Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = water uptake ability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2904 KB  
Article
Synergistic Effects of Non-Thermal Plasma Exposure Time and Drought on Alfalfa (Medicago sativa L.) Germination, Growth and Biochemical Responses
by Mohamed Ali Benabderrahim, Imen Bettaieb, Valentina Secco, Hedia Hannachi and Ricardo Molina
Int. J. Mol. Sci. 2026, 27(1), 330; https://doi.org/10.3390/ijms27010330 (registering DOI) - 28 Dec 2025
Abstract
Applying non-thermal plasma (NTP) to seeds prior to sowing is recognized for its ability to enhance germination and promote plant growth. This study investigated the effects of NTP seed treatment on alfalfa seed surface characterization, germination, growth, and biochemical traits under varying water [...] Read more.
Applying non-thermal plasma (NTP) to seeds prior to sowing is recognized for its ability to enhance germination and promote plant growth. This study investigated the effects of NTP seed treatment on alfalfa seed surface characterization, germination, growth, and biochemical traits under varying water conditions. NTP modified seed surface properties by decreasing water contact angle, roughening the coat, and reducing O–H/N–H and C–H band intensities, while major functional groups remained intact. Short plasma exposures (<2 min) enhanced germination, whereas prolonged treatment (10 min) reduced viability, indicating embryo sensitivity. In pot experiments, both 1 and 5 min treatments improved fresh and dry weight, stem and root elongation, pigment accumulation, and protein content, particularly under normal and moderate water stress, while extended exposure (10 min) offered limited benefits and could be detrimental under severe drought. Root growth was most responsive, suggesting enhanced water and nutrient uptake. Plasma had modest effects on polyphenols and flavonoids but influenced early physiological responses and antioxidant activity. These findings highlight NTP as a promising seed priming tool to improve alfalfa performance, though further studies are needed to clarify the mechanisms and specific contributions of plasma components. Full article
(This article belongs to the Special Issue Molecular Insights into Plasma in Seed and Plant Treatment)
Show Figures

Figure 1

26 pages, 4766 KB  
Article
One-Pot Synthesis of Carbon-Based Composite Foams with Tailorable Structure
by Florina S. Rus, Cristina Mosoarca, Nicolae Birsan, Mihai Petru Marghitas, Raul Bucur, Dan Rosu, Emanoil Linul and Radu Banica
Buildings 2026, 16(1), 56; https://doi.org/10.3390/buildings16010056 - 23 Dec 2025
Viewed by 157
Abstract
Dehumidification plays a vital role across industrial, commercial, and residential settings, where controlling moisture is essential for maintaining air quality, protecting materials, and ensuring comfort. Calcium chloride (CaCl2) is a widely used, low-cost desiccant, but it suffers from a critical drawback: [...] Read more.
Dehumidification plays a vital role across industrial, commercial, and residential settings, where controlling moisture is essential for maintaining air quality, protecting materials, and ensuring comfort. Calcium chloride (CaCl2) is a widely used, low-cost desiccant, but it suffers from a critical drawback: under humid conditions, particles tend to agglomerate, which reduces their ability to absorb water. In addition, when the salt dissolves in hydration water, its contact surface with moist air decreases, and corrosive liquid leakage can occur. Embedding CaCl2 into hydrophilic porous matrices offers a solution by dispersing particles more effectively, preventing agglomeration, increasing the contact area, and retaining liquid within the pore network to suppress leakage. In this study, we introduce a novel approach for fabricating carbon-based foams impregnated with CaCl2, produced through the thermal decomposition of glucose under self-induced pressure. These foams exhibit a composite architecture that integrates CaCl2 and calcium carbonate, enabling controlled porosity through selective dissolution. Importantly, the in situ transformation of CaCl2 into calcite refines the internal structure, improving both stability and acids absorption performance. FTIR confirmed the strong hydrophilicity of the foam walls, which enhances water vapor uptake while preventing leakage of saturated salt solutions. The carbon matrix further suppresses salt particle agglomeration during moisture absorption, resulting in high efficiency. These multifunctional foams not only capture water vapor and volatile acids but also show potential as phase change materials. Mechanical testing revealed tunable behavior among the fabricated foams, ranging from high-stiffness structures with superior energy absorption (e.g., C2) to more compliant foams with extended strain capacity (e.g., A2), illustrating their versatility for practical applications. Full article
Show Figures

Figure 1

22 pages, 4565 KB  
Article
Removal of Cr(VI) from an Aqueous Solution via a Metal Organic Framework (Ce-MOF-808)
by Hongfei Zhang, Ming Zou, Haixin Zhang, Naoto Miyamoto and Naoki Kano
Water 2025, 17(24), 3594; https://doi.org/10.3390/w17243594 - 18 Dec 2025
Viewed by 219
Abstract
Hexavalent chromium (Cr(VI)) is a carcinogenic and highly mobile pollutant in aquatic environments. In this study, three cerium-based metal–organic frameworks (Ce-UiO-66, Ce-UiO-66-NO2, and Ce-MOF-808) were synthesized and evaluated for their ability to remove Cr(VI) from aqueous solutions. Among the frameworks studied, [...] Read more.
Hexavalent chromium (Cr(VI)) is a carcinogenic and highly mobile pollutant in aquatic environments. In this study, three cerium-based metal–organic frameworks (Ce-UiO-66, Ce-UiO-66-NO2, and Ce-MOF-808) were synthesized and evaluated for their ability to remove Cr(VI) from aqueous solutions. Among the frameworks studied, Ce-MOF-808 exhibited the highest adsorption capacity and was selected for detailed investigation. To elucidate its structure and adsorption behavior, Ce-MOF-808 was characterized using XRD, FT-IR, SEM-EDS, TG-DTA, XPS, and Zeta potential analyses. The zeta potential results showed that the adsorbent surface remained positively charged in the pH range of 2.8–8.6, enabling electrostatic attraction toward anionic chromate species. XPS further revealed valence transitions between Ce3+/Ce4+ and Cr(VI)/Cr(III), demonstrating the occurrence of partial redox transformation during adsorption. Batch experiments showed that the adsorption was strongly pH-dependent and favored acidic conditions (pH 2). The kinetics followed the pseudo-second-order model, whereas the isotherm data were better described by the Langmuir model, yielding a maximum adsorption capacity of 42.74 mg/g. Thermodynamic analysis indicated a spontaneous and exothermic process. Moreover, Ce-MOF-808 maintained high Cr(VI) uptake in real water samples, demonstrating its environmental applicability. Overall, Ce-MOF-808 is a promising redox-active adsorbent for efficient Cr(VI) removal in water treatment applications. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment, 4th Edition)
Show Figures

Figure 1

14 pages, 1139 KB  
Article
Phytoremediation of Nickel-Contamination Using Helianthus annuus L. in Mediterranean Conditions
by Ada Cristina Ranieri, Luigi Lopopolo, Gianfranco D’Onghia, José Alberto Herrera Melián, Francesca Ranieri, Sarah Gregorio and Ezio Ranieri
Environments 2025, 12(12), 487; https://doi.org/10.3390/environments12120487 - 11 Dec 2025
Viewed by 305
Abstract
Nickel contamination poses a serious risk to ecosystems and human health. Phytoremediation provides a sustainable solution. This study evaluates the ability of Helinathus annuus L. to tolerate and accumulate nickel under simulated Mediterranean and semi-arid conditions, representing a short-term contamination event with nickel-enriched [...] Read more.
Nickel contamination poses a serious risk to ecosystems and human health. Phytoremediation provides a sustainable solution. This study evaluates the ability of Helinathus annuus L. to tolerate and accumulate nickel under simulated Mediterranean and semi-arid conditions, representing a short-term contamination event with nickel-enriched irrigation. Laboratory experiments assessed growth, tolerance, and Ni distribution within plant tissues. Results showed that Ni uptake increased with concentration, mainly in roots, while translocation to aerial parts remained limited. The bioconcentration factors ranged from 1.32 to 2.55, and the translocation factors from 0.46 to 0.60, indicating efficient uptake but restricted metal mobility. Higher water availability enhanced Ni absorption, suggesting that soil moisture facilitates metal transport and root activity. Helinathus annuus L. demonstrated good tolerance at moderate Ni levels but reduced growth and accumulation efficiency at higher concentrations, confirming its potential for phytostabilization in Mediterranean soils affected by metal contamination. Full article
Show Figures

Figure 1

21 pages, 4659 KB  
Article
Effect of Different Aqueous Solvents with and Without Solubilized Lignin on the Swelling Behavior of Holocellulose Fibers
by Cornelia Hofbauer, Thomas Harter, Ulrich Hirn, Michael Harasek, Luis Zelaya-Lainez, Josef Füssl, Markus Lukacevic and Sebastian Serna-Loaiza
Polymers 2025, 17(23), 3103; https://doi.org/10.3390/polym17233103 - 22 Nov 2025
Viewed by 612
Abstract
The modification of lignocellulosic fibers through controlled swelling and impregnation plays a decisive role in tailoring their structure and reactivity for use in sustainable composite materials. In this study, holocellulose fibers were swollen in various solvents (sodium hydroxide at 2 and 4 wt% [...] Read more.
The modification of lignocellulosic fibers through controlled swelling and impregnation plays a decisive role in tailoring their structure and reactivity for use in sustainable composite materials. In this study, holocellulose fibers were swollen in various solvents (sodium hydroxide at 2 and 4 wt% and ethanol–water mixtures at 0, 50, 70, and 100 wt%) to evaluate their impact on swelling and fiber characteristics. The pulp was produced with peracetic acid at 90 °C for 120 min from spruce wood chips and used for the swelling treatment. The fibers underwent swelling for 4 h in the different solvents, both without and with solubilized lignin at concentrations of 10 and 30 g/L, to investigate the impregnation ability of the fibers for lignin as a natural binder. Fiber morphology, lignocellulosic composition, and liquid retention values were analyzed to assess the effects of solvent–binder interactions on fiber swelling and lignin uptake. The results revealed significant differences in fiber characteristics influenced by both solvent choice and lignin presence, demonstrating the feasibility and optimization potential of a single-step swelling-impregnation process. These findings highlight key factors that can improve the uptake of natural binders in wood fibers, offering insights for effective fiber preconditioning in composite production. Full article
(This article belongs to the Special Issue Advanced Study on Lignin-Containing Composites)
Show Figures

Graphical abstract

19 pages, 4496 KB  
Article
Multilayer pH-Responsive Hydrogels Fabricated via Two-Step Ionic Crosslinking: Towards Advanced Wound Dressing Materials
by Gianluca Ciarleglio, Virginia Clarizia, Elisa Toto and Maria Gabriella Santonicola
Gels 2025, 11(10), 840; https://doi.org/10.3390/gels11100840 - 21 Oct 2025
Viewed by 825
Abstract
The design of hydrogel-based materials for wound care management requires the integration of multiple functionalities, including the capacity to maintain hydration, to prevent infection, and to adapt to the dynamic wound microenvironment. In this study, we fabricated innovative pH-reactive multilayer hydrogel patches based [...] Read more.
The design of hydrogel-based materials for wound care management requires the integration of multiple functionalities, including the capacity to maintain hydration, to prevent infection, and to adapt to the dynamic wound microenvironment. In this study, we fabricated innovative pH-reactive multilayer hydrogel patches based on ionically crosslinked alginate and incorporated with bioactive compounds, including Manuka honey, hyaluronic acid, and Ribes nigrum extract. The multilayer structure is coated with chitosan to improve water affinity and pH response. The patches are designed to respond to variable pH conditions typical of wound environments, with potential applicability to burn wounds. The hydrogel materials are characterized in terms of water content, swelling behavior, and water vapor transmission rate (WVTR). The chitosan-coated multilayer hydrogel exhibited high water uptake (swelling ratio up to 22.11 ± 0.25; water content 95.48 ± 0.05%) and controlled WVTR (~3450–3850 g/m2·day−1), while degradation remained below 42% at pH 8 compared to >80% in single layers. Microstructural analysis is performed via optical microscopy to assess the morphology and uniformity of the multilayer system, while chemical characterization is conducted using Fourier-transform infrared (FTIR) spectroscopy. The results highlight the ability of the designed material to respond to pH variations and to accommodate bioactive agents within a structurally stable and hydrated network, suggesting its suitability for future investigations into controlled release applications. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

23 pages, 5821 KB  
Article
Physiological and Transcriptional Regulation of Salt Tolerance in Thinopyrum ponticum and Screening of Salt-Tolerant Candidate Genes
by Ran Zhang, Rui Zhong, Kuiju Niu, Fang Jia, Yuehan Liu and Xiaoxia Li
Plants 2025, 14(17), 2771; https://doi.org/10.3390/plants14172771 - 4 Sep 2025
Cited by 1 | Viewed by 956
Abstract
The tall wheatgrass Thinopyrum ponticum has excellent saline–alkali tolerance and great potential for restoring saline–alkali land to enhance productivity. This study used the Thinopyrum ponticum cv. “Orbit” variety, which is widely planted in saline–alkali pastures, as the material and artificially simulated salt stress [...] Read more.
The tall wheatgrass Thinopyrum ponticum has excellent saline–alkali tolerance and great potential for restoring saline–alkali land to enhance productivity. This study used the Thinopyrum ponticum cv. “Orbit” variety, which is widely planted in saline–alkali pastures, as the material and artificially simulated salt stress using 150 mM NaCl and 150 mM Na2SO4, respectively. The growth and physiological indexes of the leaves and roots of seedlings were measured after various treatment durations, and the transcriptomes of untreated and Na2SO4-treated leaves and roots were also analyzed after 24 h of treatment. The results showed that salt stress resulted in significant reductions in leaf relative water content in seedlings and inhibited root elongation growth, with Na2SO4 treatment producing a greater impact on plant growth than NaCl treatment. Salt stress significantly alters ion transport and distribution in Thinopyrum ponticum, characterized by pronounced Na+ accumulation and a concomitant decline in K+ uptake. Additionally, to adapt to salt stress, roots enhance their ability to absorb and transport essential cations, such as Ca2+, Mg2+, Fe3+, and Cu2+. RNA-Seq analysis identified 1682 and 2816 differentially expressed genes (DEGs) in leaves and roots under Na2SO4 stress, respectively, with 210 common DEGs. Enrichment analyses revealed that DEGs were primarily associated with redox homeostasis, ion balance, and signal transduction. Furthermore, transcription regulation analysis indicated the Thinopyrum ponticum can coordinate the activation of NAC/MYB/WRKY transcription factors, SA/ETH hormone signaling, and Ca2+ pathways in response to salt stress. In summary, this study systematically reveals for the first time the molecular mechanisms by which Thinopyrum ponticum responds to Na2SO4 stress through coordinated regulation of ion transport, transcription factor networks, and hormone-Ca2+ signaling pathways. Based on transcriptomic and protein–protein interaction analyses, nine key candidate genes for saline–alkali tolerance were identified, including UGT7472, JMT, T4E14.7, CAX5, CP1, PXG2 NAMT1, BON3, and APX7. These findings provide novel genetic resources and a theoretical foundation for breeding salt–alkali-tolerant crops. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
Show Figures

Figure 1

26 pages, 2226 KB  
Review
Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review
by Kallol Das, Md Abdullah Al Masud, Aniruddha Sarker, Ramadan A. Arafa and Margi Patel
Sustainability 2025, 17(16), 7357; https://doi.org/10.3390/su17167357 - 14 Aug 2025
Cited by 2 | Viewed by 6845
Abstract
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to [...] Read more.
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to their toxicity and persistence, necessitating effective remediation strategies. Biological remediation, especially through microorganisms and enzymatic actions, offers a promising alternative to conventional methods due to its eco-friendly and cost-effective nature. The review discusses various microbes, including bacteria, fungi, and algae known for their metal-binding capacities and transformation abilities. It delves into the mechanisms of bioremediation, such as biosorption, bioaccumulation, and biotransformation, facilitated by microbial enzymes like oxidoreductases and hydrolases that remove or bind the chemical structure of HMs. This paper also explores genetic engineering approaches to enhance microbial efficacy in HMs’ uptake and resistance. Furthermore, the review addresses the significant challenges in scaling bioremediation from a laboratory to the field, such as the complexity of environmental conditions, the presence of mixed contaminants, and the need for system optimization to improve efficiency and sustainability. It also evaluates the current legislative framework governing bioremediation practices, suggesting a need for clearer policies to support the integration of biological methods into mainstream remediation strategies. Conclusively, while microbial and enzymatic remediation presents considerable potential, extensive research is needed to overcome existing hurdles and develop robust, field-applicable systems. This paper calls for a multidisciplinary approach combining microbiology, engineering, and environmental sciences to advance this promising field. Full article
Show Figures

Figure 1

10 pages, 391 KB  
Article
Warmer Oceans Will Increase Abundance of Human Pathogens on Seaweeds
by Sidney Wilson and Mahasweta Saha
Phycology 2025, 5(3), 38; https://doi.org/10.3390/phycology5030038 - 14 Aug 2025
Cited by 1 | Viewed by 1154
Abstract
Anthropogenic warming of the world’s oceans is not just an environmental crisis, but may result in a significant threat to human health. The combination of a warming ocean and increased human activity in coastal waters sets the stage for increased pathogenic Vibrio–human [...] Read more.
Anthropogenic warming of the world’s oceans is not just an environmental crisis, but may result in a significant threat to human health. The combination of a warming ocean and increased human activity in coastal waters sets the stage for increased pathogenic Vibrio–human interaction. Warming patterns due to climate change have already been related to the emergence of Vibrio outbreaks in temperate and cold regions. Seafoods, including seaweeds, are uniquely poised to contribute to global food and nutrition security. In recent years there has been a resurgence of interest in seaweeds due to their many uses, high nutritional value, and ability to provide ecosystem services such as habitat provision, carbon and nutrient uptake, and coastal protection. However, some seaweed species can be a reservoir for harbouring pathogenic Vibrio, and illnesses like gastroenteritis have recently been associated with foods prepared with seaweeds. In this study, we investigated the impact of elevated water temperatures on abundances of the major human pathogens Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio vulnificus/cholerae on seaweed and in coastal waters. Three seaweed species, Fucus serratus, Palmaria palmata, and Ulva spp., were exposed to temperature treatments (16 °C and 20 °C) to assess the effects of mean-temperature rise on Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio vulnificus/cholerae colonisation. Colony-forming units (CFUs) on seaweed surfaces and in surrounding water were counted. F. serratus and P. palmata showed significantly higher Vibrio abundances at higher temperatures compared with Ulva spp.; however, temperature did not significantly affect abundances of tested Vibrio species in surrounding waters. These results indicate that certain seaweed species may serve as major hotspots for human pathogenic bacteria in warmer conditions, with implications for human health. Full article
Show Figures

Figure 1

14 pages, 15055 KB  
Article
Effects of Cardboard Box Ventilation Hole Size During Forced-Air Precooling on Postharvest Quality and Physiological Properties in Cut Roses
by Ruifeng Gu, Jie Bai, Jiawei Sun, Lei Li, Xuan Wang, Huijun Yan, Hao Zhang, Wensheng Wang, Junping Gao and Xiaoming Sun
Horticulturae 2025, 11(8), 959; https://doi.org/10.3390/horticulturae11080959 - 14 Aug 2025
Viewed by 999
Abstract
Forced-air cooling (FAC) is a method for rapidly reducing the temperature of horticultural products. However, its effects on the physiological properties and quality of cut flowers remain elusively unclear. This study investigated the impact of FAC with different vent hole diameters (4, 8, [...] Read more.
Forced-air cooling (FAC) is a method for rapidly reducing the temperature of horticultural products. However, its effects on the physiological properties and quality of cut flowers remain elusively unclear. This study investigated the impact of FAC with different vent hole diameters (4, 8, and 12 cm) on multiple metabolic pathways and the quality of cut rose flowers. Compared with controls with a conventional slow cooling method, FAC using 8 cm vent holes (FAC8) prolonged the vase life of cut roses by 3 days and reduced Botrytis cinerea incidence by 60%. The data revealed that FAC8 suppressed excessive transpiration in the late vase stages while it enhanced water uptake throughout the vase period. Additionally, FAC8 reduced the respiratory rate in cut roses, decreasing cumulative respiration by 15% versus controls. When detached leaves from cut roses were subjected to water loss treatment, FAC8 induced tighter stomatal closure, resulting in a 33% smaller stomatal aperture than that of controls after 2 h. Correlation analysis of measured indices demonstrated that FAC significantly contributed to the improvement of postharvest quality (p < 0.05) via the regulation of physiological properties. In conclusion, FAC enhances the postharvest quality of cut roses by maintaining stomatal regulatory ability. Full article
Show Figures

Figure 1

37 pages, 4602 KB  
Review
Solar-Driven Atmospheric Water Harvesting Technologies Using Adsorption: Principles, Materials, Performance, and System Configurations
by Malek Mannai, Valeria Palomba, Andrea Frazzica and Elpida Piperopoulos
Energies 2025, 18(16), 4250; https://doi.org/10.3390/en18164250 - 9 Aug 2025
Viewed by 3337
Abstract
The global scarcity of freshwater, driven by population growth and the unequal distribution of water resources, has intensified the need for alternative water supply technologies. Among the most promising solutions, adsorption-based atmospheric water harvesting (AWH) systems offer the ability to extract water vapor [...] Read more.
The global scarcity of freshwater, driven by population growth and the unequal distribution of water resources, has intensified the need for alternative water supply technologies. Among the most promising solutions, adsorption-based atmospheric water harvesting (AWH) systems offer the ability to extract water vapor directly from ambient air, even under low-humidity conditions. This review presents a comprehensive overview of the thermodynamic principles and material characteristics governing these systems, with particular emphasis on adsorption isotherms and their role in predicting and optimizing system performance. A generalized theoretical framework is proposed to assess the energy efficiency of thermally driven AWH devices, based on key material parameters. Recent developments in sorbent materials, especially metal–organic frameworks (MOFs) and advanced zeolites, are examined for their high-water uptake, regeneration efficiency, and potential for operation under real climatic conditions. The Dubinin–Astakhov and modified Langmuir isotherm models are reviewed for their effectiveness in describing nonlinear sorption behaviors critical to performance modeling. In addition, component-level design strategies for adsorption-based AWH systems are discussed. The integration of solar energy is also discussed, highlighting recent prototypes and design strategies that have achieved water yields ranging from 0.1 to 2.5 L m−2/day and specific productivities up to 2.8 L kg−1 using MOF-801 at 20% RH. Despite notable progress, challenges remain, including limited productivity in non-optimized setups, thermal losses, long-term material stability, and scalability. This review concludes by identifying future directions for material development, system integration, and modeling approaches to advance the practical deployment of efficient and scalable AWH technologies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 3290 KB  
Article
Sodium Alginate-Pomegranate Peel Hydrogels for the Remediation of Heavy Metals from Water
by Punita Lalchand, Nirusha Thavarajah and Xavier Fernando
Technologies 2025, 13(8), 351; https://doi.org/10.3390/technologies13080351 - 8 Aug 2025
Viewed by 2060
Abstract
The use of agrochemicals in agriculture is widespread globally, as it enables increased crop yields. However, they also contain heavy metals such as copper and nickel, which can leach into the drinking water and harm the environment and human health. As such, it [...] Read more.
The use of agrochemicals in agriculture is widespread globally, as it enables increased crop yields. However, they also contain heavy metals such as copper and nickel, which can leach into the drinking water and harm the environment and human health. As such, it is imperative that they are removed from drinking water. One way to achieve this is through adsorption using biosorbents. This proof-of-concept study aimed to synthesize and characterize environmentally friendly hydrogels from sodium alginate (SA) and pomegranate peel powder (PPP). The gels were characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and water uptake tests. The FTIR analysis confirmed the presence of the expected functional groups, SEM revealed that incorporating PPP enhanced the roughness and porosity of the gels, and gels with PPP incorporation were able to absorb 1.58 times more water than SA-only gels. Moreover, their ability to remediate copper and nickel from contaminated water was tested. Here, the effects of contact time, pH, and adsorbent amount were tested for copper, demonstrating that the optimal contact time was 60 min, the optimal pH was ~5, and 0.01 g of adsorbent was needed for optimal adsorption. The effect of contact time was tested for nickel, and it was found that the optimal contact time was 5 min. Overall, these gels show promising results for the remediation of copper and nickel from contaminated water. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

27 pages, 5832 KB  
Article
Incorporation of Horizontal Aquifer Flow into a Vertical Vadose Zone Model to Simulate Natural Groundwater Table Fluctuations
by Vipin Kumar Oad, Adam Szymkiewicz, Tomasz Berezowski, Anna Gumuła-Kawęcka, Jirka Šimůnek, Beata Jaworska-Szulc and René Therrien
Water 2025, 17(14), 2046; https://doi.org/10.3390/w17142046 - 8 Jul 2025
Cited by 2 | Viewed by 2088
Abstract
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or [...] Read more.
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or quadratic drainage functions describing the relationship between groundwater head and flux. The results obtained by the modified HYDRUS-1D model were compared to the reference simulations with HydroGeoSphere (HGS), with explicit representation of 2D flow in unsaturated and saturated zones in a vertical cross-section of a strip aquifer, including evapotranspiration and plant water uptake. Four series of simulations were conducted for sand and loamy sand soil profiles with deep (6 m) and shallow (2 m) water tables. The results indicate that both linear and quadratic drainage functions can effectively capture groundwater table fluctuations and soil water dynamics. HYDRUS-1D demonstrates notable accuracy in simulating transient fluctuations but shows higher variability near the surface. The study concludes that both quadratic and linear drainage boundary conditions can effectively represent horizontal aquifer flow in 1D models, enhancing the ability of such models to simulate groundwater table fluctuations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 1735 KB  
Review
Immunomodulatory Potential and Biocompatibility of Chitosan–Hydroxyapatite Biocomposites for Tissue Engineering
by Davide Frumento and Ștefan Țălu
J. Compos. Sci. 2025, 9(6), 305; https://doi.org/10.3390/jcs9060305 - 17 Jun 2025
Cited by 10 | Viewed by 2298
Abstract
Chitosan–hydroxyapatite (CS-HAp) biocomposites, combining the biocompatibility and bioactivity of chitosan with the osteoconductive properties of hydroxyapatite, are emerging as promising candidates for tissue engineering applications. These materials consistently exhibit excellent cytocompatibility, with cell viability rates greater than 95% in MTT and Neutral Red [...] Read more.
Chitosan–hydroxyapatite (CS-HAp) biocomposites, combining the biocompatibility and bioactivity of chitosan with the osteoconductive properties of hydroxyapatite, are emerging as promising candidates for tissue engineering applications. These materials consistently exhibit excellent cytocompatibility, with cell viability rates greater than 95% in MTT and Neutral Red Uptake assays, and minimal cytotoxicity, as demonstrated by low levels of cell death in DAPI and Trypan blue staining. More importantly, CS-HAp biocomposites modulate the immune environment by enhancing the expression of anti-inflammatory cytokines (IL-10 and IL-4) and the pro-inflammatory cytokine TGF-β, while avoiding significant increases in TNF-α, IL-6, or NF-κB expression in fibroblast cells exposed to HAC and HACF scaffolds. In an in vivo dermatitis model, these biocomposites reduced mast cell counts and plasma histamine levels and significantly decreased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), JAK1/3, VEGF, and AnxA1 levels. Structurally, HACF scaffolds demonstrated larger average pore sizes (95 µm) compared to HAC scaffolds (74 µm), with porosities of 77.37 ± 2.4% and 65.26 ± 3.1%, respectively. These materials exhibited high swelling ability, equilibrium water content, and controlled degradation over a week in culture media. In addition to their immunomodulatory effects, CS-HAp composites promote essential cellular activities, such as attachment, proliferation, and differentiation, thereby supporting tissue integration and healing. Despite these promising findings, significant gaps remain in understanding the underlying mechanisms of immune modulation by CS-HAp biocomposites, and formulation-dependent variability raises concerns about reproducibility and clinical application. Therefore, a comprehensive review is essential to consolidate existing data, identify key knowledge gaps, and standardize the design of CS/HAp composites for broader clinical use, particularly in immunomodulatory and regenerative medicine contexts. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

21 pages, 1606 KB  
Article
Salt-Tolerant Bacteria Support Salinity Stress Mitigating Impact of Arbuscular Mycorrhizal Fungi in Maize (Zea mays L.)
by Randa M. Zaki, Aida H. Afify, Eman H. Ashour and Ahmed M. El-Sawah
Microorganisms 2025, 13(6), 1345; https://doi.org/10.3390/microorganisms13061345 - 10 Jun 2025
Cited by 5 | Viewed by 1484
Abstract
Egypt’s rapid population increase has resulted in higher water demand. It may significantly reduce the amount of water available for agriculture, increasing the chance of using saline water in agriculture. Using saline water certainly poses a major threat to maize growth and may [...] Read more.
Egypt’s rapid population increase has resulted in higher water demand. It may significantly reduce the amount of water available for agriculture, increasing the chance of using saline water in agriculture. Using saline water certainly poses a major threat to maize growth and may severely affect the growth and productivity of this important crop. Therefore, the aim of this study was to isolate newly native salt-tolerant bacteria from Egyptian saline soils and assess their ability to produce growth-promoting substances under salinity stress, as well as test the mitigating impact of these isolated salt-tolerant bacteria along with arbuscular mycorrhizal fungi (AMF) in maize plants under salinity stress. We isolated ninety-seven salt-tolerant bacterial isolates, and these isolates show a high ability to grow under different concentrations of NaCl. The nine most efficient isolates show a high ability to produce indole acetic acid (IAA), gibberellic acid (GA), P-solubilized exopolysaccharides (EPS), proline, and antioxidants under different NaCl concentrations. Using the 16S rRNA gene, the most effective isolate STB 89 was identified, and its impact, along with AMF, on the growth of salinity-stressed maize was tested in a pot experiment. Our results showed that the growth parameters (shoot length, root length, dry weight, and leaf area), photosynthetic-related pigments (Chlorophyll a, b, and carotenoids), NPK content, and antioxidant enzymes (PPO, POX, and CAT) were improved significantly at p ≤ 0.05 due to the bioinoculant applications, while reduced proline accumulation, Na uptake, and the Na+/K+ ratio in maize plant tissues were observed compared to the control plants. Moreover, the indices of AMF colonization in maize roots and the count of bacteria in the rhizosphere were enhanced due to the bioinoculant applications under salinity stress. In addition, we found that the combined application was more pronounced than the individual application impact. Hence, our results recommended that salt-tolerant bacteria (STB 89) could support salinity, mitigating the impact of AMF in maize plants, as well as allowing better practical techniques for maize cultivation and soil sustainability under salinity stress. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop