Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (440)

Search Parameters:
Keywords = water vapor source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5986 KiB  
Article
Research on the Response Regularity of Smoke Fire Detectors Under Typical Interference Conditions in Ancient Buildings
by Yunfei Xia, Lei Lei, Siyuan Zeng, Da Li, Wei Cai, Yupeng Hou, Chen Li and Yujie Yin
Fire 2025, 8(8), 315; https://doi.org/10.3390/fire8080315 - 7 Aug 2025
Viewed by 416
Abstract
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental [...] Read more.
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental scene of an ancient building with a typical flush gable roof structure was taken as the research object, and the differential influence laws of three typical interference sources, namely wind speed, water vapor, and incense burning, on the response times of point-type smoke detectors were quantified. Moreover, the prediction models of the alarm time of the detectors under the three interference conditions were established. The results indicate the following: (1) Within the range of experimental conditions, there is a quantitative relationship between the detector response delay and the type of interference source: the delay time shows a nonlinear positive correlation with the wind speed/water vapor interference gradient, while it exhibits a threshold unimodal change characteristic with the burning incense interference gradient; (2) under interference conditions, the detector response delay varies depending on the type of fire source: the detector has the best detection stability for smoldering smoke from a smoke cake, while it has the lowest detection sensitivity for smoldering smoke from a cotton rope. Moreover, the influence of wind speed interference is weaker than that of water vapor or smoke from burning incense, and the difference is the greatest in the wood block smoldering condition. (3) Construct a detector alarm time prediction model under three types of interference conditions, where the wind speed, water vapor, and burning incense interference conditions conform to third-order polynomial functions, Sigmoid functions, and fourth-order polynomial functions, respectively. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

29 pages, 10015 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Viewed by 234
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 170
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

23 pages, 3632 KiB  
Article
Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
by Joshua Boateng and Sana Khan
Gels 2025, 11(7), 557; https://doi.org/10.3390/gels11070557 - 19 Jul 2025
Viewed by 852
Abstract
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as [...] Read more.
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as the bioactive ingredients and their functional characteristics evaluated and compared. The formulated solvent cast films were functionally characterized for tensile, mucoadhesion and moisture handling properties. The morphology and physical characteristics of the films were also analyzed using FTIR, X-ray diffraction and scanning electron microscopy. Antibacterial susceptibility testing was performed to study the inhibition of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by honey components released from the films. The % elongation values (8.42–40.47%) increased, elastic modulus (30.74–0.62 Nmm) decreased, the stickiness (mucoadhesion) (0.9–1.9 N) increased, equilibrium water content (32.9–72.0%) and water vapor transmission rate (900–298 gm2 day−1) generally decreased, while zones of inhibition (2.4–6.5 mm) increased with increasing honey concentration for 1 and 5% w/v, respectively. The results generally showed similar performance for the different honeys and demonstrate the efficacy of honey-loaded hydrocolloid films as potential wound dressing against bacterial growth and potential treatment of infected chronic wounds. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

20 pages, 9353 KiB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 282
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

13 pages, 2217 KiB  
Article
Gaseous Ammonia Sensing from Liquids via a Portable Chemosensor with Signal Correction for Humidity
by Andrea Rescalli, Ilaria Porello, Pietro Cerveri and Francesco Cellesi
Biosensors 2025, 15(7), 407; https://doi.org/10.3390/bios15070407 - 25 Jun 2025
Viewed by 412
Abstract
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, [...] Read more.
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, lack of portability, and poor compatibility with miniaturized systems. This study introduces a proof-of-concept for a compact, portable device tailored for POC detection of gaseous ammonia released from liquid samples. The device combines a polyaniline (PANI)-based chemoresistive sensor with interdigitated electrodes and a resistance readout circuit, enclosed in a gas-permeable hydrophobic membrane that permits ammonia in the vapor phase only to reach the sensing layer, ensuring selectivity and protection from liquid interference. The ink formulation was optimized. PANI nanoparticle suspension exhibited a monomodal, narrow particle size distribution with an average size of 120 nm and no evidence of larger aggregates. A key advancement of this device is its ability to limit the impact of water vapor, a known source of interference in PANI-based sensors, while maintaining a simple sensor design. A tailored signal processing strategy was implemented, extracting the slope of resistance variation over time as a robust metric for ammonia quantification. The sensor demonstrated reliable performance across a concentration range of 1.7 to 170 ppm with strong logarithmic correlation (R2 = 0.99), and very good linear correlations in low (R2 = 0.96) and high (R2 = 0.97) subranges. These findings validate the feasibility of this POC platform for sensitive, selective, and practical ammonia detection in clinical and environmental applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

23 pages, 6031 KiB  
Article
Assessment of the PPP-AR Strategy for ZTD and IWV in Africa: A One-Year GNSS Study
by Moustapha Gning Tine, Pierre Bosser, Ngor Faye, Lila Jean-Louis and Mapathé Ndiaye
Atmosphere 2025, 16(6), 741; https://doi.org/10.3390/atmos16060741 - 17 Jun 2025
Viewed by 581
Abstract
With the increasing demand for near real-time atmospheric water vapor monitoring, this study evaluates the performance of the open-source PRIDE PPP-AR software (version 3.0.5) for retrieving Zenith Total Delay (ZTD) and Integrated Water Vapor (IWV) over the African continent over a one-year period. [...] Read more.
With the increasing demand for near real-time atmospheric water vapor monitoring, this study evaluates the performance of the open-source PRIDE PPP-AR software (version 3.0.5) for retrieving Zenith Total Delay (ZTD) and Integrated Water Vapor (IWV) over the African continent over a one-year period. PRIDE PPP-AR is compared with established PPP-AR and PPP solutions, including CSRS-PPP, IGN-PPP, and NGL and using GipsyX, ERA5, and IGS products as references. A robust methodology combining time series processing and statistical evaluation was adopted. Multiple tools were leveraged to ensure a comprehensive performance analysis of GNSS data from seven stations in Africa, where such studies remain scarce. The results show that PRIDE PPP-AR achieves ZTD accuracy comparable to GipsyX (RMSE < 6 mm, R2 ≈ 0.99) and performs at a similar level to NGL and CSRS-PPP. Compared to the other solutions, PRIDE PPP-AR has an accuracy similar to CSRS-PPP and NGL, but slightly better than IGN-PPP, in line with ERA5 and IGS references. For IWV retrieval, comparisons with ERA5 indicate RMSE values of about 1.5 to 2.7 kg/m2, depending on station location and climatic conditions. IWV variability tends to increase towards the equator, where the recorded fluctuations are higher than in subtropical zones. In addition, collocated radiosonde (RS) measurements in Abidjan confirm good agreement, further validating the reliability of the software. This study highlights the potential of GNSS meteorology, in providing reliable spatiotemporal IWV monitoring and indicates that the PRIDE PPP-AR is ready for the high precision meteorological applications in African regions. These results offer promising prospects for spatiotemporal studies through African multi-GNSS networks and the PRIDE PPP-AR approach. Full article
Show Figures

Figure 1

18 pages, 3086 KiB  
Article
Contribution of Different Forest Strata on Energy and Carbon Fluxes over an Araucaria Forest in Southern Brazil
by Marcelo Bortoluzzi Diaz, Pablo Eli Soares de Oliveira, Vanessa de Arruda Souza, Claudio Alberto Teichrieb, Hans Rogério Zimermann, Gustavo Pujol Veeck, Alecsander Mergen, Maria Eduarda Oliveira Pinheiro, Michel Baptistella Stefanello, Osvaldo L. L. de Moraes, Gabriel de Oliveira, Celso Augusto Guimarães Santos and Débora Regina Roberti
Forests 2025, 16(6), 1008; https://doi.org/10.3390/f16061008 - 16 Jun 2025
Viewed by 648
Abstract
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each [...] Read more.
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each forest stratum to improve understanding of surface–atmosphere interactions. Eddy covariance data from November 2009 to April 2012 were used to assess fluxes in an Araucaria forest in Paraná, Brazil, across the ecosystem, understory, and overstory strata. On average, the ecosystem acts as a carbon sink of −298.96 g C m−2 yr−1, with absorption doubling in spring–summer compared to autumn–winter. The understory primarily acts as a source, while the overstory functions as a CO2 sink, driving carbon absorption. The overstory contributes 63% of the gross primary production (GPP) and 75% of the latent heat flux, while the understory accounts for 94% of the ecosystem respiration (RE). The energy fluxes exhibited marked seasonality, with higher latent and sensible heat fluxes in summer, with sensible heat predominantly originating from the overstory. Annual ecosystem evapotranspiration reaches 1010 mm yr−1: 60% of annual precipitation. Water-use efficiency is 2.85 g C kgH2O−1, with higher values in autumn–winter and in the understory. The influence of meteorological variables on the fluxes was analyzed across different scales and forest strata, showing that solar radiation is the main driver of daily fluxes, while air temperature and vapor pressure deficit are more relevant at monthly scales. This study highlights the overstory’s dominant role in carbon absorption and energy fluxes, reinforcing the need to preserve these ecosystems for their crucial contributions to climate regulation and water-use efficiency. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 10720 KiB  
Article
Responses of Water Use Strategies to Seasonal Drought Stress Differed Among Eucalyptus urophylla S.T.Blake × E. grandis Plantations Along with Stand Ages
by Zhichao Wang, Yuxing Xu, Wankuan Zhu, Runxia Huang, Apeng Du, Haoyang Cao and Wenhua Xiang
Forests 2025, 16(6), 962; https://doi.org/10.3390/f16060962 - 6 Jun 2025
Viewed by 425
Abstract
Water use strategies reflect the ability of plants to adapt to drought caused by climate change. However, how these strategies change with stand development and seasonal drought is not fully understood. This study used stable isotope techniques (δD, δ18O, and δ [...] Read more.
Water use strategies reflect the ability of plants to adapt to drought caused by climate change. However, how these strategies change with stand development and seasonal drought is not fully understood. This study used stable isotope techniques (δD, δ18O, and δ13C) combined with the MixSIAR model to quantify the seasonal changes in water use sources and water use efficiency (WUE) of Eucalyptus urophylla S.T.Blake × E. grandis (E. urophylla × E. grandis) at four stand ages (2-, 4-, 9- and 14-year-old) and to identify their influencing factors. Our results showed that the young (2-year-old) and middle-aged (4-year-old) stands primarily relied on shallow soil water throughout the growing season due to the limitations of a shallow root system. In contrast, the mature (9-year-old) and overmature (14-year-old) stands, influenced by the synergistic effects of larger and deeper root systems and relative extractable water (REW), exhibited more flexibility in water use, mainly relying on shallow soil water in wet months, but shifting to using middle and deep soil layer water in dry months, and quickly returning to mainly using shallow soil water in the episodic wet month of the dry season. The WUE of E. urophylla × E. grandis was affected by the combined effect of air temperature (T), vapor pressure deficit (VPD), and REW. WUE was consistent across the stand ages in the wet season but decreased significantly with stand age in the dry season. This suggests that mature and overmature stands depend more on shifting their water source, while young and middle-aged stands rely more on enhanced WUE to cope with seasonal drought stress, resulting in young and middle-aged stands being more vulnerable to drought stress. These findings offer valuable insights for managing water resources in eucalyptus plantations, particularly as drought frequency and intensity continue to rise. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

25 pages, 33376 KiB  
Article
Spatial-Spectral Linear Extrapolation for Cross-Scene Hyperspectral Image Classification
by Lianlei Lin, Hanqing Zhao, Sheng Gao, Junkai Wang and Zongwei Zhang
Remote Sens. 2025, 17(11), 1816; https://doi.org/10.3390/rs17111816 - 22 May 2025
Viewed by 488
Abstract
In realistic hyperspectral image (HSI) cross-scene classification tasks, it is ideal to obtain target domain samples during the training phase. Therefore, a model needs to be trained on one or more source domains (SD) and achieve robust domain generalization (DG) performance on an [...] Read more.
In realistic hyperspectral image (HSI) cross-scene classification tasks, it is ideal to obtain target domain samples during the training phase. Therefore, a model needs to be trained on one or more source domains (SD) and achieve robust domain generalization (DG) performance on an unknown target domain (TD). Popular DG strategies constrain the model’s predictive behavior in synthetic space through deep, nonlinear source expansion, and an HSI generation model is usually adopted to enrich the diversity of training samples. However, recent studies have shown that the activation functions of neurons in a network exhibit asymmetry for different categories, which results in the learning of task-irrelevant features while attempting to learn task-related features (called “feature contamination”). For example, even if some intrinsic features of HSIs (lighting conditions, atmospheric environment, etc.) are irrelevant to the label, the neural network still tends to learn them, resulting in features that make the classification related to these spurious components. To alleviate this problem, this study replaces the common nonlinear generative network with a specific linear projection transformation, to reduce the number of neurons activated nonlinearly during training and alleviate the learning of contaminated features. Specifically, this study proposes a dimensionally decoupled spatial spectral linear extrapolation (SSLE) strategy to achieve sample augmentation. Inspired by the weakening effect of water vapor absorption and Rayleigh scattering on band reflectivity, we simulate a common spectral drift based on Markov random fields to achieve linear spectral augmentation. Further considering the common co-occurrence phenomenon of patch images in space, we design spatial weights combined with label determinism of the center pixel to construct linear spatial enhancement. Finally, to ensure the cognitive unity of the high-level features of the discriminator in the sample space, we use inter-class contrastive learning to align the back-end feature representation. Extensive experiments were conducted on four datasets, an ablation study showed the effectiveness of the proposed modules, and a comparative analysis with advanced DG algorithms showed the superiority of our model in the face of various spectral and category shifts. In particular, on the Houston18/Shanghai datasets, its overall accuracy was 0.51%/0.83% higher than the best results of the other methods, and its Kappa coefficient was 0.78%/2.07% higher, respectively. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

24 pages, 4064 KiB  
Article
Active Pectin/Carboxymethylcellulose Composite Films for Bread Packaging
by Lavinia Doveri, Yuri Antonio Diaz Fernandez, Giacomo Dacarro, Pietro Grisoli, Chiara Milanese, Maria Urena, Nicolas Sok, Thomas Karbowiak and Piersandro Pallavicini
Molecules 2025, 30(11), 2257; https://doi.org/10.3390/molecules30112257 - 22 May 2025
Viewed by 696
Abstract
A new active composite film intended for bread packaging is described here. The active film has the aim of prolonging bread’s shelf life while avoiding the use of nanoparticles that, with very few exceptions, are a type of material not allowed by regulatory [...] Read more.
A new active composite film intended for bread packaging is described here. The active film has the aim of prolonging bread’s shelf life while avoiding the use of nanoparticles that, with very few exceptions, are a type of material not allowed by regulatory agencies like EFSA (European Food Safety Agency) and FDA (US Food and Drug Administration) in food contact materials. Moreover, the increasing consumer demand for natural and wholesome products, possibly “clean label”, and packaged in natural, non-petroleum-based materials has been taken into consideration. Accordingly, precursor materials from renewable sources were used to prepare the active film: pectin from citrus peel (PEC) and carboxymethyl cellulose (CMC) were used as the matrix, with oleic acid (OA) as plasticizer. Moreover, the bread preservative calcium propionate (CaP) was used as the crosslinker, and also zeolite microparticles loaded with silver ions (AgZ) were added to the films as an additional antimold agent. This strategy allows us to avoid the addition to bread of the now commonly used preservatives ethanol and calcium propionate, moving the latter to the packaging. Permeance measurements revealed excellent barrier properties against O2 and CO2, while the typical high water vapor permeance of polysaccharide films was mitigated by the non-hydrophilic OA plasticizer. Moreover, the quantities of Ag+ and CaP released in bread are low and below the limits imposed by regulatory agencies. The antimold activity of the films is excellent, with Aspergillus niger, Penicillium janthinellum, and wild-type Penicillim molds reduction on bread in the 99.20–99.95% range for the films containing only CaP and in the 99.97–99.998% range for the films containing both CaP and AgZ. Finally, the rheological properties of the film-forming solutions were investigated, demonstrating their potential application as coatings on natural packaging materials for bread, such as paper. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

16 pages, 11579 KiB  
Article
Characteristic Analysis of the Extreme Precipitation over South China During the Dragon-Boat Precipitation in 2022
by Meixia Chen, Yufeng Xue, Juliao Qiu, Chunlei Liu, Shuqin Zhang, Jianjun Xu and Ziye Zhu
Atmosphere 2025, 16(5), 619; https://doi.org/10.3390/atmos16050619 - 19 May 2025
Viewed by 502
Abstract
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from [...] Read more.
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from 20 May to 21 June over South China in 2022 using the synoptic diagnostic method. The results indicate that the total precipitation during this period significantly exceeded the climatological average, with multiple large-scale extreme rainfall events characterized by high intensity, extensive coverage, and prolonged duration. The spatial distribution of precipitation exhibited a north-more-south-less pattern, with the maximum rainfall center located in the Nanling Mountains, particularly in the Shaoguan–Qingyuan–Heyuan region of Guangdong Province, where peak precipitation exceeded 1100 mm, and the mean precipitation was approximately 1.7 times the climatology from the GPM data. The average daily precipitation throughout the period was 17.5 mm/day, which was 6 mm/day higher than the climatological mean, while the heaviest rainfall on 13 June reached 39 mm/day above the average, exceeding two standard deviations. The extreme precipitation during the “Dragon-Boat Precipitation” period in 2022 was associated with an anomalous deep East Asian trough, an intensified South Asian High, a stronger-than-usual Western Pacific Subtropical High, an enhanced South Asian monsoon and South China Sea monsoon, and the dominance of a strong Southwesterly Low-Level Jet (SLLJ) over South China. Two major moisture transport pathways were established: one from the Bay of Bengal to South China and another from the South China Sea, with the latter contributing a little higher amount of water vapor transport than the former. The widespread extreme precipitation on 13 June 2022 was triggered by the anomalous atmospheric circulation conditions. In the upper levels, South China was located at the northwestern periphery of the slightly stronger-than-normal Western Pacific Subtropical High, intersecting with the base of a deep trough associated with an anomalous intense Northeast China Cold Vortex (NCCV). At lower levels, the region was positioned along a shear line formed by anomalous southwesterly and northerly winds, where exceptionally strong southwesterly moisture transport, significant moisture convergence, and intense vertical updraft led to the widespread extreme rainfall event on that day. Full article
(This article belongs to the Special Issue Climate Change and Extreme Weather Disaster Risks (2nd Edition))
Show Figures

Figure 1

15 pages, 5879 KiB  
Article
The Mineralization Mechanism of the Axi Gold Deposit in West Tianshan, NW China: Insights from Fluid Inclusion and Multi-Isotope Analyses
by Fang Xia, Chuan Chen and Weidong Sun
Minerals 2025, 15(5), 536; https://doi.org/10.3390/min15050536 - 18 May 2025
Viewed by 495
Abstract
The Axi gold deposit, which is located in the Tulasu Basin of the West Tianshan orogenic belt in Northwest China, features vein-type ore bodies hosted in radial structural fractures formed due to volcanic activity. The deposit experienced three distinct mineralization stages: Stage I, [...] Read more.
The Axi gold deposit, which is located in the Tulasu Basin of the West Tianshan orogenic belt in Northwest China, features vein-type ore bodies hosted in radial structural fractures formed due to volcanic activity. The deposit experienced three distinct mineralization stages: Stage I, characterized by the microcrystalline quartz–pyrite crust; Stage II, characterized by quartz–sulfide–native gold veins; and Stage III, characterized by quartz–carbonate veins. Fluid inclusion studies have identified four types of inclusions: pure vapor, vapor-rich, liquid-rich, and pure liquid. The number of vapor-rich inclusions decreases when moving from Stage I to Stage III, whereas the number of liquid-rich inclusions increases. The fluid temperature gradually decreases from 178–225 °C in Stage I to 151–193 °C in Stage II and further to 123–161 °C in Stage III, whereas the fluid salinity decreases slightly from 2.1%–5.1% wt.% NaCl eqv to 1.4%–4.6% wt.% NaCl eqv and finally to 0.5%–3.7% wt.% NaCl eqv. As suggested by the results of the oxygen, hydrogen, and carbon isotope analyses, the ore-forming fluids were primarily meteoric water. Sulfur isotopic compositions indicate a single deep mantle source. The lead isotopic compositions closely resemble those of Dahalajunshan Formation volcanic rocks, indicating that these rocks were the primary source of the ore-forming material. In addition, gold mineralization formed in a Devonian–Early Carboniferous volcanic arc environment. Element enrichment was mainly caused by the circulation of heated meteoric water through the volcanic strata, while fluid boiling and water–rock interactions were the main mechanisms driving element precipitation. The integrated model developed in this study underscores the intricate interplay between volcanic processes and meteoric fluids during the formation of the Axi gold deposit, offering a robust framework for an understanding of the formation processes and enhancing the predictive exploration models in analogous geological settings. Full article
Show Figures

Figure 1

23 pages, 6860 KiB  
Article
Energy and Exergy Analysis of Modified Heat Pump for Simultaneous Production of Cooling and Water Desalination Using Diverse Refrigerants
by A. Pacheco-Reyes, J. C. Jimenez-Garcia, J. Delgado-Gonzaga and W. Rivera
Processes 2025, 13(5), 1510; https://doi.org/10.3390/pr13051510 - 14 May 2025
Viewed by 541
Abstract
More efficient energy conversion systems operating with clean energy sources or utilizing waste heat are crucial to minimizing the negative environmental impact associated with conventional systems. This study presents the energy and exergy analysis of a modified heat pump capable of producing cooling [...] Read more.
More efficient energy conversion systems operating with clean energy sources or utilizing waste heat are crucial to minimizing the negative environmental impact associated with conventional systems. This study presents the energy and exergy analysis of a modified heat pump capable of producing cooling and desalinated water using heat dissipated in the condenser. Six refrigerants were analyzed in the theoretical evaluation of the proposed system. These were selected based on their use in vapor compression systems and their thermodynamic properties. A parametric study considering operating temperatures and relative humidities determined that refrigerant R-123 achieved the greatest benefits in terms of the EER, the GOR, and ηExergy. In contrast, the highest benefits in water desalination were obtained with refrigerant R-410a. For operating conditions of TE = 0 °C, TC = 34 °C, and TCA = 14 °C, the system using refrigerant R-123 achieved an EER, GOR, ηExergy, DW, and IT of 0.82, 2.51, 0.35, 3.46 L/h, and 0.55 kW, respectively. Additionally, the dehumidifier and the evaporator were the components contributing the highest irreversibilities, accounting for approximately 24% and 19.3%, respectively. Full article
Show Figures

Figure 1

20 pages, 3285 KiB  
Communication
The Use of Copper Slag in the Thermolysis Process for Solar Hydrogen Production—A Novel Alternative for the Circular Economy
by Manuel Fuentes, Susana Leiva-Guajardo, Atul Sagade, Felipe Sepúlveda, Alvaro Soliz, Norman Toro, José Ángel Cobos Murcia, V. E. Reyes Cruz, Mario Toledo, Edward Fuentealba and Felipe M. Galleguillos Madrid
Appl. Sci. 2025, 15(9), 4988; https://doi.org/10.3390/app15094988 - 30 Apr 2025
Viewed by 901
Abstract
Copper slag, produced in pyrometallurgical processes, has the potential to generate hydrogen through thermolysis, depending on its composition. This manuscript explores the use of copper slag as a highly abundant and low-cost material for thermochemical water splitting using concentrated solar power. Copper slag [...] Read more.
Copper slag, produced in pyrometallurgical processes, has the potential to generate hydrogen through thermolysis, depending on its composition. This manuscript explores the use of copper slag as a highly abundant and low-cost material for thermochemical water splitting using concentrated solar power. Copper slag can undergo endothermic reactions with water vapor at high temperatures, conditions which are favorable for activating hydrogen evolution reactions which can be a potential resource for metal recovery such as magnetite and hematite in the circular economy. While research on copper slag and its components has primarily focused on the recovery of valuable metals and material reuse, its direct application in hydrogen production remains largely unexplored, partly due to historically low interest in hydrogen as an energy source. The vast deposits of copper slag in the Atacama Desert, combined with the growing demand for renewable energy, present a unique opportunity to develop sustainable and cost-effective hydrogen production technologies. Full article
Show Figures

Figure 1

Back to TopTop