Assessment of the PPP-AR Strategy for ZTD and IWV in Africa: A One-Year GNSS Study
Abstract
:1. Introduction
2. Datasets and Methods
2.1. GNSS ZTD Estimation and IWV Retrievals
2.2. Description of Dataset
2.3. Processing Strategy
- VMF1 with First-Order Ionospheric Correction: This approach utilizes the VMF1 for modeling tropospheric delays.
- VMF3 with First-Order Ionospheric Correction: This method improves tropospheric delay estimation by employing VMF3, which offers higher temporal (hourly) and spatial (1° × 1°) resolution compared to VMF1 [68].
- VMF3 with Higher-Order Ionospheric Correction (HIONO): This advanced approach integrates VMF3 and also second- and third-order ionospheric corrections, significantly enhancing accuracy, particularly in tropical regions with high ionospheric activity. The higher-order ionospheric correction was applied using Global Ionosphere Maps (GIMs) products. These GIMs provide estimates of the Total Electron Content (TEC), derived from observations collected by hundreds of permanent GNSS stations worldwide [69].
2.4. References Data and Processing for Assessment
- High-precision ZTD estimates obtained using GipsyX PPP-AR processing. Previous studies [12] have demonstrated that GipsyX provides reliable ZTD estimates.
- IGS ZTD products obtained from (https://cddis.nasa.gov/archive/gnss/products/troposphere/zpd/2022/, last access: 19 March 2025) with a resolution of 5 min.
- ZTDs computed from ERA5 reanalysis data by summing the ZHD and Zenith Wet ZWD. ZHD was adjusted to account for orthometric height differences, following the formulation proposed by [13].
- IWV from ERA5, available at an hourly resolution for all seven stations included in this study.
- IWV from RS 65578, located above 10 km from the ABJN station, used specifically for the validation of IWV estimates at this site. The launches are carried out at 12 h and 00 h UTC. The IWV_RS from RS is obtained by performing numerical integration of Equation (11), over altitude z using water vapor density provided in the radiosonde message.
3. Results and Discussions
3.1. Analysis and Assessment of the Quality of the Estimated ZTD
- The comparison between CSRS-PPP, NGL solutions, and PRIDE PPP-AR solutions showed very similar results with typical biases ranging from −3 to 2.5 mm, typical RMSE ranging from 2 to 6 mm, and correlation coefficient above 0.99 when GipsyX is used as reference (Figure 6). While IGN-PPP shows higher errors that might be due to the lack of ambiguity resolution and gradients estimations (Table 2). These results are slightly better than when compared to the IGS final products and ERA5.
- Our analysis reveals distinct bias characteristics across the reference datasets (see Figure 6). The six GNSS solutions demonstrate consistent bias distributions. GipsyX shows a range of −3.0 to +2.5 mm, while IGS products exhibit slightly tighter constraints of −2.5 to +1.5 mm. By contrast, ERA5 shows significantly greater variability (−6.0 to +6.0 mm), consistent with known characteristics of GNSS (point measurements) versus ERA5 (gridded model) estimation methods.
- The use of the GMF mapping model by IGN-PPP seems to limit its accuracy compared to other strategies using VMF1 or VMF3.
- Figure 7 shows that the spatial distribution of RMSE indicates homogeneous performance of PRIDE PPP-AR, regardless of the station, when using GipsyX or IGS as references. However, when the ERA5 reference is considered, the results become heterogeneous and highlight a potential latitudinal dependence. Stations in temperate and arid zones (mid-latitudes) show RMSEs between 8 mm and 11 mm; these are similar to the results of [77]. However, RMSEs increase as we approach the equator. In YKRO, MBAR, and MAYG (tropical zones), RMSE values are around 13–17 mm, which is similar to the results of [78]. Figure 6 shows that the station MBAR (equator) has the lowest correlation (R2 ≈ 0.80). This may be due to greater atmospheric variability in these regions, including more pronounced ionospheric effects and tropospheric gradients dynamics [79] but a denser dataset could confirm this better.
- The non-alignment of points from one reference to another (Figure 6) shows that the choice of reference data has a significant influence on the RMSE values of the ZTDs. ERA5 tends to give higher RMSE values for all solutions, probably due to its systematic errors [61,80] in tropical areas. These discrepancies may also stem from the inherent scale mismatch between point-scale GNSS measurements and ERA5’s gridded data (0.25° resolution), which could smooth local moisture gradients.
3.2. Analysis of IWV Derived from ZTD Estimates
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Linear Models for the Determination of the Weighted Mean Temperature of the Atmosphere
Reference | a | b | Model | Location |
---|---|---|---|---|
(Bevis., et al., 1992) [1] | 0.72 | 72 | Tm = 0.72 Ts + 70.2 | USA |
(Song & Boutiouta, 2012) [87] | 0.96 | 14.79 | Tm = 0.96 Ts + 14.79 | Algeria |
(Chen et al., 2017) [57] | 0.61 | 102.11 | Tm = 0.61 Ts + 102.11 | Guilin, China |
(Liou et al., 2001) [88] | 1.07 | −31.5 | Tm = 1.07 Ts − 31.5 | Taipei |
(Suresh Raju et al., 2007) [55] | 0.75 | 62.58 | Tm = 0.75 Ts + 62.58 | Indian |
(L. Li et al., 2017) [89] | 0.65 | 87.08 | Tm = 0.65 Ts + 87.08 | Hunan, China |
(Isioye et al., 2016) [56] | 0.57 | 116.60 | Tm = 0.57 Ts + 116.60 | West Africa |
(D. Song et al., 2007) [90] | 1.01 | −12.35 | Tm = 1.01 Ts − 12.35 | South Korea |
Appendix B. Stations and Height Conversions
Marker | Location | Country | Latitude (°) | Longitude (°) | Elevation (m) | Station |
---|---|---|---|---|---|---|
YKRO | Yamoussoukro | Ivory Coast | 6.871 | −5.24 | 270 | IGS |
CPVG | Espargos | Cabo Verde | 16.732 | −22.935 | 94.089 | IGS |
RABT | Rabat | Morocco | 33.998 | −6.854 | 90.1 | IGS |
ABJN | Abidjan | Ivory Coast | 5.330 | −3.983 | 63.525 | No IGS |
65578 | Abidjan | Ivory Coast | 5.25 | −3.93 | 8.00 MSL | RS |
SUTH | Sutherland | South Africa | −32.38 | 20.81 | 1799.766 | IGS |
MAYG | Dzaoudzi | Mayotte | −12.782 | 45.258 | −16.35 | IGS |
MBAR | Mbarara | Uganda | −0.601 | 30.738 | 1337.653 | IGS |
Appendix B.1. Ground-Based GNSS Height Conversion
Appendix B.2. IWV Reference Altitude Adjustment
References
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. Geophys. Monogr. Ser. 1972, 15. [Google Scholar]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- A Two-Stage Tropospheric Correction Model Combining Data from GNSS and Numerical Weather Model|GPS Solutions. Available online: https://link.springer.com/article/10.1007/s10291-018-0742-x (accessed on 23 March 2025).
- Bevis, M.; Businger, S.; Chiswell, S. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. Climatol. 1994, 33, 379–386. Available online: https://journals.ametsoc.org/view/journals/apme/33/3/1520-0450_1994_033_0379_gmmzwd_2_0_co_2.xml (accessed on 27 August 2024). [CrossRef]
- Jones, J. An Assessment of the Quality of GPS Water Vapour Estimates and Their Use in Operational Meteorology and Climate Monitoring. Ph.D. Thesis, Institute of Engineering Surveying and Space Geodesy IESSG, Nottingham, UK, 2010. [Google Scholar]
- Panetier, A. Shipborne Global Navigation Satellite Systems for Offshore Atmospheric Water Vapor Monitoring. Ph.D. Thesis, ENSTA Bretagne—École Nationale Supérieure de Techniques Avancées Bretagne, Brest, France, 2023. [Google Scholar]
- Benevides, P.; Catalao, J.; Miranda, P. On the Inclusion of GPS Precipitable Water Vapour in the Nowcasting of Rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.; Jefferson, D.C.; Watkins, M.; Webb, F. Precise Point Positioning for the Efficient And Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Alkan, R.; Erol, S.; Ozulu, I.M.; ilçi, V. Accuracy Comparison of Post-Processed PPP and Real-Time Absolute Positioning Techniques. Geomat. Nat. Hazards Risk 2020, 11, 178–190. [Google Scholar] [CrossRef]
- Dousa, J.; Vaclavovic, P.; Gyori, G.; Kostelecký, J. Development of Real-Time GNSS ZTD Products. Geophys. Res. Abstr. 2013, 15, 12698. [Google Scholar]
- Stępniak, K.; Bock, O.; Bosser, P.; Wielgosz, P. Outliers and Uncertainties in GNSS ZTD Estimates from Double-Difference Processing and Precise Point Positioning. GPS Solut. 2022, 26, 74. [Google Scholar] [CrossRef]
- Bosser, P.; Bock, O. IWV Retrieval from Ground GNSS Receivers during NAWDEX. Adv. Geosci. 2021, 55, 13–22. [Google Scholar] [CrossRef]
- Baldysz, Z.; Nykiel, G.; Latos, B.; Baranowski, D.B.; Figurski, M. Interannual Variability of the GNSS Precipitable Water Vapor in the Global Tropics. Atmosphere 2021, 12, 1698. [Google Scholar] [CrossRef]
- Ojegbile, B.M.; Okolie, C.J.; Omogunloye, O.J. The Dynamics of ERA5 and GNSS-Derived Precipitable Water Vapour in the Climatic Zones of Nigeria. Nig. J. Environ. Sci. Tech. 2023, 7, 372–394. Available online: https://mycoordinates.org/the-dynamics-of-era5-and-gnss-derived-precipitable-water-vapour-in-the-climatic-zones-of-nigeria/ (accessed on 23 March 2025).
- Bock, O.; Bosser, P.; Flamant, C.; Doerflinger, E.; Jansen, F.; Fages, R.; Bony, S.; Schnitt, S. Integrated Water Vapour Observations in the Caribbean Arc from a Network of Ground-Based GNSS Receivers during EUREC4A. Earth Syst. Sci. Data 2021, 13, 2407–2436. [Google Scholar] [CrossRef]
- Bezcioğlu, M.; Ucar, T.; Yiğit, C.Ö. Investigation of the Capability of Multi-GNSS PPP-AR Method in Detecting Permanent Displacements. Int. J. Eng. Geosci. 2023, 8, 251–261. [Google Scholar] [CrossRef]
- Geng, J.; Xingyu, C.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An Open-Source Software for GPS PPP Ambiguity Resolution. GPS Solut. 2019, 23. [Google Scholar] [CrossRef]
- Katsigianni, G.; Perosanz, F.; Loyer, S.; Gupta, M. Galileo Millimeter-Level Kinematic Precise Point Positioning with Ambiguity Resolution. Earth Planets Space 2019, 71, 76. [Google Scholar] [CrossRef]
- Banville, S.; Geng, J.; Loyer, S.; Schaer, S.; Springer, T.; Strasser, S. On the Interoperability of IGS Products for Precise Point Positioning with Ambiguity Resolution. J. Geod. 2020, 94, 10. [Google Scholar] [CrossRef]
- Bertiger, W.; Bar-Sever, Y.; Dorsey, A.; Haines, B.; Harvey, N.; Hemberger, D.; Heflin, M.; Lu, W.; Miller, M.; Moore, A.W.; et al. GipsyX/RTGx, a New Tool Set for Space Geodetic Operations and Research. Adv. Space Res. 2020, 66, 469–489. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, A.; Ni, S.; Xiao, G.; Xu, H. PPP-ARISEN: An Open-Source Precise Point Positioning Software with Ambiguity Resolution for Interdisciplinary Research of Seismology, Geodesy and Geodynamics. GPS Solut. 2022, 27, 45. [Google Scholar] [CrossRef]
- Marty, J.C.; Loyer, S.; Perosanz, F.; Mercier, F.; Bracher, G.; Legresy, B.; Portier, L.; Capdeville, H.; Fund, F.; Lemoine, J.M.; et al. GINS: The CNES/GRGS GNSS Scientific Software. Available online: https://ids-doris.org/images/documents/report/publications/GINS_GRGS_software-Marty-2011.pdf (accessed on 23 March 2025).
- Banville, S.; Donahue, B.; Farinaccio, J.; Hassen, E.; Lamothe, P. Updates to the CSRS-PPP Online Service. 2018. Available online: https://ostrnrcan-dostrncan.canada.ca/entities/publication/2fd0eaf8-c1bc-455f-a357-f5c7e938c58c (accessed on 21 March 2025).
- Calculs GNSS PPP En Ligne|RGP. Available online: https://rgp.ign.fr/SERVICES/ppp_online.php (accessed on 24 March 2025).
- Automatic Precise Positioning Service (APPS)—NASA Jet Propulsion Laboratory (JPL), GDGPS. Available online: https://pppx.gdgps.net/ (accessed on 29 March 2025).
- The PPP-Wizard Project—Positioning Service. Available online: http://www.ppp-wizard.net/upload.html (accessed on 29 March 2025).
- Du, S.; Shu, B.; Xie, W.; Huang, G.; Ge, Y.; Li, P. Evaluation of Real-Time Precise Point Positioning with Ambiguity Resolution Based on Multi-GNSS OSB Products from CNES. Remote Sens. 2022, 14, 4970. [Google Scholar] [CrossRef]
- Yao, Y.; Peng, W.; Xu, C.; Cheng, S. Enhancing Real-Time Precise Point Positioning with Zenith Troposphere Delay Products and the Determination of Corresponding Tropospheric Stochastic Models. Geophys. J. Int. 2017, 208, 1217–1230. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.; Li, Z. Real-Time Precise Point Positioning-Based Zenith Tropospheric Delay for Precipitation Forecasting. Sci. Rep. 2018, 8, 7939. [Google Scholar] [CrossRef] [PubMed]
- Bosser, P.; Van Baelen, J.; Bousquet, O. Routine Measurement of Water Vapour Using GNSS in the Framework of the Map-Io Project. Atmosphere 2022, 13, 903. [Google Scholar] [CrossRef]
- Abd El- Naeim, A.E.; Elhatab, A.; Azzam, M.; Mosaad, R.; Elsharkawy, A. Assessment of GNSS Positioning Techniques In EGYPT. Port-Said Eng. Res. J. 2023, 28, 31–38. [Google Scholar] [CrossRef]
- Guo, Q. Precision Comparison and Analysis of Four Online Free PPP Services in Static Positioning and Tropospheric Delay Estimation. GPS Solut. 2015, 19, 537–544. [Google Scholar] [CrossRef]
- Vázquez-Ontiveros, J.R.; Padilla-Velazco, J.; Gaxiola-Camacho, J.R.; Vázquez-Becerra, G.E. Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode. Remote Sens. 2023, 15, 2034. [Google Scholar] [CrossRef]
- Tine, M.G.; Bosser, P.; Ndiaye, M. Tropospheric Water Vapor Retrievals by Ground-Based GNSS in Africa: A Systematic Review. Rep. Geod. Geoinform. 2025, 119, 71–84. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; Whiteman, D.N.; Smirnov, A.; Lyamani, H.; Holben, B.N.; Pinker, R.; Andrade, M.; Alados-Arboledas, L. Evaluation of AERONET Precipitable Water Vapor versus Microwave Radiometry, GPS, and Radiosondes at ARM Sites. J. Geophys. Res. Atmos. 2014, 119, 9596–9613. [Google Scholar] [CrossRef]
- Ramella Pralungo, L.; Haimberger, L.; Stickler, A.; Brönnimann, S. A Global Radiosonde and Tracked Balloon Archive on 16 Pressure Levels (GRASP) Back to 1905 – Part 1: Merging and Interpolation to 00:00 and 12:00 GMT. Earth Syst. Sci. Data 2014, 6, 185–200. [Google Scholar] [CrossRef]
- van der Linden, R.; Knippertz, P.; Fink, A.H.; Ingleby, B.; Maranan, M.; Benedetti, A. The Influence of DACCIWA Radiosonde Data on the Quality of ECMWF Analyses and Forecasts over Southern West Africa. Q. J. R. Meteorol. Soc. 2020, 146, 1719–1739. [Google Scholar] [CrossRef]
- Dirksen, R.J.; Sommer, M.; Immler, F.J.; Hurst, D.F.; Kivi, R.; Vömel, H. Reference Quality Upper-Air Measurements: GRUAN Data Processing for the Vaisala RS92 Radiosonde. Atmos. Meas. Tech. 2014, 7, 4463–4490. [Google Scholar] [CrossRef]
- Ding, T.; Awange, J.L.; Scherllin-Pirscher, B.; Kuhn, M.; Khandu; Anyah, R.; Zerihun, A.; Bui, L.K. GNSS Radio Occultation Infilling of the African Radiosonde Data Gaps Reveals Drivers of Tropopause Climate Variability. J. Geophys. Res. Atmos. 2022, 127, e2022JD036648. [Google Scholar] [CrossRef]
- Suya, R.G. Advancing High-Resolution Weather Prediction Through Machine Learning and GNSS Techniques. In Proceedings of the Safe, Secure, Ethical, Responsible Technologies and Emerging Applications; Tchakounte, F., Atemkeng, M., Rajagopalan, R.P., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 175–189. [Google Scholar]
- Hdidou, F.Z.; Mordane, S.; Moll, P.; Mahfouf, J.-F.; Erraji, H.; Dahmane, Z. Impact of the Variational Assimilation of Ground-Based GNSS Zenith Total Delay into AROME-Morocco Model. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–13. [Google Scholar] [CrossRef]
- El Ouardi, M. Quantification de La Vapeur d’eau Au MAROC à Travers Les Observations GPS Au Sol. Ph.D. Thesis, Hassan II University, Casablanca, Morocco, 2023. [Google Scholar]
- Drissi El Bouzaidi, R.; El Talibi, H.; El Moussaoui, S.; Mourabit, T. Estimating Atmospheric Precipitable Water Vapor in Northern Morocco: A Ground-Based GNSS Approach. Sci. Afr. 2025, 28, e02681. [Google Scholar] [CrossRef]
- Mendez Astudillo, J.; Lau, L.; Tang, Y.-T.; Moore, T. Analysing the Zenith Tropospheric Delay Estimates in On-Line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors 2018, 18, 580. [Google Scholar] [CrossRef]
- Performance Assessment of PPP-AR Positioning and Zenith. Available online: https://sciendo.com/fr/article/10.2478/arsa-2021-0003 (accessed on 23 March 2025).
- Hay, C.; Wong, J. Enhancing GPS Tropospheric Delay Prediction at Master Control Station. GPS World 2000, 11, 56–62. [Google Scholar]
- Path Delays in the Neutral Atmosphere|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-642-36932-2_3 (accessed on 23 March 2025).
- Smith, E.K.; Weintraub, S. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef]
- Boudouris, G. On the Index of Refraction of Air, the Absorption and Dispersion of Centimeterwaves by Gases. J. Res. Natl. Bur. Stan. Sect. D Rad. Prop. 1963, 67, 631. [Google Scholar] [CrossRef]
- Thayer, G.D. An Improved Equation for the Radio Refractive Index of Air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Rüeger, J.M. Refractive Index Formulae for Radio Waves. 2022. Available online: https://www.fig.net/resources/proceedings/fig_proceedings/fig_2002/Js28/JS28_rueger.pdf (accessed on 23 March 2025).
- Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate: COST Action ES1206 Final Action Dissemination Report; Jones, J., Guerova, G., Douša, J., Dick, G., De Haan, S., Pottiaux, E., Bock, O., Pacione, R., Van Malderen, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-13900-1. [Google Scholar]
- Hogg, D.C.; Guiraud, F.O.; Decker, M.T. Measurement of Excess Radio Transmission Length on Earth-Space Paths. Astron. Astrophys. 1981, 95, 304–307. [Google Scholar]
- Suresh Raju, C.; Saha, K.; Thampi, B.V.; Parameswaran, K. Empirical Model for Mean Temperature for Indian Zone and Estimation of Precipitable Water Vapor from Ground Based GPS Measurements. Ann. Geophys. 2007, 25, 1935–1948. [Google Scholar] [CrossRef]
- Isioye, O.A.; Combrinck, L.; Botai, J. Modelling Weighted Mean Temperature in the West African Region: Implications for GNSS Meteorology: Weighted Mean Temperature in the West African Region. Met. App. 2016, 23, 614–632. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Liu, L.; Luo, G.; Mo, X. Model Establishment and Analysis of Weighted Mean Temperature in the Region of Guilin. In Proceedings of the China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume I; Sun, J., Liu, J., Yang, Y., Fan, S., Yu, W., Eds.; Springer: Singapore, 2017; pp. 199–207. [Google Scholar]
- Ayodele, E.; Okolie, C.J.; Ezeigbo, C.U.; Fajemirokun, F.A. Evaluating the Stability and Adequacy of NIGNET for the Definition of Nigerian Geodetic Reference Frame. Niger. J. Technol. Dev. 2020, 17, 1–12. [Google Scholar] [CrossRef]
- Koome, D.; Ogaja, C.; Rubino, E. Developing Africa One CORS at a Time. 2019. Available online: https://fig.net/resources/proceedings/fig_proceedings/fig2019/papers/fig03/FIG03_koome_ogaja_et_al_10022_abs.pdf (accessed on 25 March 2025).
- Basha, G.; Kishore, P.; Venkat Ratnam, M.; Ouarda, T.B.M.J.; Velicogna, I.; Sutterley, T. Vertical and Latitudinal Variation of the Intertropical Convergence Zone Derived Using GPS Radio Occultation Measurements. Remote Sens. Environ. 2015, 163, 262–269. [Google Scholar] [CrossRef]
- Johnston, B.R.; Randel, W.J.; Sjoberg, J.P. Evaluation of Tropospheric Moisture Characteristics Among COSMIC-2, ERA5 and MERRA-2 in the Tropics and Subtropics. Remote Sens. 2021, 13, 880. [Google Scholar] [CrossRef]
- Wang, R.; Wu, G.; Liu, Y.; Wang, R.; Fan, X.; Liu, Y. Significant Increase in African Water Vapor over 2001–2020. Remote Sens. 2024, 16, 2875. [Google Scholar] [CrossRef]
- Hopfield, H.S. Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A Neutral Atmosphere Delay Package for Radiometric Space Techniques. GPS Solut. 2008, 12, 65–70. [Google Scholar] [CrossRef]
- Boehm, J.; Heinkelmann, R.; Schuh, H. Short Note: A Global Model of Pressure and Temperature for Geodetic Applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical Slant Delay Model for Radio Space Geodetic Techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Li, F.; Yan, J.; Zhang, F.; Barriot, J.-P. Assessment of the Accuracy of the Saastamoinen Model and VMF1/VMF3 Mapping Functions with Respect to Ray-Tracing from Radiosonde Data in the Framework of GNSS Meteorology. Remote Sens. 2020, 12, 3337. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J. New Approaches in Global Ionospheric Determination Using Ground GPS Data. J. Atmos. Sol.-Terr. Phys. 1999, 61, 1237–1247. [Google Scholar] [CrossRef]
- Positionnement Ponctuel Précis. Available online: https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php (accessed on 24 March 2025).
- Index of /Gps_timeseries/Trop. Available online: https://geodesy.unr.edu/gps_timeseries/trop/ (accessed on 24 March 2025).
- Bock, O. GNSS: Géodésie, Météorologie et Climat. Habilitation Thesis, Université Pierre et Marie Curie—Paris VI, Paris, France, 2012. Available online: https://theses.hal.science/tel-00851617v1 (accessed on 27 May 2025).
- Parracho, A.C.; Bock, O.; Bastin, S. Global IWV Trends and Variability in Atmospheric Reanalyses and GPS Observations. Atmos. Chem. Phys. 2018, 18, 16213–16237. [Google Scholar] [CrossRef]
- Elsobeiey, M.; El-Diasty, M. Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning. Int. J. Geosci. 2016, 7, 645–654. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Li, Z.; Heinkelmann, R.; Nilsson, T.; Dick, G.; Ge, M.; Schuh, H. GNSS Tropospheric Gradients with High Temporal Resolution and Their Effect on Precise Positioning. J. Geophys. Res. Atmos. 2016, 121, 912–930. [Google Scholar] [CrossRef]
- Zus, F.; Douša, J.; Kačmařík, M.; Václavovic, P.; Balidakis, K.; Dick, G.; Wickert, J. Improving GNSS Zenith Wet Delay Interpolation by Utilizing Tropospheric Gradients: Experiments with a Dense Station Network in Central Europe in the Warm Season. Remote Sens. 2019, 11, 674. [Google Scholar] [CrossRef]
- Ssenyunzi, R.C.; Andima, G.; Amabayo, E.B.; Kiroe, A.J. Assessment of ERA5 Derived Zenith Tropospheric Delay Data over East African Region. Adv. Space Res. 2024, 74, 695–710. [Google Scholar] [CrossRef]
- A Novel Method for Monitoring Tropical Cyclones’ Movement Using GNSS Zenith Tropospheric Delay. Available online: https://www.mdpi.com/2072-4292/15/13/3247 (accessed on 29 May 2025).
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-Derived PWV for Rainfall Nowcasting in Tropical Region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Ssenyunzi, R.C.; Oruru, B.; D’ujanga, F.M.; Realini, E.; Barindelli, S.; Tagliaferro, G.; von Engeln, A.; van de Giesen, N. Performance of ERA5 Data in Retrieving Precipitable Water Vapour over East African Tropical Region. Adv. Space Res. 2020, 65, 1877–1893. [Google Scholar] [CrossRef]
- Bock, O.; Bouin, M.N.; Doerflinger, E.; Collard, P.; Masson, F.; Meynadier, R.; Nahmani, S.; Koité, M.; Gaptia Lawan Balawan, K.; Didé, F.; et al. West African Monsoon Observed with Ground-Based GPS Receivers during African Monsoon Multidisciplinary Analysis (AMMA). J. Geophys. Res. Atmos. 2008, 113, D21105. [Google Scholar] [CrossRef]
- Koji, A.K.; Van Malderen, R.; Pottiaux, E.; Van Schaeybroeck, B. Understanding the Present-Day Spatiotemporal Variability of Precipitable Water Vapor over Ethiopia: A Comparative Study between ERA5 and GPS. Remote Sens. 2022, 14, 686. [Google Scholar] [CrossRef]
- Osah, S.; Acheampong, A.A.; Fosu, C.; Abukari, O.M.; Asiedu, S.B. Ground-Based GNSS for Meteorological Applications in Ghana 2024. Available online: https://www.fig.net/resources/proceedings/fig_proceedings/fig2024/papers/ts05f/TS05F_osah_acheampong_et_al_12701_abs.pdf (accessed on 25 May 2025).
- ELDIN, M. Le Climat de La CÔte d’Ivoire. In Le Milieu Naturel de Côte d’Ivoire; Mémoire ORSTOM: Paris, France, 1971. [Google Scholar]
- Bosser, P.; Bock, O.; Flamant, C.; Bony, S.; Sabrina, S. Integrated Water Vapour Content Retrievals from Ship-Borne GNSS Receivers during EUREC4A. Earth Syst. Sci. Data 2021, 13, 1499–1517. [Google Scholar] [CrossRef]
- Boniface, K.; Champollion, C.; Chery, J.; Ducrocq, V.; Rocken, C.; Doerflinger, E.; Collard, P. Potential of Shipborne GPS Atmospheric Delay Data for Prediction of Mediterranean Intense Weather Events. Atmos. Sci. Lett. 2012, 13, 250–256. [Google Scholar] [CrossRef]
- Song, D.-S.; Boutiouta, S. Determination of Algerian Weighted Mean Temperature Model for Forthcoming GNSS Meteorology Application in Algeria. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2012, 30, 615–622. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Teng, Y.-T.; Hove, T.V.; Liljegren, J.C. Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes. Meteorol. Climatol. 2001, 40, 5–15. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Wang, X.; Tian, Y.; He, C.; Zhang, K. Seasonal Multifactor Modelling of Weighted-Mean Temperature for Ground-Based GNSS Meteorology in Hunan, China. Adv. Meteorol. 2017, 2017, 3782687. [Google Scholar] [CrossRef]
- Song, D.-S.; Grejner-Brzezinska, D.A. Remote Sensing of Atmospheric Water Vapor Variation from GPS Measurements during a Severe Weather Event. Earth Planets Space 2009, 61, 1117–1125. [Google Scholar] [CrossRef]
Reference | () | () | () |
---|---|---|---|
Smith and Weintraub (1953) [49] | 77.607 ± 0.013 | 71.60 ± 8.50 | 3.747 ± 0.031 |
Boudouris (1963) [50] | 77.59607 ± 0.08 | 72 ± 9 | 3.75 ± 0.03 |
Thayer (1974) [51] | 77.604 ± 0.014 | 64.79 ± 0.08 | 3.776 ± 0.004 |
Bevis et al. (1994) [5] | 77.600 ± 0.050 | 70.40 ± 2.20 | 3.739 ± 0.012 |
Rueger (2002) [52] | 77.689 ± 0.018 | 71.2952 ± 0.15 | 3.75463 ± 0.015 |
Bock (2021) [16] | 77.6452 ± 0.0094 | 71.2 ± 1.3 | 3.752 ± 0.0076 |
Parameter | PPP-AR VMF1 1er Order Iono | PPP-AR VMF3 1er Order Iono | PPP-AR VMF3 H-Iono | CSRS-PPP | IGN PPP | NGL | GipsyX |
---|---|---|---|---|---|---|---|
Developer | WHU | WHU | WHU | NRCan | IGN | NGL | JPL |
Version | 3.0.5 | 3.0.5 | 3.0.5 | 4.15.0 | 2.3 | GipsyX 1.0 | GipsyX 2.2 |
Positioning Approach | PPP-AR Static | PPP-AR Static | PPP-AR Static | PPP-AR Static | PPP Static | PPP-AR Static | PPP-AR Static |
Mapping Function | VMF1 | VMF3 | VMF3 | VMF1 | GMF | VMF1 | VMF1 |
Ambiguity fixing | Yes | Yes | Yes | Yes | No | No | yes |
Precise satellite products | WHU | WHU | WHU | IGS + NRCan | IGS | JPL | JPL |
Sampling rate | 300 s | 300 s | 300 s | 30 s | 30 s | 300 s | 300 s |
AR Products | Wuhan | Wuhan | Wuhan | CNES | No | JPL | JPL |
Dry component (Tropo) | Model | Model | Model | Model | Model | Model | Model |
Wet component (Tropo) | Estimated | Estimated | Estimated | Estimated | Estimated | Estimated | Estimated |
Gradients (Tropo) | Estimated | Estimated | Estimated | Estimated | No | Estimated | Estimated |
Elevation Mask | 7.00° | 7.00° | 7.00° | 7.50° | 7.00° | 7.00° | 7.00° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tine, M.G.; Bosser, P.; Faye, N.; Jean-Louis, L.; Ndiaye, M. Assessment of the PPP-AR Strategy for ZTD and IWV in Africa: A One-Year GNSS Study. Atmosphere 2025, 16, 741. https://doi.org/10.3390/atmos16060741
Tine MG, Bosser P, Faye N, Jean-Louis L, Ndiaye M. Assessment of the PPP-AR Strategy for ZTD and IWV in Africa: A One-Year GNSS Study. Atmosphere. 2025; 16(6):741. https://doi.org/10.3390/atmos16060741
Chicago/Turabian StyleTine, Moustapha Gning, Pierre Bosser, Ngor Faye, Lila Jean-Louis, and Mapathé Ndiaye. 2025. "Assessment of the PPP-AR Strategy for ZTD and IWV in Africa: A One-Year GNSS Study" Atmosphere 16, no. 6: 741. https://doi.org/10.3390/atmos16060741
APA StyleTine, M. G., Bosser, P., Faye, N., Jean-Louis, L., & Ndiaye, M. (2025). Assessment of the PPP-AR Strategy for ZTD and IWV in Africa: A One-Year GNSS Study. Atmosphere, 16(6), 741. https://doi.org/10.3390/atmos16060741