Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (211)

Search Parameters:
Keywords = waterjet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9314 KiB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 253
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 2312 KiB  
Article
A Multi-Response Investigation of Abrasive Waterjet Machining Parameters on the Surface Integrity of Twinning-Induced Plasticity (TWIP) Steel
by Onur Cavusoglu
Materials 2025, 18(14), 3404; https://doi.org/10.3390/ma18143404 - 21 Jul 2025
Viewed by 312
Abstract
Twinning-induced plasticity (TWIP) steels represent a significant development in automotive steel production, characterized by advanced strength and ductility properties. The present study empirically investigated the effects of process parameters on the cutting process and surface quality of TWIP980 steel sheet by abrasive water [...] Read more.
Twinning-induced plasticity (TWIP) steels represent a significant development in automotive steel production, characterized by advanced strength and ductility properties. The present study empirically investigated the effects of process parameters on the cutting process and surface quality of TWIP980 steel sheet by abrasive water jet (AWJ) cutting. The cutting experiments were conducted on 1.4 mm thick sheet metal using four different traverse speeds (50, 100, 200, and 400 mm/min) and four different water jet pressures (1500, 2000, 2500, and 3000 bar). Two different abrasive flow rates (300 and 600 g/min) were also utilized. The cut surfaces were characterized in three dimensions with an optical profilometer. The parameters of surface roughness, kerf width, taper angle, and material removal rate (MRR) were determined. Furthermore, microhardness measurements were conducted on the cut surfaces. The optimal surface quality and geometrical accuracy were achieved by applying a combination of parameters, including 3000 bar of pressure, a traverse rate of 400 mm/min, and an abrasive flow rate of 600 g/min. Concurrently, an effective cutting performance with increased MRR and reduced taper angles was achieved under these conditions. The observed increase in microhardness with increasing pressure is attributable to a hardening effect resulting from local plastic deformation. Full article
Show Figures

Figure 1

25 pages, 10123 KiB  
Article
Fabrication of Micro-Holes with High Aspect Ratios in Cf/SiC Composites Using Coaxial Waterjet-Assisted Nanosecond Laser Drilling
by Chenhu Yuan, Zenggan Bian, Yue Cao, Yinan Xiao, Bin Wang, Jianting Guo and Liyuan Sheng
Micromachines 2025, 16(7), 811; https://doi.org/10.3390/mi16070811 - 14 Jul 2025
Viewed by 272
Abstract
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly [...] Read more.
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly examined. The results reveal that, for the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in the Cf/SiC composite, the increasing of waterjet velocity enhances the material removal rate and micro-hole depth, but reduces the micro-hole diameter and taper angle. The coaxial waterjet isolates the laser-ablated region and cools down the corresponding region rapidly, leading to the formation of a mixture of SiC, SiO2, and Si on the surface. As the coaxial waterjet velocity increases, the morphology of residual surface products changes from a net-like structure to individual spheres. Coaxial waterjet-assisted nanosecond laser drilling, with a waterjet velocity of 9.61 m/s, achieves micro-holes with a good balance between efficiency and quality. For the fabrication of micro-holes with a high aspect ratio in Cf/SiC composites, micro-holes fabricated by nanosecond laser drilling in air exhibit obvious taper features, which should be ascribed to the combined effects of spattering slag, plasma, and energy dissipation. The application of coaxial waterjet-assisted nanosecond laser drilling on micro-holes fabricated by laser drilling in air effectively expands the hole diameter. The fabricated micro-holes have very small taper angles, with clean wall surfaces and almost no reaction products. This approach, combining nanosecond laser drilling in air followed by coaxial waterjet-assisted nanosecond laser drilling, offers a promising technique for fabricating high-quality micro-holes with high aspect ratios in Cf/SiC composites. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

25 pages, 5336 KiB  
Article
A Modified Body Force Model for a Submerged Waterjet
by Dakui Feng, Yongyan Ma, Zichao Cai, Pengwei Yang and Yanlin Zou
J. Mar. Sci. Eng. 2025, 13(7), 1314; https://doi.org/10.3390/jmse13071314 - 8 Jul 2025
Viewed by 261
Abstract
The submerged waterjet exhibits advantages such as uniform inflow, minimal flow distortion, and excellent acoustic performance, making it particularly suitable for high-speed vessels. This study investigates the open-water characteristics of the submerged waterjet and develops a body force model for the submerged waterjet [...] Read more.
The submerged waterjet exhibits advantages such as uniform inflow, minimal flow distortion, and excellent acoustic performance, making it particularly suitable for high-speed vessels. This study investigates the open-water characteristics of the submerged waterjet and develops a body force model for the submerged waterjet propulsion system. First, under uniform inflow conditions, numerical simulations were performed using the body force method by replacing the rotor with a virtual blade and simultaneously replacing both the rotor and stator. The results of the body force model were then compared in detail with those obtained using the sliding mesh method. Second, the influence of the inflow velocity plane position on the results of the body force model was analyzed. The results indicate that the body force method, which replaces both the rotor and stator with a virtual blade, fails to accurately simulate the forces acting on various components of the propeller and the true distribution of the propeller’s flow field. In contrast, the method that replaces only the rotor with a virtual blade produces results for component forces and flow fields that are largely consistent with the results of the sliding mesh method, demonstrating the stability and reliability of the body force model. Additionally, the position of the inflow velocity plane has no significant effect on the model’s computational results. Full article
(This article belongs to the Special Issue Novelties in Marine Propulsion)
Show Figures

Figure 1

32 pages, 6074 KiB  
Review
High-Quality Manufacturing with Electrochemical Jet Machining (ECJM) for Processing Applications: A Comprehensive Review, Challenges, and Future Opportunities
by Yong Huang, Yi Hu, Xincai Liu, Xin Wang, Siqi Wu and Hanqing Shi
Micromachines 2025, 16(7), 794; https://doi.org/10.3390/mi16070794 - 7 Jul 2025
Viewed by 531
Abstract
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser [...] Read more.
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser beam machining (LBM) have been widely adopted as feasible alternatives to traditional methods, enabling the production of high-quality engineering components with specific characteristics. ECJM, a non-contact machining technology, employs electrodes on the nozzle and workpiece to establish an electrical circuit via the jet. As a prominent special machining technology, ECJM has demonstrated significant advantages, such as rapid, non-thermal, and stress-free machining capabilities, in past research. This review is dedicated to outline the research progress of ECJM, focusing on its fundamental concepts, material processing capabilities, technological advancements, and its variants (e.g., ultrasonic-, laser-, abrasive-, and magnetism-assisted ECJM) along with their applications. Special attention is given to the application of ECJM in the semiconductor and biomedical fields, where the demand for ultra-precision components is most pronounced. Furthermore, this review explores recent innovations in process optimization, significantly boosting machining efficiency and quality. This review not only provides a snapshot of the current status of ECJM technology, but also discusses the current challenges and possible future improvements of the technology. Full article
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 279
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 7909 KiB  
Article
Study on the Microstructure Evolution and Ablation Mechanism of SiCp/Al Composites Processed by a Water-Jet Guided Laser
by Wendian Yin, Ze Yu, Guanghao Xing, Feng Yang and Zhigang Dong
Materials 2025, 18(12), 2749; https://doi.org/10.3390/ma18122749 - 11 Jun 2025
Viewed by 343
Abstract
In this study, the influence of different process parameters on the macroscopic and microscopic morphology of the microgroove in the water-jet guided laser was studied. In addition, the microstructure evolution and material ablation mechanism of the microgroove were studied. The results show that [...] Read more.
In this study, the influence of different process parameters on the macroscopic and microscopic morphology of the microgroove in the water-jet guided laser was studied. In addition, the microstructure evolution and material ablation mechanism of the microgroove were studied. The results show that with the increase in laser power, the depth of the microgroove increases from 154 μm to 492 μm, the width from 63 μm to 74 μm, and the depth-to-width ratio from 2.45 to 6.62; with the increase in scanning speed, the depth of the microgroove decreases from 525.33 μm to 227.16 μm, and the width from 67.61 μm to 71.02 μm, and the depth-to-width ratio from 7.77 to 3.20. With the increase in water jet pressure, the depth increases from 312.29 μm to 3.20. With the increase in water jet pressure, the depth increased from 312.29 μm to 362.39 μm, the width decreased from 71.59 μm to 62.78 μm, and the depth-to-width ratio increased from 4.38 to 5.77. In addition, the water guided laser processing of SiCp/Al composites produces thermal–mechanical coupling and chemical reaction synergies: the material melts and vaporizes under the action of a high-energy laser beam, and the SiC particles are oxidized and thermally decomposed at local high temperatures due to their high thermal stability. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

22 pages, 3049 KiB  
Article
A Monographic Experimental Investigation into Flood Discharge Atomized Raindrop Size Distributions Under Low Ambient Pressure Conditions
by Dan Liu, Jijian Lian, Dongming Liu, Fang Liu, Bin Ma, Jizhong Shi, Linlin Yan, Yongsheng Zheng, Cundong Xu and Jinxin Zhang
Water 2025, 17(12), 1721; https://doi.org/10.3390/w17121721 - 6 Jun 2025
Viewed by 466
Abstract
The construction and operation of high dam projects at high altitudes have led to concerns about the effectiveness of flood discharge security predictions resulting from the greater flood discharge atomized rain caused by ambient pressure reduction. In this study, self-similar characteristics and variation [...] Read more.
The construction and operation of high dam projects at high altitudes have led to concerns about the effectiveness of flood discharge security predictions resulting from the greater flood discharge atomized rain caused by ambient pressure reduction. In this study, self-similar characteristics and variation in atomized raindrop size distributions are analyzed to understand the phenomenon of increased atomized rain intensity under low ambient pressure from a mesoscopic scale. The monographic experiments are characterized by a low ambient pressure range (0.66P0–1.02P0) and a high waterjet velocity range (13.89–15.74 m/s). When the ambient pressure decreases by 0.10P0 (P0 = 101.325 kPa) from the reference atmospheric pressure condition as the other conditions remain fixed, the total number concentration in a two-dimensional atomized raindrop spectrum (number/(54 cm2)) and the peak value of the individual three-dimensional number concentration (number/(m3·mm) increase, which can lead to the required industry standard protective level of atomized zones increasing by one level in some cases. In addition, the spectrum trend and typical particle size ranges of the atomized raindrop size distributions present self-similarity as the ambient pressure decreases. The above studies further confirm the effects of low-ambient pressure enhancement on flood discharge atomized rain intensity, which can provide a theoretical basis for the development of random splash simulation models characterized by low pressure for high-altitude hydropower stations. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

24 pages, 3126 KiB  
Article
Two-Phase Multi-Point Design Exploration of Submerged Nacelles for Marine Propulsive Pump Installation
by Filippo Avanzi, Andrea Magrini and Francesco De Vanna
J. Mar. Sci. Eng. 2025, 13(6), 1110; https://doi.org/10.3390/jmse13061110 - 2 Jun 2025
Viewed by 414
Abstract
Outboard Dynamic-inlet Waterjets (ODW) are axisymmetric units, powered by a self-contained pump, that, by processing a uniform undisturbed streamtube, can operate more efficiently than conventional marine propulsors. This feature also provides methodological convenience, enabling accurate numerical investigations of the system alone using 2D [...] Read more.
Outboard Dynamic-inlet Waterjets (ODW) are axisymmetric units, powered by a self-contained pump, that, by processing a uniform undisturbed streamtube, can operate more efficiently than conventional marine propulsors. This feature also provides methodological convenience, enabling accurate numerical investigations of the system alone using 2D axisymmetric models. Leveraging this property, the present study bridges the gap on the design principles required to tailor ODW geometries across multiple operating conditions. Reynolds-Averaged Navier Stokes (RANS) equations are solved, including turbulence and cavitation models, to draw the propulsor’s characteristic maps and identify two relevant operating points, set by the combination of a specified pump rotational regime with an advancing velocity. Simulations for these in- and off-design conditions are systematically performed over a database of 512 randomly sampled geometric variants. The corresponding results show that optimised shapes improving the inlet Pressure Recovery (PR) and nacelle drag at cruise conditions result in beneficial outcomes also at take-off operations, where lip cavitation may occur. Thus, analysing together the off-design PR and the cruise net force underscores their conflicting behaviour. In fact, while nacelles shortened by 12% can reduce overall drag and enhance nominal net thrust by 2%, designs featuring a 34% wider capture area improve off-design PR by over 1.5%, albeit at the cost of compromised propulsive efficiency under any operating range. Full article
(This article belongs to the Special Issue Novelties in Marine Propulsion)
Show Figures

Figure 1

27 pages, 10923 KiB  
Article
Food Processing with UHP Waterjets
by Mohamed Hashish
Appl. Sci. 2025, 15(11), 6246; https://doi.org/10.3390/app15116246 - 1 Jun 2025
Viewed by 562
Abstract
The use of UHP for food processing includes many applications such as cutting, peeling, pasteurization, and pumping through the orifice to affect food rheology. This paper focuses on food cutting applications using UHP waterjets. State-of-the-art food cutting systems are described including pumps, manipulators, [...] Read more.
The use of UHP for food processing includes many applications such as cutting, peeling, pasteurization, and pumping through the orifice to affect food rheology. This paper focuses on food cutting applications using UHP waterjets. State-of-the-art food cutting systems are described including pumps, manipulators, sensors, cutting heads, and software. While UHP technology is commercially available at 621 MPa of pressure, most food cutting systems’ pressure is below 400 MPa. Highly focused waterjets are important for efficient slicing of food and thus diamond orifices with sharp entry edges are used in specially designed cutting using fast acting on/off valves. Automation is at an advanced level for fish, pin bone removal, poultry, meat, and vegetable processing systems where upstream sensor data are used with CNC controllers to determine the paths of the cutting jet(s) at relatively high production rates for portioning or trimming to tight specifications. Harvesting lettuce proved to be highly successful in improving the overall productivity and working environment ergonomics. An important advantage of the waterjet in increasing the shelf life of trimmed food is presented. For example, celery and lettuce shelf life increases by days over mechanical cutting. The use of salt as an abrasive material in abrasive waterjet cutting nozzles was found to be impractical for cutting meat with bone and more work is needed in this area. Bakery, cake, and sandwich cutting applications are utilized in actual plants in the USA and Europe. For example, small envelop cake cutting machines using relatively low-power jets are used for cutting cake into different shapes. Full article
Show Figures

Figure 1

28 pages, 37815 KiB  
Article
Improving Waterjet Performance Through Simulation-Based Optimization
by Stefano Gaggero and Francesco Mastrandrea
J. Mar. Sci. Eng. 2025, 13(4), 758; https://doi.org/10.3390/jmse13040758 - 10 Apr 2025
Cited by 2 | Viewed by 561
Abstract
Axial waterjets are widely used for marine propulsion due to their efficiency and maneuverability. However, conventional design procedures heavily rely on empirical correlations and simplified models, limiting their ability to fully exploit the hydrodynamic performance potential of these devices. The study highlights how [...] Read more.
Axial waterjets are widely used for marine propulsion due to their efficiency and maneuverability. However, conventional design procedures heavily rely on empirical correlations and simplified models, limiting their ability to fully exploit the hydrodynamic performance potential of these devices. The study highlights how Simulation-Based Design Optimization (SBDO) approaches, coupled with the high-fidelity simulations required to hydrodynamically characterize the complex phenomena that occur in the case of waterjets, can enable the identification of non-intuitive design improvements over a wider design space that may be missed by traditional methods. In particular, the Reynolds-Averaged Navier–Stokes (RANS) equations are used to provide accurate performance predictions, capturing complex flow phenomena such as secondary flows (i.e., leakage vortices) and pressure distributions critical to waterjet design, of systematically varied configurations using a 42-dimensional parametric model. Simplified key performance indicators, in the specific cavitation inception obtained from the non-cavitating analysis, work in conjunction with the calculated hydraulic efficiency to identify geometries capable of improving (or not worsening) efficiency while postponing cavitation. The systematic and automated analysis of thousands of different configurations, iteratively modified by a genetic algorithm, is finally able to identify better waterjets, whose performances are confirmed by dedicated cavitating RANSE analyses. This demonstrates how RANS-based simulations, integrated with optimization algorithms, can lead to superior axial waterjet designs, providing a flexible, more robust, and effective methodology compared to conventional approaches. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 23686 KiB  
Article
Improved Thin-Kerf Processing in Cf/SiC Composite by Waterjet-Guided Nanosecond Laser Decreases Oxidation and Thermal Effect
by Jiayu Wang, Guangyi Zhang, Qiaoli Wang, Youmin Rong, Chaochao Zhao, Chunguang Chen, Binying Bao, Wenwu Zhang and Liyuan Sheng
Materials 2025, 18(7), 1560; https://doi.org/10.3390/ma18071560 - 29 Mar 2025
Cited by 2 | Viewed by 612
Abstract
As a hard and brittle material, the processing of Cf/SiC ceramic matrix composites (CMCs) faces significant challenges, especially in the processing of small-sized shapes. To address this challenge, laser processing with gas-assisted nanosecond laser (GNL) and waterjet-guided nanosecond laser (WNL) modes [...] Read more.
As a hard and brittle material, the processing of Cf/SiC ceramic matrix composites (CMCs) faces significant challenges, especially in the processing of small-sized shapes. To address this challenge, laser processing with gas-assisted nanosecond laser (GNL) and waterjet-guided nanosecond laser (WNL) modes were applied to fabricate thin kerfs in the Cf/SiC composite. The surface morphology, microstructure, and chemical composition of the processed Cf/SiC composite were investigated comparatively. The results revealed that the coupling of helium in the GNL mode laser processing could make full use of the laser energy, but resulted in spattering in the kerf margin and a recast layer in the kerf surface, accompanied by obvious oxidation, while the coupling of the waterjet in the WNL mode laser processing decreased the oxidation significantly and removed the remelting debris, which produced a clear and flat kerf surface. Due to the taper caused by laser energy dissipation, the single-path laser processing in the Cf/SiC composite had a limited depth. The maximum depth of the kerf prepared by single-path laser processing with the GNL mode was about 328 μm, while that with the WNL mode was about 302 μm. The multi-path laser processing with the GNL and WNL modes could fabricate a through kerf in the Cf/SiC composite, but the coupling medium obviously influenced the surface morphology and microstructure of the underlying region. The kerf surface prepared by the GNL mode had a varied surface morphology, which transited from the top layer, covered with oxide particles and some cracks, to the bottom layer, featured with micro-grooves and small oxides. The kerf surface prepared by the WNL mode had a consistently smooth and clean morphology featured with broken carbon fiber and residual SiC matrix. The slow laser energy dissipation and open environment in the GNL mode resulted in a bigger HAZ and relatively serious oxidation, which caused local phase transformation and microstructure degradation. The isolation condition and rapid cooling in the WNL mode decreased the HAZ and restrained the oxidation, almost keeping the original microstructure. The thicknesses of the HAZ in the GNL- and WNL-processed Cf/SiC composite were about 200 μm and 100 μm, respectively. The WNL-processed Cf/SiC composite had a lower oxidation and thermal damage surface, which is instructive for the processing of the Cf/SiC composite. Full article
(This article belongs to the Special Issue Recent Advances in Precision Manufacturing Technology)
Show Figures

Figure 1

17 pages, 833 KiB  
Article
ARES: A Meanline Code for Outboard Dynamic-Inlet Waterjet Axial-Flow Pumps Design
by Filippo Avanzi, Francesco De Vanna, Andrea Magrini and Ernesto Benini
Fluids 2025, 10(3), 66; https://doi.org/10.3390/fluids10030066 - 10 Mar 2025
Cited by 1 | Viewed by 759
Abstract
We introduce the solver ARES: Axial-flow pump Radial Equilibrium through Streamlines. The code implements a meanline method, enforcing the conservation of flow momentum and continuity across a set of discrete streamlines in the axial-flow pump’s meridional channel. Real flow effects are modeled with [...] Read more.
We introduce the solver ARES: Axial-flow pump Radial Equilibrium through Streamlines. The code implements a meanline method, enforcing the conservation of flow momentum and continuity across a set of discrete streamlines in the axial-flow pump’s meridional channel. Real flow effects are modeled with empirical correlations, including off-design deviation and losses due to profile shape, secondary flows, tip leakage, and the end-wall boundary layer (EWBL). Inspired by aeronautical fan and compressor methods, this implementation is specifically tailored for the analysis of the Outboard Dynamic-inlet Waterjet (ODW), the latest aero-engine-derived innovation in marine engineering. To ensure the reliable application of ARES for the systematic designs of ODW pumps, the present investigation focuses on prediction accuracy. Global and local statistics are compared between numerical estimates and available measurements of three test cases: two single rotors and a rotor–stator waterjet configuration. At mass flow rates near the design point, hydraulic efficiency is predicted within 1% discrepancy to tests. Differently, as the flow coefficient increases, the loss prediction accuracy degrades, incrementing the error for off-design estimates. Spanwise velocity and pressure distributions exhibit good alignment with experiments near midspan, especially at the rotor exit, while end-wall boundary layer complex dynamics are hardly recovered by the present implementation. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 2nd Edition)
Show Figures

Figure 1

12 pages, 5401 KiB  
Article
Comparison of 2D and 3D Surface Roughness Parameters of AlMgSi0.5 Aluminium Alloy Surfaces Machined by Abrasive Waterjet
by Csaba Felhő, Krisztina Kun-Bodnár and Zsolt Maros
J. Manuf. Mater. Process. 2025, 9(3), 80; https://doi.org/10.3390/jmmp9030080 - 2 Mar 2025
Cited by 1 | Viewed by 833
Abstract
The use of 3D roughness parameters is increasingly gaining ground in various areas of engineering, especially in academic research. In many cases, however, these studies primarily cover the illustration of the character of the surfaces, the interpretation of areal numerical roughness values is [...] Read more.
The use of 3D roughness parameters is increasingly gaining ground in various areas of engineering, especially in academic research. In many cases, however, these studies primarily cover the illustration of the character of the surfaces, the interpretation of areal numerical roughness values is often disputed. The goal of this paper is to examine how the 2D and 3D roughness parameters change in the case of anisotropic surfaces, such as surfaces cut with an abrasive water jet. For this purpose, abrasive water jet cutting experiments were performed on AlMgSi0.5 aluminum alloy using different technological parameters. After the experiments, two amplitude-type 3D roughness parameters (Sa and Sz) of the cut surface and four profile parameters (Ra, Rz for roughness and Pa, Pz for raw profile) were measured at five different depths. Our conducted research indicates that the 3D parameters represent a kind of average value for certain roughness characteristics and a maximum value for others. The paper also reports on how these roughness characteristics change as a function of feed speed. Full article
Show Figures

Figure 1

24 pages, 15927 KiB  
Article
Research on Energy Dissipation Mechanism of Hump Characteristics Based on Entropy Generation and Coupling Excitation Mechanism of Internal Vortex Structure of Waterjet Pump at Hump Region
by Min Liu, Yun Long, Hong Yin, Chenbiao Tian and Jinqing Zhong
J. Mar. Sci. Eng. 2025, 13(3), 442; https://doi.org/10.3390/jmse13030442 - 26 Feb 2025
Viewed by 581
Abstract
High-speed mixed-flow and axial-flow pumps often exhibit hump or double-hump patterns in flow–head curves. Operating in the hump region can cause flow disturbances, increased vibration, and noise in pumps and systems. Variable-speed ship navigation requires waterjet propulsion pumps to adjust speeds. Speed transitions [...] Read more.
High-speed mixed-flow and axial-flow pumps often exhibit hump or double-hump patterns in flow–head curves. Operating in the hump region can cause flow disturbances, increased vibration, and noise in pumps and systems. Variable-speed ship navigation requires waterjet propulsion pumps to adjust speeds. Speed transitions can lead pumps into the hump region, impacting efficient and quiet operation. This paper focuses on mixed-flow waterjet propulsion pumps with guide vanes. Energy, entropy production, and flow characteristic analyses investigate hump formation and internal flow properties. High-speed photography in cavitation experiments focuses on increased vibration and noise in the hump region. This study shows that in hump formation, impeller work capacity decreases less than internal fluid loss in the pump. These factors lead to an abnormal increase in the energy curve. The impeller blades show higher pressure at peak conditions than in valley conditions. Valley conditions show more pressure and velocity distribution variance in impeller flow passages, with notable low-pressure areas. This research aids in understanding pump hump phenomena, addressing flow disturbances, vibration, noise, and supporting design optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop