower attractiveness to pests with proper drainage | N/A |
Trommsdorff et al. [44] | Num. An. Exp. | Bifacial opaque PV Overhead | 20° | Open field | Configuration-dependent | Clover grass Celeriac Potatoes Winter wheat | 2017: yield decrease of 5% for clover grass and 18–19% for celeriac, potatoes, and winter wheat 2018: −8% yield for clover grass but +12%, +11%, and +3% for celeriac, potatoes, and winter wheat, respectively | −17% energy yield with respect to a standard PV park in the same location |
Sforza et al. [45] | Exp. | Opaque Si PV Side-mounted | 90° | Photobioreactor | 33% | Microalgae | Enhanced microalgae growth | Reduced photoinhibition |
Nakatani and Osawa [46] | Num. An. | Opaque PV Overhead | 0°, 30° | Open field | N/A | Seminatural grassland | Possibility of preservation of local ecosystem | No particular difference from ordinary PV park |
Bambara and Athienitis [47] | Num. An. | STO mc-Si panels Roof-mounted | 0° | Greenhouse | 10–50% (at increments of 10%) | N/A | N/A | Such a system would not be energetically self-sufficient at the time of study but might be in the future |
Cossu et al. (2018) [48] | Num. An. | Opaque mc-Si and pc-Si modules Roof-mounted | 20°, 22°, 26° | Greenhouse | 25%, 50%, 60%, 100% | N/A | N/A | Solar radiation distribution calculated in the greenhouses for various CRs, tilt angles, module elevation, etc. In general, −0.8% total radiation in greenhouses per additional 1% CR. The N-S orientation allows for up to +24% total radiation than E-W. |
Gao et al. [49] | Num. An. | Opaque PV Roof-mounted | Configuration-dependent | Greenhouse | Configuration-dependent | N/A | N/A | No-shading sun tracking produced 6.91% more electricity and yielded more uniform irradiance than other sun-tracking methodologies for high PV module density Quasi-perpendicular tracking yielded the best results for low PV module density |
Vadiee et al. [50] | Exp. | Opaque PV Roof-mounted, movable | 30° | Solar blind greenhouse | Configuration-dependent | N/A | N/A | Panels move to cover the roof once the interior temperature goes over a threshold and stay there until it cools down The inside of the greenhouse receives homogeneous irradiance Electrical demand of the greenhouse reduced by 73% (experiment conducted in Shiraz, Iran) |
Williams et al. [51] | Num. An. | Opaque PV Stilt-mounted | 25° | Open field | N/A | Soybeans | N/A | PV panels in this system can be up to 10 °C cooler than in traditional PV parks |
Jamil et al. [52] | Num. An. | Bifacial opaque pc-Si modules Interspersed, vertically mounted | 90° | Open field | N/A | N/A | The analysis identifies several crop types compatible with this kind of system in various regions of Canada (16 for Ontario, 4 for Manitoba, and 7 for Alberta) | Large-scale implementation could yield up to 84% of Canada’s yearly energy consumption |
Riaz et al. [53] | Num. An. | Opaque PV Interspersed monofacial N-S, vertical bifacial E-W c-Si panels | 30°, 90° | Open field | Configuration-dependent | N/A | N/A | The two panel configurations have similar amounts of PAR on the ground and energy production with low panel density (<50% of standard PV parks) At high density, bifacial E-W gives more PAR and less energy and vice versa for monofacial N-S Soiling in tilted monofacial can yield up to −1% PCE/day Vertical bifacial E-W suffers from negligible soiling |
Jones et al. [54] | Num. An. | Opaque PV Overhead | Configuration-dependent | Open field | N/A | N/A | N/A | Model for the calculation of beam and diffuse fraction of solar radiation on this type of field without ray-tracing approaches |
Katsikogiannis et al. [55] | Num. An. | Bifacial opaque PV Overhead stilt-mounted rows, vertical, overhead stilt-mounted checkerboard, vertical checkerboard | 90° | Open field | N/A | N/A | N/A | Increasing module elevation, row spacing and/or module transparency results in higher irradiance homogeneity. E-W vertical systems give the best shading schedule, microclimate, and irradiance distribution |
Varo-Martinez et al. [56] | Num. An. | Opaque PV Interspersed | E-W tracking | Open field | N/A | Olive hedgerows | Simulation based on ray-tracing that gives an equation to predict oil yield | Simulation based on ray-tracing that gives an equation to predict energy yield |
El Kolaly et al. [57] | Exp. | Opaque mc-Si Roof-mounted | 30° | Greenhouse | 19.4% | Pleurotus mushroom | Increased biological efficiency (weight of fresh mushroom/dry mass of substrate) | Produced more than double the energy needed by the microclimate control system |
Lytle et al. [58] | Num. An. | Opaque pc-Si modules Overhead | 30° | Open field | ≤50% | Rabbits Rabbit pasture | This kind of AV system might reduce the carbon footprint of animal farms | Possibility of generating up to 1 GWh/y on a 2.8 ha field |
Study | Study Type | PV Device and Structure | Tilt Angle | Field Type | Coverage Ratio | Crops | Plant Results | Electrical/Optical/Thermal Results |
---|---|---|---|---|---|---|---|---|
Aroca-Delgado et al. [59] | Exp. | Flexible PV Overhead roof-mounted a-Si Thin film | - | Greenhouse | 9.8% | Tomatoes | No change in total yield, plant pH, number of flowers per branch, and color | Overall PCE of 4.18% during the first experimental season and 3.67% during the second one |
Osterthun et al. [60,61] | Exp. | Semi-transparent spectrally selective AZO and a-Si cells | 90° | Photobioreactor | 100% | A. Obliquus microalgae | −55% biomass under AZO cell More biomass under AZO cell than under opaque Si Highest photosynthetic efficiency under AZO | The cell is highly transparent to blue and red light and absorbs green and IR light −75% photon flux under AZO cell with respect to direct light |
Pérez-Alonso et al. [62] | Exp. Num. An. | a-Si Thin-film PV modules Roof-mounted, checkerboard pattern | Variable | Greenhouse | 9.79% | N/A | N/A | Developed a neural network capable of predicting the instantaneous power generation of AV and BIPV systems with an uncertainty of 20 W |
Barbera et al. [63] | Exp. | DSSC with 48% transmittance in the visible range | 90° | Photobioreactor | 100% | Microalgae | Lower algae biomass productivity at PPDF < 500 μmol m−2 s−1 and greater or equal above that threshold thanks to shading effect of DSSC preventing photoinhibition | Day–night cycles allow for no net negative effects in real life applications as there is constant alternation of low and high PPFD |
Aira et al. [64] | Exp. | a-Si Roof- and side-mounted | 35°, 90° | Greenhouse | 100% | Lettuce Beans | Lower CO2 levels in AV greenhouse Increased biomass of plants grown in AV greenhouse | Daily maximum temperature lower in AV greenhouse than control AV greenhouse energetically self-sufficient PV glass shielded excessive PAR |
Barron-Gafford et al. [65] | Exp. | STPV Overhead | 32° | Open field | - | Chiltepin pepper Jalapeno Cherry tomatoes | Chiltepin pepper: +33% cumulative CO2 uptake, 3× fruit production, no change in WUE Jalapeno: −11% CO2 uptake, +157% WUE, no change in fruit production Tomatoes: +65% CO2 uptake and WUE, 2× fruit production | STPV module presence reduced air temperature and allowed for higher air and soil moisture |
Chavan et al. [66] | Exp. | Smart Glass (SG) | Variable | Greenhouse 100% | - | Eggplant | Improved WUE and nutrient use efficiency Unchanged nutritional quantity Lower yield (−28% fruit number, −32% fruit weight) Reduced photosynthesis rate and increased abortion rate | SG blocked 85% of UV, 58% of far red and 26% of red for an overall 19% reduction of PAR −8% heat load |
Cho et al. [67] | Exp. | Spectrally selective PV cell | 60° | Photobioreactor | 6% | Microalgae | +40% PE at 0.05 sun irradiance Between 0.02–0.06 sun, the biomass yield was 85% of control despite having up to 55% fewer photons | Very high absorbance of the PV cell at green and blue wavelengths, negligible for red light |
Li et al. [68] | Exp. | Bifacial STPV Roof-mounted, movable | Variable | Solar blind greenhouse | Variable | N/A | N/A | At high irradiance, the STPV modules would move to create 42% shading in the greenhouse The system was able to produce more energy than needed by all the appliances |
Yano et al. [14] | Exp. | STPV with spherical microcells Roof-mounted | 26.5° | Greenhouse | 50–100% | N/A | N/A | 40% shading at 2 m distance from modules with high microcell density, <20% shading at 2 m for low-density module Both types of modules would produce enough energy to supply an ordinary greenhouse |
Chang et al. [69] | Exp. | OPV | N/A | N/A | N/A | N/A | N/A | Organic semiconductors tend to have more defined energy levels instead of energy bands |
Dos Reis Benatto et al. [70] | Exp. | Carbon and AgNW OPV Roof-mounted | - | Greenhouse | N/A | N/A | N/A | In 300 days of testing: 39% PCE reduction for C-OPV-N modules, 71% PCE reduction for C-OPV-L modules, 18% PCE reduction for AgNW modules AgNW modules showed a PCE recovery when going from winter to spring |
Magadley et al. [71] | Exp. | OPV Roof-mounted | Variable | Greenhouse 26% | 26% | N/A | N/A | Best electrical performances at low tilt angles PCE and FF better in the morning than in the afternoon thanks to overnight recovery |
Waller et al. [72] | Exp. | ST OPV Roof-mounted | Variable | Curved roof greenhouse | N/A | N/A | N/A | 38.6% decrease in PCE over 5 months Maximum power point and short circuit current depend not only on total irradiance but also on direct irradiance specifically |
Y. Liu et al. [73] | Exp. | Flexible transparent OPV | N/A | N/A | N/A | - | No significant difference from control crop growth | AVT ~34% and >90% absorbance of IR wavelengths |
Friman Peretz et al. [74,75] | Exp. | OPV Roof-mounted | 0°, 22°, 41°, 46° | Greenhouse | 39% | Tomatoes | +9% cumulative number of tomatoes +36% tomato mass +21% average single tomato mass | 20% PAR transmittance of the OPV modules |
Yang et al. [76] | Exp. | ST tandem photonic crystal OPV | N/A | N/A | N/A | N/A | N/A | 40.3% average transmittance between 400–700 nm |
Ravishankar et al. [77] | Num. An. | Thermal organic solar cells Roof-mounted | 27° | Greenhouse | 100% | N/A | N/A | Hot-dry climate achieves NZE even during winter Mixed-humid climate does not achieve NZE during winter but overall produces surplus energy across the year Cold climate does not achieve NZE |
Kussul et al. [78] | Num. An. | Flat triangular mirrors CPV | N/A | N/A | N/A | N/A | N/A | Lower installation costs Lower shading Automatic assembly |
L. Liu et al. [79] W. Liu et al. [80] | Exp. | Dichroic film CPV Overhead | N/A | Open field | 100% | Lettuce Cucumber Water spinach | Improved crop height, weight, total soluble content, photosynthetic rate −26% water evaporation Prevented sunburn | >90% transmittance between 400–500 nm and 600–700 nm 20% transmittance between 900–1100 nm 8.84% PCE |
Zhang et al. [81,82] | Exp. | Multilayer polymer films CPV Overhead | N/A | Open field | 100% | Lettuce Potatoes D. officinale Tobacco | Improved biomass yield (up to +71% for tobacco) Improved photosynthesis rate | Very high transmittance of selected wavelengths Sharp transition between low and high transmittance intervals |
Sato and Yamada [83] | Exp. | CPV with multijunction III-V cells Overhead | Open field | 100% | N/A | N/A | Using Fresnel lenses or planoconvex aspheric microlenses, direct sunlight is concentrated on the PV cells and diffuse light is directed toward crops This setup allows for a uniform 160 W/m2 irradiance on crops even with 100% CR | |
Shalom et al. [84] | Num. An. | Bifacial PV cell with beam splitters | Variable | N/A | N/A | N/A | N/A | High transmittance between 200–600 nm High reflectance between 600–2200 nm <10% PAR losses |
Study | Study Type | PV Device and Structure | Tilt Angle | Field Type | Coverage Ratio | Crops | Plant Results | Electrical/Optical/Thermal Results |
---|---|---|---|---|---|---|---|---|
Detweiler et al. [85] | Exp. | Lumogen Red LSCs (LSC light, LSC med, LSC dark) Roof- and side-mounted | Variable | Photobioreactor | 100% | Microalgae Cyanobacteria | Chla/n. of cells, Chla/weight, and Car/Chla ratios comparable or better under LSCs than under control Growth rates similar between all cultures | The LSCs were able to power all the electronics needed for the growth and monitoring of the cultures |
Pedron et al. [86] | Exp. | Lumogen Red LSC | - | Indoor and outdoor cultivations | 100% | B. juncea L. albus H. annuus | +25.12%, +27.05%, and +28.17% biomass for the three crops, respectively The crops were used for phytoremediation, absorbed As/Pb per plant unit mass were the same, but higher overall biomass meant higher total contaminant accumulation | −70% PAR |
Raeisossadati and Moheimani [87] | Exp. | Red PMMA fluorescent LSCs | Vertical | Photobioreactor | N/A | Microalgae | Increased biomass productivity, nitrogen assimilation, and lipidic content | Reduced photo-limitation at the depth of the cultures thanks to comb-like shape of the LSCs which guided light from the surface to the bottom part. Greater edge surface of the LSC means more light escaping and more light homogeneity |
Goti et al. [88] | Exp. | DQ-Th LSCs | N/A | N/A | N/A | N/A | N/A | Synthetized DQ-Th dyes with high absorbance between 300–400 nm and 500–600 nm, 40–60% transmittance between 400–500 nm, and >80% transmittance above 600 nm, useful for AV applications OE of the LSCs increases up to 0.8% wt% dye concentration where OE is 4.5%. At higher dye concentration, OE decreases |
Loik et al. [89] | Exp. | PMMA LSCs with embedded PV strips roof and vertically mounted | - | Greenhouse | 100% | Tomatoes | No significant difference in fruit yield between LSC cultivation and control | >80% absorption between 300–400 nm and 400–600 nm Fluorescence spectrum in the 550–700 nm range, peak at 630 nm |
Keil et al. [90] | Exp. | Bilayer CdSe/CdS and SiQD PMMA on glass LSC | N/A | N/A | N/A | N/A | N/A | Strong absorption up to 450 nm Photoluminescence peaks at 600 nm and 800 nm |
Siripurapu et al. [91] | Exp. | PMMA LSCs | N/A | N/A | N/A | N/A | N/A | Soiling on the backside of an LSC with dust might slightly increase PCE as dust acts as backscattering center. Water drops on LSC surfaces reduce waveguiding efficiency by creating additional optical interfaces. Dried water residues with dust give intermediate results between dust and water |
Vasiliev et al. [92] | Exp. | LSCs Roof-mounted | 22.5°, 90° | Greenhouse | 100% | N/A | N/A | Reduced greenhouse running costs Stable daily energy production Small long-term PCE reductions |
Xu et al. [93] | Num. An. | LSC with micro-cone array | N/A | N/A | N/A | N/A | N/A | Micro-cones frustrated total internal reflection Having micro-cones on the face pointed toward crops increases the amount of light received by them |
Talebzadeh et al. [94,95] | Num. An. | Elliptical paraboloid (d-EPSSS) and elliptical array (EASSS) LSCs | N/A | Photobioreactor | N/A | N/A | N/A | The d-EPSSS would allow an OE of 73%. The geometry of the d-EPSSS makes it so most of the radiation incident on the PV cell has an incidence angle of 90°, minimizing reflection losses The EASSS could achieve total internal reflection over a broader range of fluorescence emission angles An EASSS of the considered size could have 63% OE while a planar LSC of the same size would have 47.2% OE |
Zdražil et al. [96] | Exp. | C-QDs LSCs | N/A | N/A | N/A | N/A | N/A | Blue, green, and red LSCs with 64 cm2 surface area 2.3% OE 83.4% AVT |
Zhao et al. [97] | Exp. | C-QDs LSCs | N/A | N/A | N/A | N/A | N/A | 15 × 15 cm2 LSCs 2.2% OE 1.13% PCE |
Study | Study Type | PV Device and Structure | Tilt Angle | Field Type | Coverage Ratio | Crops | Plant Results | Electrical/Optical/Thermal Results |
---|---|---|---|---|---|---|---|---|
Hemming et al. [98] | Exp. | Reference, Blue-a, Blue-b, Blue-c, Red1-a, Red1-b, Red2-a, Red2-c, and Red3 fluorescent films Roof-mounted | - | Greenhouse | 100% | “Elsanta” strawberry | Cumulative fruit weight: best result under Blue-c (+13%) and worst result under Red3 (−10%) with respect to Reference | Higher PAR transmission than Reference for blue films (+0.2%, +0.7%, and +1.1% for Blue-a, Blue-b, and Blue-c, respectively) |
Xia et al. [99] | Exp. | Two types of CSSE phosphor film: C-foil and R-foil | - | Greenhouse | - | Spinach | CO2 assimilation rate 25% higher than R-foil under C-foil | C-foil converts green photons to red, R-foil reflects green photons away PPFD under R-foil: 5.84 μmol m−2 s−1 PPFD under C-foil: 6.38 μmol m−2 s−1 Spectral composition under R-foil: 4.98% of photons between 400–500 nm, 95.02% between 500–600 nm Spectral composition under C-foil: 2.02% between 400–500 nm, 45.88% between 500–600 nm, and 52.11% between 600–700 nm |
Stallknecht et al. [100] | Exp. | ND91, ND58, ND33, CO770, CO700, CO550a, and CO550b | - | Greenhouse | - | Basil Petunia Tomatoes | Basil leaves lighter in color than ND91 for every other glazing Comparable yield between ND91, CO770, and CO700 for basil and petunia Tomato yield lower for every glazing compared to yield under ND91 | ND91, CO770, and CO700 were the films with the highest PAR transmittance |
Kittas and Baille [101] | Exp. | Glass, LDPE, TPE, EVA, 3L EVA, BPE, VPVC, FPVC films | N/A | Greenhouse | N/A | N/A | VPVC and FPVC might considerably alter morphogenetic processes in plants, with possible applications in ornamental crops or reducing fungal infections | Overall PAR transmittances: 83–89% for glass, LDPE, TPE, EVA, 3L EVA 63% for BPE 39% for VPVC 59% for FPVC |
Shen et al. [102] | Exp. | Microphotonic thin film | N/A | Indoor cultivation, outdoor greenhouse | 100% | Lettuce | +20% biomass in both cultivation with respect to control | The microdome structure of the film allows 89% of the trapped light inside to escape toward the crop. The film also redshifts incoming light |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sollazzo, L.; Mangherini, G.; Diolaiti, V.; Vincenzi, D. A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics. Sustainability 2025, 17, 2206. https://doi.org/10.3390/su17052206
Sollazzo L, Mangherini G, Diolaiti V, Vincenzi D. A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics. Sustainability. 2025; 17(5):2206. https://doi.org/10.3390/su17052206
Chicago/Turabian StyleSollazzo, Leonardo, Giulio Mangherini, Valentina Diolaiti, and Donato Vincenzi. 2025. "A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics" Sustainability 17, no. 5: 2206. https://doi.org/10.3390/su17052206
APA StyleSollazzo, L., Mangherini, G., Diolaiti, V., & Vincenzi, D. (2025). A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics. Sustainability, 17(5), 2206. https://doi.org/10.3390/su17052206