Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Explanation of the Experimental Site
2.2. Design and Treatments of the Experiment
2.3. Plant Material
2.4. Irrigation Method and Estimation of Required Irrigation Water
2.5. Seaweed Extract Preparation, Chemical Composition, and Application Method
2.5.1. Preparation of Seaweed Extract
2.5.2. The Chemical Composition of Gracilaria tenuistipitata var. liui
2.5.3. Application Method
2.6. UAV Multispectral Data Acquisition
2.7. UAV Image Processing
2.8. Physiological Data Collection
2.9. Statistical Technique and Data Analysis
3. Results
3.1. Plant Height and the NIR Band at 20 and 60 DAS in Response to Various Treatments
3.2. Relationship Among UAV-Derived Vegetation Indices and Selected Physiological Parameters
3.3. Multivariate Differentiation of Treatments: PCA and PERMANOVA Results
3.3.1. Principal Component Analysis (PCA)
3.3.2. Pairwise PERMANOVA
4. Discussion
4.1. Integrating UAV-Based Vegetation Indices with Soybean Physiological Traits
4.2. Interpretation of Multivariate Treatment Differences: Insights from PCA and PERMANOVA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maria, B.; Swearingen, B. Soybeans and Oil Crops—Oil Crops Sector at a Glance; U.S. Department of Agriculture: Washington, DC, USA, 2025. Available online: https://www.ers.usda.gov/topics/crops/soybeans-and-oil-crops/oil-crops-sector-at-a-glance (accessed on 22 February 2025).
- Sabatino, L.; Consentino, B.B.; Rouphael, Y.; Baldassano, S.; De Pasquale, C.; Ntatsi, G. Ecklonia Maxima-Derivate Seaweed Extract Supply as Mitigation Strategy to Alleviate Drought Stress in Chicory Plants. Sci. Hortic. 2023, 312, 111856. [Google Scholar] [CrossRef]
- Mannan, M.; Yasmin, A.; Sarker, U.; Bari, N.; Dola, D.; Higuchi, H.; Ali, D.; Alarifi, S. Biostimulant Red Seaweed (Gracilaria tenuistipitata Var. Liui) Extracts Spray Improves Yield and Drought Tolerance in Soybean. PeerJ 2023, 11, 15588. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, E.; Gong, W.; Xu, L.; Zhao, Z.; He, D.; Yang, F.; Wang, X.; Yong, T.; Liu, J.; et al. Soybean Yield Variations and the Potential of Intercropping to Increase Production in China. Field Crops Res. 2023, 291, 108771. [Google Scholar] [CrossRef]
- Verma, I.; Das, H.; Jadhav, V. Water and Heat Unit Requirement in Different Growth Stages of Soybean (Glycine max L. Merrill) at Bhopal. Mausam 2007, 58, 537–542. [Google Scholar] [CrossRef]
- Jumrani, K.; Bhatia, V.S. Impact of Combined Stress of High Temperature and Water Deficit on Growth and Seed Yield of Soybean. Physiol. Mol. Biol. Plants 2017, 24, 37–50. [Google Scholar] [CrossRef]
- Mustafa, K. Why Is the Irrigation Water Crisis Not Getting Due Attention? The Daily Star. 13 March 2024. Available online: https://www.thedailystar.net/opinion/views/news/why-the-irrigation-water-crisis-not-getting-due-attention-3565171 (accessed on 19 April 2025).
- Khaled, S.M.S. Technology to Cope with Scarcity of Irrigation Water. The Financial Express. 18 June 2019. Available online: https://thefinancialexpress.com.bd/views/opinions/technology-to-cope-with-scarcity-of-irrigation-water-1560788040 (accessed on 19 April 2025).
- Islam, K.S.; Ali, M.M.; Shahrin, S.; Cheesman, S.; Alam, S.N.; Krupnik, T.J. Simple and Effective Management Methods That Can Improve Soybean Production in Bangladesh; CIMMYT: Texcoco, Mexico, 2022. [Google Scholar]
- Khan, T.; Hassan, H.; Wang, H.; Inzamamulhaq, M.; Ashraf, I.; LUO, F.; Khan, H.; Huang, G. How Does Jasmonic Acid Improve Drought Tolerance? Mechanisms and Future Prospects. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13604. [Google Scholar] [CrossRef]
- Karki, P.; Mohiuddin, S.G.; Kavousi, P.; Orman, M.A. Investigating the Effects of Osmolytes and Environmental pH on Bacterial Persisters. Antimicrob. Agents Chemother. 2020, 64, e02393-19. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Mughunth, R.J.; Velmurugan, S.; Mohanalakshmi, M.; Vanitha, K. A Review of Seaweed Extract’s Potential as a Biostimulant to Enhance Growth and Mitigate Stress in Horticulture Crops. Sci. Hortic. 2024, 334, 113312. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Yang, X.; Dong, N.; Xu, Q.; Chen, J.; Sun, S.; Cui, N.; Ning, J. Evaluation of Crop Water Status Using UAV-Based Images Data with a Model Updating Strategy. Agric. Water Manag. 2025, 312, 109445. [Google Scholar] [CrossRef]
- Santos, W.M.d.; Martins, L.D.C.d.S.; Bezerra, A.C.; Souza, L.S.B.d.; Jardim, A.M.d.R.F.; Silva, M.V.d.; Souza, C.A.A.d.; Silva, T.G.F.d. Use of Unmanned Aerial Vehicles for Monitoring Pastures and Forages in Agricultural Sciences: A Systematic Review. Drones 2024, 8, 585. [Google Scholar] [CrossRef]
- Vélez, S.; Ariza-Sentís, M.; Panić, M.; Ivošević, B.; Stefanović, D.; Kaivosoja, J.; Valente, J. Speeding up UAV-Based Crop Variability Assessment through a Data Fusion Approach Using Spatial Interpolation for Site-Specific Management. Smart Agric. Technol. 2024, 8, 100488. [Google Scholar] [CrossRef]
- Hassan, M.A.; Chang, C.Y.-Y. PhenoGazer: A High-Throughput Phenotyping System to Track Plant Stress Responses Using Hyperspectral Reflectance, Nighttime Chlorophyll Fluorescence and RGB Imaging in Controlled Environments. Plant Phenomics 2025, 7, 100047. [Google Scholar] [CrossRef]
- Begg, J.; Turner, N. Crop Water Deficits. In Advances in Agronomy; Academic Press Inc.: Cambridge, MA, USA, 1976; Volume 28, pp. 161–217. [Google Scholar] [CrossRef]
- Bhattacharya, A. Effect of Soil Water Deficit on Growth and Development of Plants: A Review. In Soil Water Deficit and Physiological Issues in Plants; Bhattacharya, A., Ed.; Springer: Singapore, 2021; pp. 393–488. [Google Scholar] [CrossRef]
- Poethig, R.S.; Fouracre, J. Temporal Regulation of Vegetative Phase Change in Plants. Dev. Cell 2024, 59, 4–19. [Google Scholar] [CrossRef] [PubMed]
- do Rosário Rosa, V.; Farias dos Santos, A.L.; Alves da Silva, A.; Peduti Vicentini Sab, M.; Germino, G.H.; Barcellos Cardoso, F.; de Almeida Silva, M. Increased Soybean Tolerance to Water Deficiency through Biostimulant Based on Fulvic Acids and Ascophyllum nodosum (L.) Seaweed Extract. Plant Physiol. Biochem. 2021, 158, 228–243. [Google Scholar] [CrossRef]
- Abebe, A.; Genet, A.; Tiruye, A.; Worku, M. Determination of Crop Water Requirements and Irrigation Scheduling of Wheat Using CROPWAT at Koga and Rib Irrigation Scheme, Ethiopia. Indian J. Ecol. 2022, 2, 363–371. [Google Scholar] [CrossRef]
- Solangi, G.S.; Shah, S.A.; Alharbi, R.S.; Panhwar, S.; Keerio, H.A.; Kim, T.-W.; Memon, J.A.; Bughio, A.D. Investigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data. Water 2022, 14, 2578. [Google Scholar] [CrossRef]
- Gilley, J.R.; Watts, D.G. Energy Reduction Through Improved Irrigation Practices. In Agriculture and Energy; Lockeretz, W., Ed.; Academic Press: Cambridge, MA, USA, 1977; pp. 187–203. [Google Scholar] [CrossRef]
- Taghvaeian, S. Surface Irrigation Systems—Oklahoma State University. Available online: https://extension.okstate.edu/fact-sheets/surface-irrigation-systems.html (accessed on 22 February 2025).
- Eswaran, K.; Ghosh, P.K.; Siddhanta, A.K.; Patolia, J.S.; Periyasamy, C.; Mehta, A.S.; Mody, K.H.; Ramavat, B.K.; Prasad, K.; Rajyaguru, M.R.; et al. Integrated Method for Production of Carrageenan and Liquid Fertilizer from Fresh Seaweeds. US6893479B2, 17 May 2005. Available online: https://patents.google.com/patent/US6893479B2/en (accessed on 23 February 2025).
- Guebel, D.V.; Nudel, B.C.; Giulietti, A.M. A Simple and Rapid Micro-Kjeldahl Method for Total Nitrogen Analysis. Biotechnol. Tech. 1991, 5, 427–430. [Google Scholar] [CrossRef]
- Sarker, U.; Iqbal, M.A.; Hossain, M.N.; Oba, S.; Ercisli, S.; Muresan, C.C.; Marc, R.A. Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus). Antioxidants 2022, 11, 1206. [Google Scholar] [CrossRef]
- Mehlenbacher, V.C. The Analysis of Fats and Oils; Garrard Press: Champaign, IL, USA, 1960. [Google Scholar]
- Sarkiyayi, S.; Agar, T.M. Comparative Analysis on the Nutritional and Anti-Nutritional Contents of the Sweet and Bitter Cassava Varieties. Adv. J. Food Sci. Technol. 2010, 2, 328–334. [Google Scholar]
- AOAC International. AOAC: Official Methods of Analysis (Volume 1); AOAC International: Washington, DC, USA, 1990. [Google Scholar]
- Tariq, F.; Wang, X.; Saleem, M.H.; Khan, Z.I.; Ahmad, K.; Saleem Malik, I.; Munir, M.; Mahpara, S.; Mehmood, N.; Ahmad, T.; et al. Risk Assessment of Heavy Metals in Basmati Rice: Implications for Public Health. Sustainability 2021, 13, 8513. [Google Scholar] [CrossRef]
- Hassan, J.; Jahan, F.; Rajib, M.M.R.; Sarker, U.; Miyajima, I.; Ozaki, Y.; Ercisli, S.; Golokhvast, K.S.; Marc, R.A. Color and Physiochemical Attributes of Pointed Gourd (Trichosanthes dioica Roxb.) Influenced by Modified Atmosphere Packaging and Postharvest Treatment during Storage. Front. Plant Sci. 2022, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Hossain, M.N.; Oba, S.; Ercisli, S.; Marc, R.A.; Golokhvast, K.S. Salinity Stress Ameliorates Pigments, Minerals, Polyphenolic Profiles, and Antiradical Capacity in Lalshak. Antioxidants 2023, 12, 173. [Google Scholar] [CrossRef]
- Bupathy, P.; Sivanpillai, R.; Sajithvariyar, V.; Vishvanathan, S. Optimizing Low-Cost Uav Aerial Image Mosaicing For Crop Growth Monitoring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, XLIV-M-3–2021, 12. [Google Scholar] [CrossRef]
- Shin, J.-I.; Cho, Y.-M.; Lim, P.-C.; Lee, H.-M.; Ahn, H.-Y.; Park, C.-W.; Kim, T. Relative Radiometric Calibration Using Tie Points and Optimal Path Selection for UAV Images. Remote Sens. 2020, 12, 1726. [Google Scholar] [CrossRef]
- Bazrafkan, A.; Delavarpour, N.; Oduor, P.G.; Bandillo, N.; Flores, P. An Overview of Using Unmanned Aerial System Mounted Sensors to Measure Plant Above-Ground Biomass. Remote Sens. 2023, 15, 3543. [Google Scholar] [CrossRef]
- Swaminathan, V.; Thomasson, J.A.; Hardin, R.G.; Rajan, N.; Raman, R. Radiometric Calibration of UAV Multispectral Images under Changing Illumination Conditions with a Downwelling Light Sensor. Plant Phenome J. 2024, 7, e70005. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Khuimphukhieo, I.; Bhandari, M.; Enciso, J.; Da Silva, J.A. Assessing Drought Stress of Sugarcane Cultivars Using Unmanned Vehicle System (UAS)-Based Vegetation Indices and Physiological Parameters. Remote Sens. 2024, 16, 1433. [Google Scholar] [CrossRef]
- Qi, H.; Wu, Z.; Zhang, L.; Li, J.; Zhou, J.; Jun, Z.; Zhu, B. Monitoring of Peanut Leaves Chlorophyll Content Based on Drone-Based Multispectral Image Feature Extraction. Comput. Electron. Agric. 2021, 187, 106292. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Niu, Y.; Chávez, J.L.; Shao, G.; Zhang, H. Evaluating the Sensitivity of Water Stressed Maize Chlorophyll and Structure Based on UAV Derived Vegetation Indices. Comput. Electron. Agric. 2021, 185, 106174. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317.
- Gitelson, A.; Merzlyak, M.; Zur, Y.; Stark, R.; Gritz, U. Non-Destructive and Remote Sensing Techniques for Estimation of Vegetation Status; University of Nebraska—Lincoln: Lincoln, NE, USA, 2001; Volume 1. [Google Scholar]
- Nagel, E.; Buschmann, C. In Vivo Spectroscopy and Internal Optics of Leaves as Basis for Remote Sensing of Vegetation. Int. J. Remote Sens. 1993, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Guan, H.; Zhou, X. Different Responses of MODIS-Derived NDVI to Root-Zone Soil Moisture in Semi-Arid and Humid Regions. J. Hydrol. 2007, 340, 12–24. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar] [CrossRef]
- LI-COR Environmental. Available online: https://www.licor.com/products/LI-600 (accessed on 23 February 2025).
- Bibi, A.C.; Oosterhuis, D.M.; Gonias, E.D. Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 2008, 12, 150–159. [Google Scholar]
- Flexas, J.; Escalona, J.; Evain, S.; Gul, J.; Moya, I.; Osmond, C.; Medrano, H. Steady-State Chlorophyll Fluorescence (Fs) as an Indicator of Leaf %photosynthesis and Stomatal Conductance under Drought Conditions. Physiol. Plant. 2002, 114, 231–240. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Z.; Huo, H.; Li, Z.-L.; Nerry, F.; Wang, Q.; Li, X. Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data. Remote Sens. 2015, 7, 3232–3249. [Google Scholar] [CrossRef]
- Shahenshah; Isoda, A. Effects of Water Stress on Leaf Temperature and Chlorophyll Fluorescence Parameters in Cotton and Peanut. Plant Prod. Sci. 2010, 13, 269–278. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of Different Levels of Water Stress on Leaf Photosynthetic Characteristics and Antioxidant Enzyme Activities of Greenhouse Tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Xi, B.; Hernandez-Santana, V. Evaluation of Method to Model Stomatal Conductance and Its Use to Assess Biomass Increase in Poplar Trees. Agric. Water Manag. 2022, 259, 107228. [Google Scholar] [CrossRef]
- Cunningham, S. Stomatal Sensitivity to Vapour Pressure Deficit of Temperate and Tropical Evergreen Rainforest Trees of Australia. Trees 2004, 18, 399–407. [Google Scholar] [CrossRef]
- Schonfeld, M.A.; Johnson, R.C.; Carver, B.F.; Mornhinweg, D.W. Water Relations in Winter Wheat as Drought Resistance Indicators. Crop Sci. 1988, 28, 526–531. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Li, H.; Qi, X.; Liu, X.; Guo, X. Metabolomic Detection Between Pancreatic Cancer and Liver Metastasis Nude Mouse Models Constructed by Using the PANC1-KAI1/CD82 Cell Line. Technol. Cancer Res. Treat. 2021, 20, 15330338211045204. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef]
- Hamouda, M.M.; Saad-Allah, K.M.; Gad, D. Potential of Seaweed Extract on Growth, Physiological, Cytological and Biochemical Parameters of Wheat (Triticum aestivum L.) Seedlings. J. Soil Sci. Plant Nutr. 2022, 22, 1818–1831. [Google Scholar] [CrossRef]
- Ghaderiardakani, F.; Collas, E.; Damiano, D.K.; Tagg, K.; Graham, N.S.; Coates, J.C. Effects of Green Seaweed Extract on Arabidopsis Early Development Suggest Roles for Hormone Signalling in Plant Responses to Algal Fertilisers. Sci. Rep. 2019, 9, 1983. [Google Scholar] [CrossRef]
- Mansori, M.; Chernane, H.; Latique, S.; Benaliat, A.; Hsissou, D.; Kaoua, E.M. Seaweed Extract Effect on Water Deficit and Antioxidative Mechanisms in Bean Plants (Phaseolus vulgaris L.). J. Appl. Phycol. 2014, 27, 1689–1698. [Google Scholar] [CrossRef]
- Kalaivanan, C.; Venkatesalu, V. Utilization of Seaweed Sargassum Myriocystum Extracts as a Stimulant of Seedlings of Vigna mungo (L.) Hepper. Span. J. Agric. Res. 2012, 10, 466–470. [Google Scholar] [CrossRef]
- Abeed, A.H.A.; Ali, M.; Ali, E.F.; Majrashi, A.; Eissa, M.A. Induction of Catharanthus Roseus Secondary Metabolites When Calotropis Procera Was Used as Bio-Stimulant. Plants 2021, 10, 1623. [Google Scholar] [CrossRef]
- Huda, M.N.; Mannan, M.A.; Bari, M.N.; Rafiquzzaman, S.M.; Higuchi, H. Red Seaweed Liquid Fertilizer Increases Growth, Chlorophyll and Yield of Mungbean (Vigna radiata). Agron. Res. 2023, 21, 291–305. [Google Scholar]
- Mandal, S.; Bhattacharya, S.; Paul, S. Assessing the Impact of Coal-Fired Thermal Power Plant Emissions on Surrounding Vegetation Health Using Geoinformatics: A Case Study. Saf. Extrem. Environ. 2022, 4, 81–100. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, W.; Yang, J.; Ao, J.; Huang, Y.; Shen, D.; Jiang, Y.; Huang, Z.; Shen, H. Effects of Seaweed Extracts on the Growth, Physiological Activity, Cane Yield and Sucrose Content of Sugarcane in China. Front. Plant Sci. 2021, 12, 659130. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of Seaweed Extracts in Australian Agriculture: Past, Present and Future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, H.M.; Mohana, N.T.; Khan, B.M.; Ahmed, S.M.; Hossain, M.; Islam, K.S.; Redoy, M.H.; Ferdush, J.; Bhuiyan, M.A.H.B.; Hossain, M.M.; et al. Present and Future Scopes and Challenges of Plant Pest and Disease (P&D) Monitoring: Remote Sensing, Image Processing, and Artificial Intelligence Perspectives. Remote Sens. Appl. Soc. Environ. 2023, 32, 100996. [Google Scholar] [CrossRef]
- Sarvakar, K.; Thakkar, M. Different Vegetation Indices Measurement Using Computer Vision. In Applications of Computer Vision and Drone Technology in Agriculture 4.0; Chouhan, S.S., Singh, U.P., Jain, S., Eds.; Springer Nature: Singapore, 2024; pp. 133–163. [Google Scholar] [CrossRef]
- Sellami, M.H.; Albrizio, R.; Čolović, M.; Hamze, M.; Cantore, V.; Todorovic, M.; Piscitelli, L.; Stellacci, A.M. Selection of Hyperspectral Vegetation Indices for Monitoring Yield and Physiological Response in Sweet Maize under Different Water and Nitrogen Availability. Agronomy 2022, 12, 489. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Gago, J.; Ribas-Carbó, M.; Galmés, J. High-Throughput Phenotyping of a Large Tomato Collection under Water Deficit: Combining UAVs’ Remote Sensing with Conventional Leaf-Level Physiologic and Agronomic Measurements. Agric. Water Manag. 2022, 260, 107283. [Google Scholar] [CrossRef]
- Van Haeften, S.; Smith, D.; Robinson, H.; Dudley, C.; Kang, Y.; Douglas, C.A.; Hickey, L.T.; Potgieter, A.; Chapman, S.; Smith, M.R. Unmanned Aerial Vehicle Phenotyping of Agronomic and Physiological Traits in Mungbean. Plant Phenome J. 2025, 8, e70016. [Google Scholar] [CrossRef]
- Mwinuka, P.R.; Mourice, S.K.; Mbungu, W.B.; Mbilinyi, B.P.; Tumbo, S.D.; Schmitter, P. UAV-Based Multispectral Vegetation Indices for Assessing the Interactive Effects of Water and Nitrogen in Irrigated Horticultural Crops Production under Tropical Sub-Humid Conditions: A Case of African Eggplant. Agric. Water Manag. 2022, 266, 107516. [Google Scholar] [CrossRef]
- Caturegli, L.; Matteoli, S.; Gaetani, M.; Grossi, N.; Magni, S.; Minelli, A.; Corsini, G.; Remorini, D. Effects of Water Stress on Spectral Reflectance of Bermudagrass. Sci. Rep. 2020, 10, 15055. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Ishihara, K.; Saitoh, K. Diurnal Courses of Photosynthesis, Transpiration, and Diffusive Conductance in the Single-Leaf of the Rice Plants Grown in the Paddy Field under Submerged Condition. Jpn. J. Crop Sci. 1987, 56, 8–17. [Google Scholar] [CrossRef]
- Tang, Z.; Jin, Y.; Alsina, M.; McElrone, A.; Bambach, N.; Kustas, W. Vine Water Status Mapping with Multispectral UAV Imagery and Machine Learning. Irrig. Sci. 2022, 40, 715–730. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Al-Suhaibani, N.; Hassan, W.; Tahir, M.; Schmidhalter, U. Hyperspectral Reflectance Sensing to Assess the Growth and Photosynthetic Properties of Wheat Cultivars Exposed to Different Irrigation Rates in an Irrigated Arid Region. PLoS ONE 2017, 12, e0183262. [Google Scholar] [CrossRef] [PubMed]
- Hunt, E.; Hively, W.; Fujikawa, S.; Linden, D.; Daughtry, C.; McCarty, G. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.; Liu, X.; Ren, Z. Monitoring Canopy SPAD Based on UAV and Multispectral Imaging over Fruit Tree Growth Stages and Species. Front. Plant Sci. 2024, 15, 1435613. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Li, Q.; Wei, M.; Li, Y.; Feng, G.; Wang, Y.; Li, S.; Zhang, D. Effects of Soil Moisture on Water Transport, Photosynthetic Carbon Gain and Water Use Efficiency in Tomato Are Influenced by Evaporative Demand. Agric. Water Manag. 2019, 226, 105818. [Google Scholar] [CrossRef]
- Liu, N.-Y.; Yang, Q.-Y.; Wang, J.-H.; Zhang, S.-B.; Yang, Y.-J.; Huang, W. Differential Effects of Increasing Vapor Pressure Deficit on Photosynthesis at Steady State and Fluctuating Light. J. Plant Growth Regul. 2024, 43, 2329–2339. [Google Scholar] [CrossRef]
- Bunce, J.A. Does Transpiration Control Stomatal Responses to Water Vapour Pressure Deficit? Plant Cell Environ. 1997, 20, 131–135. [Google Scholar] [CrossRef]
- Vegetation Indices: A Key Tool in Precision Agriculture. Pix4D. Available online: https://www.pix4d.com/blog/pix4dfields-vegetation-indices-for-precision-agriculture (accessed on 21 February 2025).
Treatment Code | Treatment Details |
---|---|
T1 | 100% of total crop water requirement (TCWR) |
T2 | 100% of TCWR + 5% (v/v) SWE |
T3 | 70% of TCWR |
T4 | 70% of TCWR + 5% (v/v) SWE |
Month | Decadal | Crop Growth Stage | Kc (Coefficient) | ETc (mm/day) | ETc (mm/dec) | Effective Rainfall (mm/dec) | Irrigation Requirement (mm/dec) |
---|---|---|---|---|---|---|---|
January | 1st | Initial | 0.40 | 0.98 | 9.8 | 1.3 | 8.4 |
January | 2nd | Development | 0.48 | 1.19 | 11.9 | 0.4 | 11.5 |
January | 3rd | Mid | 0.95 | 2.68 | 26.8 | 2.3 | 27.2 |
February | 1st | Mid | 1.15 | 3.65 | 36.5 | 3.9 | 32.5 |
February | 2nd | Mid | 1.15 | 4.03 | 40.3 | 5.2 | 35.1 |
February | 3rd | Mid | 1.15 | 4.68 | 46.8 | 9.3 | 28.1 |
172.1 | 22.4 | 142.8 |
Treatments | Applied Amount of Water (mm) | |||
---|---|---|---|---|
Initial | Development | Mid/Vegetative Phase | Total | |
100% of TCWR | 11.76 | 16.1 | 172.06 | 199.92 |
70% of TCWR | 11.76 | 16.1 | 112.084 | 139.944 |
Content Name | Method/Process | Reference |
---|---|---|
Crude Protein | Micro-Kjeldahl method | [27,28] |
Crude Lipid | Soxhlet method | [29] |
Crude Fiber | Boiling with sulfuric acid, followed by NaOH, drying and ashing | [30] |
Moisture | An automatic moisture meter (Model PB-1D2, Kett Electric Laboratory, Tokyo, Japan) was used. | [3] |
Ash (%) | Six hours of incineration at 550 °C in a muffle furnace. Formula: (Weight of ash/weight of a sample taken) × 100 | [31] |
Carbohydrate | Formula: 100 − (%ash + %crude lipid + %crude protein + %crude fiber + %moisture) | [30] |
Minerals and Heavy Metals | An atomic absorption spectrophotometer (Model AA, 610 s, Shimadzu, Kyoto, Japan) was used. | [32] |
B-Carotene | Quantified using visible spectroscopy | [33,34] |
Vitamin C | Measured following the method explained in the referenced article. | [33] |
Date | Flight Height | Take-Off Time (Approx.) | Speed [m/s] | Total Duration [min] | Overlap [%] | Side Lap [%] |
---|---|---|---|---|---|---|
10 January 2024 | 100 m | 12:10 | 9.5 | 5 | 80 | 80 |
29 February 2024 | 100 m | 12:10 | 9.5 | 5 | 80 | 80 |
Vegetation Indices | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [43] | |
Normalized Difference Red Edge (NDRE) | [44] | |
Green Normalized Difference Vegetation Index (gNDVI) | [45] | |
Soil Adjusted Vegetation Index (SAVI) | [46] | |
Blue Normalized Difference Vegetation Index (bNDVI) | [47] |
DAS | Parameter | Sum of Squares | Mean Square | F-Value | p-Value | Treatment Grouping (Tukey’s HSD) |
---|---|---|---|---|---|---|
20 | NIR | 0.000120 | 3.99 × 10−5 | 0.391 | 0.760 | All treatments in group “a” |
Plant height | 0.00214 | 0.00071 | 0.803 | 0.499 | All treatments in group “a” | |
60 | NIR | 0.03352 | 0.01117 | 42.66 | 4.43 × 10−13 *** | Significant difference (T2 > T1 = T4 > T3) |
Plant height | 0.3320 | 0.11066 | 44.57 | 2.16 × 10−13 *** | Significant difference (T2 > T1 = T4 > T3) |
Treatments | T1 | T2 | T3 | T4 |
---|---|---|---|---|
T1 | - | 0.0012 | 0.0012 | 0.0820 |
T2 | 0.0012 | - | 0.0012 | 0.0012 |
T3 | 0.0012 | 0.0012 | - | 0.0012 |
T4 | 0.0820 | 0.0012 | 0.0012 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.R.; Abdullah, H.M.; Rahman, M.F.; Islam, M.; Tuhin, A.K.; Ashiquzzaman, M.; Islam, K.S.; Geisseler, D. Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial. Drones 2025, 9, 487. https://doi.org/10.3390/drones9070487
Islam MR, Abdullah HM, Rahman MF, Islam M, Tuhin AK, Ashiquzzaman M, Islam KS, Geisseler D. Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial. Drones. 2025; 9(7):487. https://doi.org/10.3390/drones9070487
Chicago/Turabian StyleIslam, Md. Raihanul, Hasan Muhammad Abdullah, Md Farhadur Rahman, Mahfuzul Islam, Abdul Kaium Tuhin, Md Ashiquzzaman, Kh Shakibul Islam, and Daniel Geisseler. 2025. "Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial" Drones 9, no. 7: 487. https://doi.org/10.3390/drones9070487
APA StyleIslam, M. R., Abdullah, H. M., Rahman, M. F., Islam, M., Tuhin, A. K., Ashiquzzaman, M., Islam, K. S., & Geisseler, D. (2025). Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial. Drones, 9(7), 487. https://doi.org/10.3390/drones9070487