Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (834)

Search Parameters:
Keywords = water vapor content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 (registering DOI) - 1 Aug 2025
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

20 pages, 2047 KiB  
Article
Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid
by Gustavo Cabrera-Barjas, Maricruz González, Sergio Benavides-Valenzuela, Ximena Preza, Yeni A. Paredes-Padilla, Patricia Castaño-Rivera, Rodrigo Segura, Esteban F. Duran-Lara and Aleksandra Nesic
Polymers 2025, 17(15), 2113; https://doi.org/10.3390/polym17152113 - 31 Jul 2025
Abstract
In recent years, active packaging has become a focal point of research and development in the food industry, driven by increasing consumer demand for safe, high-quality, and sustainable food products. In this work, solvent casting processed an active antibacterial multicomponent film based on [...] Read more.
In recent years, active packaging has become a focal point of research and development in the food industry, driven by increasing consumer demand for safe, high-quality, and sustainable food products. In this work, solvent casting processed an active antibacterial multicomponent film based on hydroxypropyl methylcellulose incorporated with ferulic acid and chitin nanofibers. The influences of ferulic acid and different content of chitin nanofibers on the structure, thermal, mechanical, and water vapor stability and antioxidant and antibacterial efficiency of films were studied. It was shown that the inclusion of only ferulic acid did not significantly influence the mechanical, water vapor, and thermal stability of films. In addition, films containing only ferulic acid did not display antibacterial activity. The optimal concentration of chitin nanofibers in hydroxypropyl methylcellulose–ferulic acid films was 5 wt%, providing a tensile strength of 15 MPa, plasticity of 52%, and water vapor permeability of 0.94 × 10−9 g/m s Pa. With further increase of chitin nanofibers content, films with layered and discontinuous phases are obtained, which negatively influence tensile strength and water vapor permeability. Moreover, only films containing both ferulic acid and chitin nanofibers demonstrated antibacterial activity toward E. coli and S. aureus, suggesting that the presence of fibers allows easier release of ferulic acid from the matrix. These results imply that the investigated three-component systems have potential applicability as sustainable active food packaging materials. Full article
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 165
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 3632 KiB  
Article
Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
by Joshua Boateng and Sana Khan
Gels 2025, 11(7), 557; https://doi.org/10.3390/gels11070557 - 19 Jul 2025
Viewed by 714
Abstract
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as [...] Read more.
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as the bioactive ingredients and their functional characteristics evaluated and compared. The formulated solvent cast films were functionally characterized for tensile, mucoadhesion and moisture handling properties. The morphology and physical characteristics of the films were also analyzed using FTIR, X-ray diffraction and scanning electron microscopy. Antibacterial susceptibility testing was performed to study the inhibition of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by honey components released from the films. The % elongation values (8.42–40.47%) increased, elastic modulus (30.74–0.62 Nmm) decreased, the stickiness (mucoadhesion) (0.9–1.9 N) increased, equilibrium water content (32.9–72.0%) and water vapor transmission rate (900–298 gm2 day−1) generally decreased, while zones of inhibition (2.4–6.5 mm) increased with increasing honey concentration for 1 and 5% w/v, respectively. The results generally showed similar performance for the different honeys and demonstrate the efficacy of honey-loaded hydrocolloid films as potential wound dressing against bacterial growth and potential treatment of infected chronic wounds. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

20 pages, 2421 KiB  
Article
Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial
by Md. Raihanul Islam, Hasan Muhammad Abdullah, Md Farhadur Rahman, Mahfuzul Islam, Abdul Kaium Tuhin, Md Ashiquzzaman, Kh Shakibul Islam and Daniel Geisseler
Drones 2025, 9(7), 487; https://doi.org/10.3390/drones9070487 - 10 Jul 2025
Viewed by 405
Abstract
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which [...] Read more.
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which is considered as promising crop in Bangladesh. Seaweed extract (SWE) has the potential to improve crop yield and alleviate the adverse effects of water-deficit stress. Remote and proximal sensing are also extensively utilized in estimating morpho-physiological traits owing to their cost-efficiency and non-destructive characteristics. The study was carried out to evaluate soybean morpho-physiological traits under the application of water extracts of Gracilaria tenuistipitata var. liui (red seaweed) with two varying irrigation water conditions (100% of total crop water requirement (TCWR) and 70% of TCWR). Principal component analysis (PCA) revealed that among the four treatments, the 70% irrigation + 5% (v/v) SWE and the 100% irrigation treatments overlapped, indicating that the application of SWE effectively mitigated water-deficit stress in soybeans. This result demonstrates that the foliar application of 5% SWE enabled soybeans to achieve morpho-physiological performance comparable to that of fully irrigated plants while reducing irrigation water use by 30%. Based on Pearson’s correlation matrix, a simple linear regression model was used to ascertain the relationship between unmanned aerial vehicle (UAV)-derived vegetation indices and the field-measured physiological characteristics of soybean. The Normalized Difference Red Edge (NDRE) strongly correlated with stomatal conductance (R2 = 0.76), photosystem II efficiency (R2 = 0.78), maximum fluorescence (R2 = 0.64), and apparent transpiration rate (R2 = 0.69). The Soil Adjusted Vegetation Index (SAVI) had the highest correlation with leaf relative water content (R2 = 0.87), the Blue Normalized Difference Vegetation Index (bNDVI) with steady-state fluorescence (R2 = 0.56) and vapor pressure deficit (R2 = 0.74), and the Green Normalized Difference Vegetation Index (gNDVI) with chlorophyll content (R2 = 0.73). Our results demonstrate how UAV and physiological data can be integrated to improve precision soybean farming and support sustainable soybean production under water-deficit stress. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Graphical abstract

12 pages, 4866 KiB  
Technical Note
An Elevation-Coupled Multivariate Regression Model for GNSS-Based FY-4A Precipitable Water Vapor
by Yaping Gao, Jing Lin, Junqiang Han, Tong Luo, Min Zhou and Zhen Jiang
Remote Sens. 2025, 17(14), 2371; https://doi.org/10.3390/rs17142371 - 10 Jul 2025
Viewed by 266
Abstract
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine [...] Read more.
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine the water vapor content based on FY-4A satellite remote sensing data, thereby improving its accuracy. Taking Hong Kong as an experimental area, we investigated the correlation between GNSS PWV and FY-4A PWV, confirming the feasibility of utilizing GNSS PWV to calibrate FY-4A PWV. Subsequently, by examining the differences between the two PWV values, we found that the elevation of the stations affects the consistency of PWV measurement. Based on this finding, the elevation data are introduced to construct a multivariate linear regression correction model with a first-order polynomial. To evaluate the performance of the proposed model, a comparison with other correction models is made, including second-order polynomials and power functions. The results indicate that the elevation-integrated water vapor correction model improves the root mean square error (RMSE) by 27.4% and the MAE by 26.7%, and reduces the bias from 0.592 to nearly 0. Its accuracy surpasses that of second-order polynomial and power function models, demonstrating a considerable improvement in the precision of FY-4A. Full article
Show Figures

Graphical abstract

15 pages, 1871 KiB  
Article
A Gelatin-Based Film with Acerola Pulp: Production, Characterization, and Application in the Stability of Meat Products
by Vitor Augusto dos Santos Garcia, Giovana de Menezes Rodrigues, Victória Munhoz Monteiro, Rosemary Aparecida de Carvalho, Camila da Silva, Cristiana Maria Pedroso Yoshida, Silvia Maria Martelli, José Ignacio Velasco and Farayde Matta Fakhouri
Polymers 2025, 17(13), 1882; https://doi.org/10.3390/polym17131882 - 6 Jul 2025
Viewed by 463
Abstract
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using [...] Read more.
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using gelatin (5%), sorbitol (0,1%), and acerola pulp (60, 70, 80, and 90%). The characterization of the acerola pulp was carried out. Visual aspects, thickness, pH, water vapor permeability, and total phenolic compounds were characterized in the films. The commercial acerola pulp presented the characteristics within the identity and quality standards. A good film formation capacity was obtained in all formulations, presenting the color parameters tending to red coloration, characteristic of the acerola pulp. The total phenolic compounds content ranged from 2.88 ± 70.24 to 3.94 ± 96.05 mg GAE/100 g, with 90 g of acerola pulp per 100 g of filmogenic solution. This film formulation was selected to apply in a vacuum pack of beef and chicken samples, analyzing the weight loss, color parameters, pH, water holding capacity, shear strength after 9 days of refrigeration storage, and soil biodegradability. Additionally, beef and chicken (in nature) were stored under the same conditions without using the wrapping film. The beef and chicken samples showed greater water retention capacity and color maintenance over the storage period compared to the control (without film addition). This way, active gelatin–acerola films can be considered a sustainable packaging alternative to preserve meat products. Full article
Show Figures

Figure 1

16 pages, 1367 KiB  
Article
Enhancing Hydrophobicity of Nanocellulose-Based Films by Coating with Natural Wax from Halimium viscosum
by Ana Ramos, Jesus M. Rodilla, Rodrigo Ferreira and Ângelo Luís
Appl. Sci. 2025, 15(13), 7576; https://doi.org/10.3390/app15137576 - 6 Jul 2025
Viewed by 331
Abstract
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial [...] Read more.
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial part of the Halimium viscosum plant. The chromatogram resulting from the chemical analysis of the extract revealed the presence of 15 compounds, with nonacosane being the major compound present. For film production, two different chemical pulps gels (sulfite and sulfate) were first characterized in terms of solids content, rheology and Fourier transform infrared spectroscopy (FTIR). The CNF films were produced by the solvent casting method, coated on one side with the extracted wax and subsequently characterized by wettability, surface energy, differential scanning calorimetry (DSC), FTIR, structural properties and water vapor permeability. The results showed that the wax-coated films exhibited a significant increase in water resistance, with a water contact angle exceeding 100°, demonstrating improved hydrophobicity. Also, the water vapor transmission rate (WVTR) of the films was drastically reduced after wax coating. Furthermore, the coated films maintained good transparency, making them a viable alternative to synthetic plastic. This study highlights the potential of natural wax coatings to improve the moisture barrier properties of biodegradable CNF films, promoting their application in sustainable packaging solutions. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Technical Note
Precipitable Water Vapor Retrieval Based on GNSS Data and Its Application in Extreme Rainfall
by Tian Xian, Ke Su, Jushuo Zhang, Huaquan Hu and Haipeng Wang
Remote Sens. 2025, 17(13), 2301; https://doi.org/10.3390/rs17132301 - 4 Jul 2025
Viewed by 369
Abstract
Water vapor plays a crucial role in maintaining global energy balance and water cycle, and it is closely linked to various meteorological disasters. Precipitable water vapor (PWV), as an indicator of variations in atmospheric water vapor content, has become a key parameter for [...] Read more.
Water vapor plays a crucial role in maintaining global energy balance and water cycle, and it is closely linked to various meteorological disasters. Precipitable water vapor (PWV), as an indicator of variations in atmospheric water vapor content, has become a key parameter for meteorological and climate monitoring. However, due to limitations in observation costs and technology, traditional atmospheric monitoring techniques often struggle to accurately capture the distribution and variations in space–time water vapor. With the continuous advancement of Global Navigation Satellite System (GNSS) technology, ground-based GNSS monitoring technology has shown rapid development momentum in the field of meteorology and is considered an emerging monitoring tool with great potential. Hence, based on the GNSS observation data from July 2023, this study retrieves PWV using the Global Pressure and Temperature 3 (GPT3) model and evaluates its application performance in the “7·31” extremely torrential rain event in Beijing in 2023. Research has found the following: (1) Tropospheric parameters, including the PWV, zenith tropospheric delay (ZTD), and zenith wet delay (ZWD), exhibit high consistency and are significantly affected by weather conditions, particularly exhibiting an increasing-then-decreasing trend during rainfall events. (2) Through comparisons with the PWV values through the integration based on fifth-generation European Centre for Medium-Range Weather Forecasts (ERA-5) reanalysis data, it was found that results obtained using the GPT3 model exhibit high accuracy, with GNSS PWV achieving a standard deviation (STD) of 0.795 mm and a root mean square error (RMSE) of 3.886 mm. (3) During the rainfall period, GNSS PWV remains at a high level (>50 mm), and a strong correlation exists between GNSS PWV and peak hourly precipitation. Furthermore, PWV demonstrates the highest relative contribution in predicting extreme precipitation, highlighting its potential value for monitoring and predicting rainfall events. Full article
Show Figures

Figure 1

19 pages, 1513 KiB  
Article
Effect of Humidity on the Energy and CO2 Separation Characteristics of Membranes in Direct Air Capture Technology
by Kamil Niesporek, Grzegorz Wiciak, Janusz Kotowicz and Oliwia Baszczeńska
Energies 2025, 18(13), 3422; https://doi.org/10.3390/en18133422 - 29 Jun 2025
Viewed by 436
Abstract
Membrane-based direct air capture of CO2 (m-DAC) is a promising solution for atmospheric decarbonization. Despite growing interest, the impact of relative air humidity on the performance of m-DAC systems is often neglected in the literature. This study presents detailed parametric analyses that [...] Read more.
Membrane-based direct air capture of CO2 (m-DAC) is a promising solution for atmospheric decarbonization. Despite growing interest, the impact of relative air humidity on the performance of m-DAC systems is often neglected in the literature. This study presents detailed parametric analyses that take into account humidity variability and several hypothetical scenarios regarding membrane selectivity toward water vapor. Specifically, cases were considered where the permeance of H2O relative to CO2 was assumed to be 0.5, 2, and 5 times higher, which allowed for a systematic assessment of the impact of relative humidity on process performance. The calculations were carried out both for membranes with assumed separation parameters and for the PolyActiveTM membrane, enabling a realistic evaluation of the influence of atmospheric conditions on the process. The results show that an increase in humidity in the analyzed range from 0 to 80% can lead to a rise in the energy intensity of the process by up to approximately 34%, and an increase in total power demand by around 29%. As humidity increases, key process parameters such as CO2 purity in the permeate and recovery rate decrease. The water vapor content in the permeate in a single-stage membrane separation process can reach up to 60%. It is recommended to use gas drying systems and to develop membranes with low H2O permeance in order to reduce the energy cost of the process. The potential location of m-DAC systems should preferably be in regions with low air humidity. The study highlights the necessity of considering local climate conditions and the need for further research on membrane selectivity. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

24 pages, 1411 KiB  
Article
Film-Forming and Metabolic Antitranspirants Reduce Potato Drought Stress and Tuber Physiological Disorders
by Oluwatoyin Favour Olu-Olusegun, Aidan Farrell, James Monaghan and Peter Kettlewell
Agronomy 2025, 15(7), 1564; https://doi.org/10.3390/agronomy15071564 - 27 Jun 2025
Viewed by 442
Abstract
Potatoes are highly sensitive to drought, particularly during tuber initiation. This study aimed to evaluate the effectiveness of film-forming (Vapor Gard [VG]) and metabolic (abscisic acid [ABA]) antitranspirants in mitigating drought stress and reducing tuber physiological disorders in four potato varieties. Two experiments [...] Read more.
Potatoes are highly sensitive to drought, particularly during tuber initiation. This study aimed to evaluate the effectiveness of film-forming (Vapor Gard [VG]) and metabolic (abscisic acid [ABA]) antitranspirants in mitigating drought stress and reducing tuber physiological disorders in four potato varieties. Two experiments examined the effects of VG and ABA antitranspirants on drought-stressed potato plants of four varieties (Challenger, Markies, Nectar, and Russet Burbank) grown in pots in a polytunnel (semi-controlled environment). Experiment 1 imposed severe drought by withholding irrigation until 70% of the available water content was depleted (reaching 15–17% volumetric water content within ~15 days), while Experiment 2 featured gradual drought stress from tuber initiation, with the soil volumetric water content declining to <10% over 30 days. Antitranspirants were applied at the start of the tuber initiation and two weeks later to assess their impact on the soil volumetric water content, stomatal conductance, relative water content, yield, and tuber physiological disorders. Drought significantly reduced the soil and plant water status, tuber yield, and quality across both experiments, with more severe effects observed in Experiment 1. VG and ABA had repeatable effects in both experiments and in all varieties, reducing water stress by preventing a large reduction in the relative water content during the tuber initiation and bulking stages. Both antitranspirants improved the tuber appearance by reducing the tuber skin disorder of russeting in the susceptible Challenger variety in both experiments, with VG being more effective than ABA. Beneficial reductions in the effects of drought from antitranspirants were also recorded in the volumetric water content, stomatal conductance, yield, and jelly end rot but not consistently in all varieties and in both experiments. The results show that antitranspirants have the potential to minimise water stress in droughted potatoes and subsequently reduce the physiological disorder of russeting and improve the tuber appearance of the Challenger variety. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

21 pages, 3955 KiB  
Article
Mechanical Characteristics of Tara Gum/Orange Peel Films Influenced by the Synergistic Effect on the Rheological Properties of the Film-Forming Solutions
by Nedelka Juana Ortiz Cabrera, Luis Felipe Miranda Zanardi and Martin Alberto Massuelli
Polymers 2025, 17(13), 1767; https://doi.org/10.3390/polym17131767 - 26 Jun 2025
Viewed by 425
Abstract
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final [...] Read more.
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final concentrations of 0.6%, 0.8%, and 1.0% (w/v). GL (30% and 50%) and OP (0%, 20%, and 50%) were incorporated based on the dry weight of TG, meaning their amounts were calculated relative to TG content to ensure consistent formulation ratios. Rheological parameters, including the flow behavior index, consistency coefficient, storage modulus (G′), and loss modulus (G″), were characterized via steady shear and oscillatory rheometry. Mechanical properties, such as the Young’s modulus, tensile strength, and elongation at break, were also evaluated. A strong positive correlation (R2 = 0.840) was observed between G′ and the Young’s modulus, indicating that solutions with higher internal network strength yield films with greater stiffness. The synergistic interaction between TG and OP was critical: TG primarily enhanced stiffness and mechanical reinforcement, whereas OP improved structural cohesion and stability. GL functioned as a plasticizer, increasing film flexibility while reducing stiffness. These interactions led to a reduction in film solubility by up to 62.43%, particularly in formulations without orange peel powder. In contrast, mechanical strength increased by up to 50.21% in films containing orange peel powder, as those without it exhibited significantly lower tensile strength. Flexibility, expressed as elongation at break, was enhanced by up to 78.86% in formulations with higher glycerol content. Barrier properties were also improved, demonstrated by decreased water vapor permeability and increased hydrophobicity, attributed to the TG–OP synergy. A regression model (R2 = 0.928) substantiated the contributions of TG to stiffness, OP to matrix reinforcement, and GL to flexibility modulation. This study underscores the pivotal role of rheological behavior in defining film performance and presents a novel analytical framework applicable to the design of sustainable, high-performance biopolymeric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 2726 KiB  
Article
Diurnal Characteristics and Long-Term Changes in Extreme Precipitation in the Republic of Korea
by Do-Hyun Kim, Jin-Uk Kim, Jaekwan Shim, Chu-Yong Chung, Kyung-On Boo and Sungbo Shim
Atmosphere 2025, 16(7), 780; https://doi.org/10.3390/atmos16070780 - 25 Jun 2025
Viewed by 344
Abstract
In this study, diurnal characteristics and long-term changes in extreme precipitation (PR) in the Republic of Korea (KR) are investigated. Hourly PR data from 59 ASOS stations across the country over a 50-year period (1973–2022) are used. The focus is on the summer [...] Read more.
In this study, diurnal characteristics and long-term changes in extreme precipitation (PR) in the Republic of Korea (KR) are investigated. Hourly PR data from 59 ASOS stations across the country over a 50-year period (1973–2022) are used. The focus is on the summer season (June to September), during which extreme PR frequently occurs. During the period 1973–1997 (FP), both the amount and frequency of extreme PR events peak between 01 and 09 LST. In contrast, during the period 1998–2022 (LP), a notable increase in extreme PR and its frequency is observed between 04 and 12 LST, with the peak occurrence hours shifting to this time frame. An analysis of atmospheric variables related to extreme PR is conducted for the 04–12 LST time frame. Compared to all PR events during the summer season, a low-level low-pressure anomaly is found west of the KR, leading to southerly winds and positive specific humidity anomalies over the south of the KR. Relative to the FP period, both the amplitude and frequency of high water vapor content have increased during the LP period. This intensified moisture may be associated with the observed increase in extreme PR during 04–12 LST. However, no significant changes are found in the strength and frequency of the southerly wind. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 5729 KiB  
Article
Highly Engineered Cr-In/H-SSZ-39 Catalyst for Enhanced Performance in CH4-SCR of NOx
by Jiuhu Zhao, Jingjing Jiang, Guanyu Chen, Meng Wang, Xiaoyuan Zuo, Yanjiao Bi and Rongshu Zhu
Molecules 2025, 30(13), 2691; https://doi.org/10.3390/molecules30132691 - 21 Jun 2025
Viewed by 358
Abstract
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and [...] Read more.
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and Fe) were prepared via an ion exchange method and subsequently evaluated for their CH4-SCR activity. The influences of the preparation parameters, including the metal ion concentration and calcination temperature, as well as the operating conditions, such as the CH4/NO ratio, O2 concentration, water vapor content, and gas hourly space velocity (GHSV), on the catalytic activity of the optimal Cr-In/H-SSZ-39 catalyst were meticulously examined. The results revealed that the Cr-In/H-SSZ-39 catalyst exhibited peak CH4-SCR catalytic performance when the Cr(NO3)3 concentration was 0.0075 M, the In(NO3)3 concentration was 0.066 M, and the calcination temperature was 500 °C. Under optimal operating conditions, namely GHSV of 10,000 h−1, 400 ppm NO, 800 ppm CH4, 15 vol% O2, and 6 vol% H2O, the NOx conversion rate reached 93.4%. To shed light on the excellent performance of Cr-In/H-SSZ-39 under humid conditions, a comparative analysis of the crystalline phase, chemical composition, pore structure, surface chemical state, surface acidity, and redox properties of Cr-In/H-SSZ-39 and In/H-SSZ-39 was conducted. The characterization results indicated that the incorporation of Cr into In/H-SSZ-39 enhanced its acidity and also facilitated the generation of InO+ active species, which promoted the oxidation of NO and the activation of CH4, respectively. A synergistic effect was observed between Cr and In species, which significantly improved the redox properties of the catalyst. Consequently, the activated CH4 could further interact with InO+ to produce carbon-containing intermediates such as HCOO, which ultimately reacted with nitrate-based intermediates to yield N2, CO2, and H2O. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

15 pages, 1297 KiB  
Article
Thermal and Emission Performance Evaluation of Hydrogen-Enriched Natural Gas-Fired Domestic Condensing Boilers
by Radosław Jankowski, Rafał Ślefarski, Ireneusz Bauma and Giennadii Varlamov
Energies 2025, 18(13), 3240; https://doi.org/10.3390/en18133240 - 20 Jun 2025
Viewed by 338
Abstract
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior [...] Read more.
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior compared to hydrocarbon fuels requires thorough investigation prior to implementation in heating systems. This study presents experimental and theoretical analyses of the co-combustion of natural gas with hydrogen in low-power-output condensing boilers (second and third generation), with hydrogen content of up to 50% by volume. The results show that mixtures of hydrogen and natural gas contribute to increasing heat transfer in boilers through convection and flue gas radiation. They also highlight the benefits of using the heat from the condensation of vapors in the flue gases. Other studies have observed an increase in efficiency of up to 1.6 percentage points compared to natural gas at 50% hydrogen content. Up to a 6% increase in the amount of energy recovered by water vapor condensation was also recorded, while exhaust gas losses did not change significantly. Notably, the addition of hydrogen resulted in a substantial decrease in the emission of nitrogen oxides (NOx) and carbon monoxide (CO). At 50% hydrogen content, NOx emissions decreased several-fold to 2.7 mg/m3, while CO emissions were reduced by a factor of six, reaching 9.9 mg/m3. All measured NOx values remained well below the current regulatory limit for condensing gas boilers, which is 33.5 mg/m3. These results highlight the potential of hydrogen blending as a transitional solution on the path toward cleaner residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

Back to TopTop