Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review
Abstract
1. Introduction
2. Global Challenge of Heavy Metal Pollution
2.1. Sources of Heavy Metal Contamination
2.2. Toxicity and Persistence
2.3. Effects on Biota
2.4. Food Safety Concerns
2.5. Biosafety Standards in Nano-Bioremediation
3. Current Global Trend of HMs Remediation Strategies
4. Microbial Bioremediation of HMs—An Overview
4.1. Bacterial Bioremediation
4.2. Fungal Bioremediation
4.3. Algal Bioremediation
4.4. Microbial Consortia-Based Bioremediation
Microbial Group | Species Name | Heavy Metals | Results or Key Findings | Reference |
---|---|---|---|---|
Bacteria | Bacillus strain MRS-2 (ATCC 55674) | Lead | High Pb biosorption capacity at the rate of 206.5 qmax (g/L) from wastewater | [64] |
Pseudomonas aeruginosa | Mercury | Capable of removing Hg under saline conditions | [96] | |
Bacillus megaterium and Rhizopus stolonifera | Nickel and cadmium | Remediate Ni and Cd by bioaccumulation | [97] | |
Sphingobium sp. SA2 | Mercury | Able to volatilize 79% Hg in Hg-supplemented culture solutions after 6 h | [98] | |
Bacillus sp., Microbacterium sp., Micrococcus sp., and Shigella sp. | Arsenic and uranium | Significantly remove As and U | [65] | |
Staphylococcus hominis AMB-2 | Cadmium and lead | Biosorption of Pb and Cd | [30] | |
Pannonibacter phragmitetus BB | Chromium | 99% Cr removal efficiency from soil | [99] | |
Micrococcus luteus DE2008 | Copper and lead | Able to absorb Pb and Cu | [31] | |
Staphylococcus aureus | Lead | 90% Pb removal capacity | [100] | |
Sphingomonas paucimobilis 20006FA | Chromium | Cr removal efficiency of 90% from artificial contaminated soil | [101] | |
Bacillus sp. MNU16 | Chromium | 75% Cr reduction capacity | [102] | |
Fungi | Aspergillus niger | Chromium | 100% reduction of Cr at concentrations ranging from 10 to 50 mg/L. | [103] |
Saccharomyces cerevisiae | Nickel, mercury, and lead | Remediated Pb (86%), Ni (47%), and Hg (69%) from aqueous medium | [104] | |
Penicillium sp., Trichoderma sp., and Aspergillus sp. | Cobalt and copper | High biosorption capacity of Cu and Co | [66] | |
Fusarium sp. | Lead, chromium, and copper. | Remediated Pb (83%), Cd (93%), and Cr (84%) from wastewater | [105] | |
Aspergillus nomius JAMK1 | Lead, copper, and nickel. | Remediated Pb (99.25%), Ni (80%), and Cu (86.31%) from aqueous medium at a concentration of 100 ppm | [106] | |
Ganoderma lucidum | Cadmium and lead | High Cd and Pb adsorption capacity from polluted water through precipitation mechanism | [107] | |
Aspergillus flavus | Arsenic | Capable of converting soluble As into As particles, which have less toxicity | [108] | |
Trichoderma sp. | Cadmium | Efficiently reduce Cd content and increase spinach growth | [109] | |
Penicillium sp. | Cadmium, lead, and mercury | Remediation efficiency of 80% for Cd, 99.6% for Hg, and 92.4% for Pb | [23] | |
Algae | Cladophora glomerate and Enteromorpha intestinalis | Chromium | Efficient in the removal of Cr from aqueous solution | [110] |
Chlorococcum humicola | Cobalt | Remediate Co with 44% efficiency through biosorption | [111] | |
Chlorella vulgaris | Manganese | 99% efficiency in the removal of Mn | [112] | |
Chlorophyceae sp. | Copper | 88% efficiency in the removal of Cu by bioaccumulation | [112] | |
Oedogonium westi | Nickel | 60–90% efficiency in the removal of Ni | [113] | |
Chlorophyceae sp. | Zinc | 92% efficiency in the removal of Zn | [112] | |
Phormidium ambiguum | Cadmium | 86% efficiency in the removal of Hg by bioaccumulation and biosorption | [114] | |
Enteromorpha intestinalis | Chromium | 93% efficiency in the removal of Cr by biosorption | [115] | |
Ulva Reticulata | Arsenic | 60% efficiency in the removal of As by biosorption | [116] | |
Phormidium ambiguum | Mercury | 97% efficiency in the removal of Hg through bioaccumulation and biosorption | [114] | |
Desmodesmus sp. AARLG074 | Copper | 80% efficiency in the removal of Cu by bioaccumulation and biosorption | [117] | |
Ulva lactuca | Mercury | 98% efficiency in the removal of Hg via bioaccumulation and biosorption | [118] | |
Yeast | Gelidium amansii | Lead | Pb biosorption with 100% efficacy | [68] |
Candida tropicalis | Chromium | 60–70% Cr removal efficacy | [119] | |
Saccharomyces cerevisiae | Chromium | 96% Cr removal efficacy | [120] | |
Microbial consortia | Bacillus subtilis and Staphylococcus aureus | Lead, chromium, arsenic, nickel, and zinc | High remediation of heavy metals from polluted soil potential | [121] |
Saccharomyces cerevisiae and Pseudomonas aeruginosa | Chromium | 99% Cr remediation efficiency from tannery effluents | [122] | |
Antrodia serialis, Paecilomyces lilacinus, and Penicillium cataractum | Arsenic, iron, copper, manganese, and chromium | Significantly reduce heavy metal contamination in soil by bioaugmentation | [123] | |
Pseudomonas aeruginosa and Bacillus subtilis | Chromium | Almost 100% Cr remediation efficiency from tannery effluents | [120] | |
Streptomyces sp. M7, Streptomyces sp. MC1, Streptomyces sp. A5, and Amycolatopsis tucumanensis | Chromium | 86% Cr removal efficiency from artificial contaminated soil | [69] | |
Acinetobacter sp. and Arthrobacter sp. | Chromium | 78% Cr remediation efficiency | [124] | |
Saccharomyces cerevisiae and Bacillus subtilis | Chromium | 97% Cr remediation efficiency from tannery effluents | [120] | |
Daldinia starbaeckii, Perenniporia subtephropora, Phanerochaete concrescens, Fusarium equiseti, Cerrena aurantiopora, Polyporales sp., Aspergillus fumigatus, Trametes versicolor and Aspergillus niger | Arsenic, iron, copper, manganese, and chromium | Significantly reduce heavy metal contamination in soil through bioaugmentation | [69] | |
Penicillium sp. A1 and Fusarium sp. A19 | Chromium, lead, copper, and zinc | Efficiently accumulate heavy metals | [124] | |
Pseudomonas pyogenes, Serratia marcescens, Erwnia amylovora, and Enterobacter cloacae | Lead, chromium, arsenic, nickel, and zinc | High remediation of heavy metals from polluted soil potential | [121] |
5. Underlying Mechanisms of Microbial Bioremediation
6. Multi-Omics Approach for Enhanced Bioremediation
7. Prospects and Limitations
Genetically Engineered Microbes and Their Prospects
Microbial Species | Studied Heavy Metals | Genetic Modification | Enhancement of Outcomes | Reference |
---|---|---|---|---|
Saccharomyces cerevisiae | Arsenic | Expression of WaarsM gene | Improve As tolerance via volatization | [129] |
Bacillus subtilis BR151 (pTOO24) | Cadmium | Luminescent cadmium sensors | Increase Cd bioavailability in soil | [143] |
Escherichia coli | Overexpression of Metalloregulatory protein ArsR | Improve specificity and affinity for As, which allow 100% As accumulation | [144] | |
Caulobacter crescentus JS4022/p723–6H | Cadmium | RsaA-6His fusion protein | Enhance Cd retrieving capacity in water | [145] |
Acidithiobacillus ferrooxidans | Mercury | Mercury ion transporter gene expression | High potential in the uptaking of Hg | [146] |
Bacillus Idriensis and Sphingomonas desiccabilis | Arsenic | Overexpression of the arsM gene | Augment As removal through biovolatization in soil and aqueous systems | [147] |
Pseudomonas putida | Chromium | Overexpression of ChrR | Increase Cr reduction | [148] |
Escherichia coli SE5000 | Nickel | Nickel transport system and metallothionein | Improve Cd uptake from aqueous solution | [149] |
Pseudomonas fluorescens OS8; Escherichia coli MC1061; Bacillus subtilis BR151 and Staphylococcus aureus RN4220 | Cadmium, mercury, and zinc | MerR/CadC/ZntR/Pmer/PcadA/PzntA | Enhance bioavailability of Cd, Zn, and Hg in soil | [150] |
Methylococcus capsulatus | Chromium | CrR genes for Cr (VI) reductase activity | Increase bioremediation of Cr | [151] |
Escherichia coli | Mercury | MerE protein encoded by transposon Tn21 | Boost Hg uptake | [152] |
Achromobacter sp. AO22 | Mercury | Mercury reductase expressing mer gene | Improve in situ bioremediation of Hg | [153] |
Escherichia coli JM109 | Mercury | Metalloregulatory protein MerR using an INP anchor | Enhance biosorption of Hg | [154] |
Escherichia coli | Arsenic | Co-expression of fMT with a specific arsenic transporter GlpF | Increase arsenic accumulation | [155] |
Deinococcus radiodurans | Mercury | Hg (II) resistance gene (merA) | Highly efficient in reducing Hg at higher temperatures and at ionizing radiation | [156] |
Pseudomonas putida 06909 | Cadmium | Expression of metal-binding peptide EC20 | Improve Cd binding and alleviate the cellular toxicity of Cd | [127] |
Escherichia coli | Nickel and cobalt | Overexpression of Serin acetyltransferase | Enhance resistance against Ni and Co | [157] |
Mesorhizobium huakuii B3 | Cadmium | Phytochelatin synthase (PCS) gene expression | Increase Cd accumulation | [158] |
Escherichia coli | Mercury | Expression of polyphosphate kinase and metallothionein | Boost Hg accumulation and tolerance | [159] |
8. Practical Challenges and Recommendations
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarker, A.; Masud, M.A.A.; Deepo, D.M.; Das, K.; Nandi, R.; Ansary, M.W.R.; Islam, A.R.M.T.; Islam, T. Biological and Green Remediation of Heavy Metal Contaminated Water and Soils: A State-of-the-Art Review. Chemosphere 2023, 332, 138861. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Rahman, M.A.; Onyena, A.P.; Kumar, R.; Sarker, A.; Hossain, M.B.; Islam, A.R.M.T.; Islam, S.; Rahman, M.; Jolly, Y.N.; et al. A Comprehensive Review of Heavy Metal Pollution in the Coastal Areas of Bangladesh: Abundance, Bioaccumulation, Health Implications, and Challenges. Environ. Sci. Pollut. Res. 2022, 29, 67532–67558. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation Strategies for Soils Contaminated with Heavy Metals: Modifications and Future Perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Kim, J.E.; Islam, A.R.M.T.; Bilal, M.; Rakib, M.R.J.; Nandi, R.; Rahman, M.M.; Islam, T. Heavy Metals Contamination and Associated Health Risks in Food Webs—A Review Focuses on Food Safety and Environmental Sustainability in Bangladesh. Environ. Sci. Pollut. Res. 2022, 29, 3230–3245. [Google Scholar] [CrossRef]
- Akhtar, F.Z.; Archana, K.M.; Krishnaswamy, V.G.; Rajagopal, R. Remediation of Heavy Metals (Cr, Zn) Using Physical, Chemical and Biological Methods: A Novel Approach. SN Appl. Sci. 2020, 2, 267. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent Advances in Soil Remediation Technology for Heavy Metal Contaminated Sites: A Critical Review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, A.K.; Kim, S.H.; Singh, S.P.; Chaturvedi, P.; Varjani, S. Critical Review on Microbial Community during In-Situ Bioremediation of Heavy Metals from Industrial Wastewater. Environ. Technol. Innov. 2021, 24, 101826. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Shah, M.P.; Verma, P. Bioremediation of Heavy Metals from Wastewater: A Current Perspective on Microalgae-Based Future. Lett. Appl. Microbiol. 2022, 75, 701–717. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Iqbal, M.A.; Islam, A.R.M.T.; Malafaia, G. A Critical Review of Sustainable Application of Biochar for Green Remediation: Research Uncertainty and Future Directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, M.; Chen, L.; Gong, Z.; Hu, J.; Ma, D. Electrokinetic Remediation for the Removal of Heavy Metals in Soil: Limitations, Solutions and Prospection. Sci. Total Environ. 2023, 903, 165970. [Google Scholar] [CrossRef]
- Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Singh, M.; Joshi, D.; Singh, J.; Suyal, D.C.; Kumar, A.; Rajput, V.D.; et al. Beneficial Microbiomes for Bioremediation of Diverse Contaminated Environments for Environmental Sustainability: Present Status and Future Challenges. Environ. Sci. Pollut. Res. 2021, 28, 24917–24939. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A Critical Review on the Phytoremediation of Heavy Metals from Environment: Performance and Challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef]
- Sreedevi, P.R.; Suresh, K.; Jiang, G. Bacterial Bioremediation of Heavy Metals in Wastewater: A Review of Processes and Applications. J. Water Process Eng. 2022, 48, 102884. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Hengl, T.; Mikac, N.; Gajić, B.A.; Kistler, H.C.; Radanović, I.; Forstner, U. Metal Contamination—A Global Environmental Issue: Sources, Implications and Advances in Mitigation. RSC Adv. 2025, 15, 7894–7915. [Google Scholar] [CrossRef]
- Gunawardena, J.; Ziyath, A.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Sources and Transport Pathways of Common Heavy Metals to Urban Road Surfaces. Ecol. Eng. 2015, 77, 98–102. [Google Scholar] [CrossRef]
- Jones, D.H.; Yu, X.; Guo, Q.; Duan, X.; Jia, C. Racial Disparities in the Heavy Metal Contamination of Urban Soil in the Southeastern United States. Int. J. Environ. Res. Public Health 2022, 19, 1105. [Google Scholar] [CrossRef]
- Khan, K.; Lu, Y.; Khan, H.; Zakir, S.; Ihsanullah; Khan, S.; Khan, A.A.; Wei, L.; Wang, T. Health Risks Associated with Heavy Metals in the Drinking Water of Swat, Northern Pakistan. J. Environ. Sci. 2013, 25, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Bello, O.S.; Agboola, O.S.; Adegoke, K.A. Sources of Various Heavy Metal Ions. In Heavy Metals in the Environment: Management Strategies for Global Pollution; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2023; pp. 4–59. [Google Scholar] [CrossRef]
- Torres, P.; Llopis, A.L.; Melo, C.S.; Rodrigues, A. Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source. J. Mar. Sci. Eng. 2023, 11, 100. [Google Scholar] [CrossRef]
- Sánchez-Castellón, J.; Urango-Cárdenas, I.; Enamorado-Montes, G.; Burgos-Nuñez, S.; Marrugo-Negrete, J.; Díez, S. Removal of Mercury, Cadmium, and Lead Ions by Penicillium sp. Front. Environ. Chem. 2022, 2, 795632. [Google Scholar] [CrossRef]
- Septian, A.; Masud, M.A.A.; Shin, W.S. Potassium Nickel Hexacyanoferrate–Polyacrylonitrile Composite for Removing Cobalt, Strontium, and Cesium from Radioactive Laundry Wastewater. Clean–Soil Air Water 2023, 51, e202300057. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.A.A.; Shin, W.S.; Septian, A.; Samaraweera, H.; Khan, I.J.; Mohamed, M.M.; Billah, M.M.; López-Maldonado, E.A.; Rahman, M.M.; Islam, A.R.M.T.; et al. Exploring the environmental pathways and challenges of fluoroquinolone antibiotics: A state-of-the-art review. Sci. Total Environ. 2024, 926, 171944. [Google Scholar] [CrossRef] [PubMed]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for Heavy Metal Removal: A Review. SN Appl. Sci. 2023, 5, 125. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Rahman, Z.; Thomas, L.; Singh, V.P. Biosorption of Heavy Metals by a Lead (Pb) Resistant Bacterium, Staphylococcus hominis Strain AMB-2. J. Basic Microbiol. 2019, 59, 477–486. [Google Scholar] [CrossRef]
- Puyen, Z.M.; Villagrasa, E.; Maldonado, J.; Diestra, E.; Esteve, I.; Solé, A. Biosorption of Lead and Copper by Heavy-Metal Tolerant Micrococcus luteus DE2008. Bioresour. Technol. 2012, 126, 233–237. [Google Scholar] [CrossRef]
- Danovaro, R.; Cocozza di Montanara, A.; Corinaldesi, C.; Dell’Anno, A.; Illuminati, S.; Willis, T.J.; Gambi, C. Bioaccumulation and Biomagnification of Heavy Metals in Marine Micro-Predators. Commun. Biol. 2023, 6, 1206. [Google Scholar] [CrossRef]
- Nelms, S.E.; Galloway, T.S.; Godley, B.J.; Jarvis, D.S.; Lindeque, P.K. Investigating Microplastic Trophic Transfer in Marine Top Predators. Environ. Pollut. 2018, 238, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Sarker, A.; Al Masud, M.A.M.; Ding, S.; Aminuzzaman, F.M. Harnessing Plant–Microorganism Interactions for Nano-Bioremediation of Heavy Metals: Cutting-Edge Advances and Mechanisms. Plant Trends 2025, 3, 1–12. [Google Scholar] [CrossRef]
- Obasi, C.N.; Frazzoli, C.; Orisakwe, O.E. Heavy Metals and Metalloids Exposure and In Vitro Fertilization: Critical Concerns in Human Reproductive Medicine. Front. Reprod. Health 2022, 4, 1037379. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Zhuzzhassarova, G.; Azarbayjani, F.; Zamaratskaia, G. Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia. Int. J. Mol. Sci. 2024, 25, 1590. [Google Scholar] [CrossRef]
- Lien, K.-W.; Pan, M.-H.; Ling, M.-P. Levels of Heavy Metal Cadmium in Rice (Oryza sativa L.) Produced in Taiwan and Probabilistic Risk Assessment for the Taiwanese Population. Environ. Sci. Pollut. Res. 2021, 28, 28035–28045. [Google Scholar] [CrossRef]
- Rodríguez, A.; Castrejón-Godínez, M.L.; Salazar-Bustamante, E.; Gama-Martínez, Y.; Sánchez-Salinas, E.; Mussali-Galante, P.; Tovar-Sánchez, E.; Ortiz-Hernández, M. Omics Approaches to Pesticide Biodegradation. Curr. Microbiol. 2020, 77, 545–563. [Google Scholar] [CrossRef]
- Morales, F.; Montserrat-de la Paz, S.; Leon, M.J.; Rivero-Pino, F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children’s Health Status: A Literature Review. Nutrients 2023, 16, 1. [Google Scholar] [CrossRef]
- Singh, Y.; Saxena, M.K. Insights into the Recent Advances in Nano-Bioremediation of Pesticides from the Contaminated Soil. Front. Microbiol. 2022, 13, 982611. [Google Scholar] [CrossRef]
- Shemawar; Mahmood, A.; Hussain, S.; Mahmood, F.; Iqbal, M.; Shahid, M.; Ibrahim, M.; Ali, M.A.; Shahzad, T. Toxicity of Biogenic Zinc Oxide Nanoparticles to Soil Organic Matter Cycling and Their Interaction with Rice-Straw Derived Biochar. Sci. Rep. 2021, 11, 8429. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Developments in Delegations on the Safety Assessment of Novel Foods and Feeds, April 2020–March 2021; OECD Series on Chemical Safety and Biosafety, ENV/CBC/MONO(2021)18; OECD Publishing: Paris, France, 2021. [Google Scholar]
- Manganyi, M.C.; Dikobe, T.B.; Maseme, M.R. Exploring the Potential of Endophytic Microorganisms and Nanoparticles for Enhanced Water Remediation. Molecules 2024, 29, 2858. [Google Scholar] [CrossRef]
- Das, T.; Prasad, A.; Dey, A. Mycoviral Gene-Incorporating Phytopathogenic Fungi: A Biocontrol Agent. Trends Plant Sci. 2023, 28, 864–866. [Google Scholar] [CrossRef]
- EFSA Panel on Nanotechnologies. Guidance on Risk Assessment of Nanomaterials in the Food and Feed Chain: Application to Nanoparticles. EFSA J. 2021, 19, e06768. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials 2022, 12, 769. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S.; Kim, D.G. Degradation of Phenol by Ball-Milled Activated Carbon (ACBM) Activated Dual Oxidant (Persulfate/Calcium Peroxide) System: Effect of Preadsorption and Sequential Injection. Chemosphere 2023, 312, 137120. [Google Scholar] [CrossRef]
- Sarker, A.; Shin, W.S.; Masud, M.A.A.; Nandi, R.; Islam, T. A Critical Review of Sustainable Pesticide Remediation in Contaminated Sites: Research Challenges and Mechanistic Insights. Environ. Pollut. 2024, 341, 122940. [Google Scholar] [CrossRef]
- Zheng, X.-J.; Li, Q.; Peng, H.; Zhang, J.-X.; Chen, W.-J.; Zhou, B.-C.; Chen, M. Remediation of Heavy Metal-Contaminated Soils with Soil Washing: A Review. Sustainability 2022, 14, 13058. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Gurajala, H.K.; Rashid, M.S.; He, Z.; Yang, X. Efficiency of Lime, Biochar, Fe Containing Biochar and Composite Amendments for Cd and Pb Immobilization in a Co-Contaminated Alluvial Soil. Environ. Pollut. 2020, 257, 113609. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.A.A.; Annamalai, S.; Shin, W.S. Remediation of Ciprofloxacin in Soil Using Peroxymonosulfate Activated by Ball-Milled Seaweed Kelp Biochar: Performance, Mechanism, and Phytotoxicity. Chem. Eng. J. 2023, 465, 142908. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S.; Kim, D.G. Fe-Doped Kelp Biochar-Assisted Peroxymonosulfate Activation for Ciprofloxacin Degradation: Multiple Active Site-Triggered Radical and Non-Radical Mechanisms. Chem. Eng. J. 2023, 471, 144519. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S. Recycling of Spent Superabsorbent Polymer into Nitrogen-Doped Carbon Catalyst for Enhanced Antibiotic Degradation in Groundwater. J. Water Process Eng. 2024, 64, 105567. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Kim, D.G.; Shin, W.S. Highly Efficient Degradation of Phenolic Compounds by Fe(II)-Activated Dual Oxidant (Persulfate/Calcium Peroxide) System. Chemosphere 2022, 299, 134392. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.A.A.; Kim, D.G.; Shin, W.S. Degradation of Phenol Using Fe(II)-Activated CaO2: Effect of Ball-Milled Activated Carbon (ACBM) Addition. Environ. Res. 2022, 214, 113882. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M.N. Genetically Engineered Microorganisms for Environmental Remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Ali, Q.; Zia, M.A.; Kamran, M.; Shabaan, M.; Zulfiqar, U.; Ahmad, M.; Iqbal, R.; Maqsood, M.F. Nanoremediation for Heavy Metal Contamination: A Review. Hybrid Adv. 2023, 4, 100091. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy Metals Removal from Aqueous Environments by Electrocoagulation Process–A Systematic Review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of Environmental Wastes: The Role of Microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Hoyle-Gardner, J.; Jones, W.; Badisa, V.L.D.; Mwashote, B.; Ibeanusi, V.; Gaines, T.; Lowenthal, H.; Tucker, L. Lead Metal Biosorption and Isotherms Studies by Metal-Resistant Bacillus Strain MRS-2 Bacterium. J. Basic Microbiol. 2021, 61, 697–708. [Google Scholar] [CrossRef]
- Bhakat, K.; Chakraborty, A.; Islam, E. Characterization of Arsenic Oxidation and Uranium Bioremediation Potential of Arsenic Resistant Bacteria Isolated from Uranium Ore. Environ. Sci. Pollut. Res. 2019, 26, 12907–12919. [Google Scholar] [CrossRef]
- Dusengemungu, L.; Kasali, G.; Gwanama, C.; Ouma, K.O. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Front. Microbiol. 2020, 11, 582016. [Google Scholar] [CrossRef]
- Al-Homaidan, A.A.; Al-Houri, H.J.; Al-Hazzani, A.A.; Elgaaly, G.; Moubayed, N.M.S. Biosorption of Copper Ions from Aqueous Solutions by Spirulina platensis Biomass. Arab. J. Chem. 2014, 7, 57–62. [Google Scholar] [CrossRef]
- El-Naggar, N.E.A.; Hamouda, R.A.; Mousa, I.E.; Abdel-Hamid, M.S.; Rabei, N.H. Biosorption Optimization, Characterization, Immobilization and Application of Gelidium amansii Biomass for Complete Pb2+ Removal from Aqueous Solutions. Sci. Rep. 2018, 8, 13456. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Pariatamby, A.; Ahmed, A.; Auta, H.S.; Hamid, F.S. Enhanced Bioremediation of Heavy Metal Contaminated Landfill Soil Using Filamentous Fungi Consortia: A Demonstration of Bioaugmentation Potential. Water Air Soil Pollut. 2019, 230, 1–12. [Google Scholar] [CrossRef]
- Alabssawy, A.; Hashem, A. Bioremediation of Hazardous Heavy Metals by Marine Microorganisms: A Recent Review. Arch. Microbiol. 2024, 206, 103. [Google Scholar] [CrossRef] [PubMed]
- Tasleem, M.; El-Sayed, A.-A.A.A.; Hussein, W.M.; Alrehaily, A. Pseudomonas putida Metallothionein: Structural Analysis and Implications of Sustainable Heavy Metal Detoxification in Madinah. Toxics 2023, 11, 864. [Google Scholar] [CrossRef]
- Ahmed, N.E.; Salem, S.S.; Hashem, A.H. Statistical Optimization, Partial Purification, and Characterization of Phytase Produced from Talaromyces purpureogenus NSA20 Using Potato Peel Waste and Its Application in Dyes De-Colorization. Biointerface Res. Appl. Chem. 2022, 12, 4417–4431. [Google Scholar]
- Singh, V.; Singh, J.; Singh, N.; Rai, S.N.; Verma, M.K.; Verma, M.; Singh, V.; Chivate, M.S.; Bilal, M.; Mishra, V. Simultaneous Removal of Ternary Heavy Metal Ions by a Newly Isolated Microbacterium paraoxydans Strain VSVM IIT (BHU) from Coal Washery Effluent. Biometals 2023, 36, 829–845. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism Remediation Strategies Towards Heavy Metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Yin, K.; Lv, M.; Wang, Q.; Wu, Y.; Liao, C.; Zhang, W.; Chen, L. Simultaneous Bioremediation and Biodetection of Mercury Ion through Surface Display of Carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res. 2016, 103, 383–390. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Biosorption and Removal of Toxic Heavy Metals by Metal Tolerating Bacteria for Bioremediation of Metal Contamination: A Comprehensive Review. J. Environ. Chem. Eng. 2020, 8, 104686. [Google Scholar] [CrossRef]
- Todorova, K.; Velkova, Z.; Stoytcheva, M.; Kirova, G.; Kostadinova, S.; Gochev, V. Novel Composite Biosorbent from Bacillus cereus for Heavy Metals Removal from Aqueous Solutions. Biotechnol. Biotechnol. Equip. 2019, 33, 730–738. [Google Scholar] [CrossRef]
- Malkoc, S.; Kaynak, E.; Guven, K. Biosorption of Zinc (II) on Dead and Living Biomass of Variovorax paradoxus and Arthrobacter viscosus. Desalin. Water Treat. 2016, 57, 15445–15454. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut. 2019, 9, 191203. [Google Scholar] [CrossRef]
- Hamba, Y.; Tamiru, M. Mycoremediation of Heavy Metals and Hydrocarbons Contaminated Environment. Asian J. Nat. Appl. Sci. 2016, 5, 48–58. [Google Scholar]
- Mani, D.; Kumar, C. Biotechnological Advances in Bioremediation of Heavy Metals Contaminated Ecosystems: An Overview with Special Reference to Phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef]
- Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Front. Microbiol. 2022, 13, 824084. [Google Scholar] [CrossRef]
- Smily, J.; Sumithra, P. Optimization of Chromium Biosorption by Fungal Adsorbent, Trichoderma sp. BSCR02 and Its Desorption Studies. HAYATI J. Biosci. 2017, 24, 65–71. [Google Scholar] [CrossRef]
- Deshaware, S.; Marathe, S.J.; Bedade, D.; Deska, J.; Shamekh, S. Investigation on Mycelial Growth Requirements of Cantharellus cibarius under Laboratory Conditions. Arch. Microbiol. 2021, 203, 1539–1545. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Sosa-Hernández, J.E.; Raza, A.; Nabeel, F.; Iqbal, H.M.N. Biosorption: An Interplay Between Marine Algae and Potentially Toxic Elements—A Review. Mar. Drugs 2018, 16, 65. [Google Scholar] [CrossRef]
- Redha, A.A. Removal of Heavy Metals from Aqueous Media by Biosorption. J. Assoc. Arab Univ. Basic Appl. Sci. 2020, 27, 183–193. [Google Scholar] [CrossRef]
- Li, X.; Feng, C.; Lei, M.; Luo, K.; Wang, L.; Liu, R.; Li, Y.; Hu, Y. Bioremediation of Organic/Heavy Metal Contaminants by Mixed Cultures of Microorganisms: A Review. Open Chem. 2022, 20, 793–807. [Google Scholar] [CrossRef]
- Morcillo, P.; Esteban, M.Á.; Cuesta, A. Heavy Metals Produce Toxicity, Oxidative Stress and Apoptosis in the Marine Teleost Fish SAF-1 Cell Line. Chemosphere 2016, 144, 225–233. [Google Scholar] [CrossRef]
- Di, S.; Yang, A. Overyielding Potential of Microalgal Polyculture with Complementary Light Absorption Spectra: A Model-Based Analysis. Biomass Bioenergy 2018, 118, 141–148. [Google Scholar] [CrossRef]
- Biswas, A.; Mailapalli, D.R.; Raghuwanshi, N.S. Treated Municipal Wastewater to Fulfil Crop Water Footprints and Irrigation Demand–A Review. Water Supply 2021, 21, 1398–1409. [Google Scholar] [CrossRef]
- Zhao, D.; Lai, S.; Ng, E.-P.; Khoo, K.S.; Show, P.-L.; Ling, T. Symbiosis of Microalgae and Bacteria Consortium for Heavy Metal Remediation in Wastewater. J. Environ. Chem. Eng. 2023, 11, 109943. [Google Scholar] [CrossRef]
- Gola, D.; Chawla, P.; Malik, A.; Ahammad, S. Development and Performance Evaluation of Native Microbial Consortium for Multi Metal Removal in Lab Scale Aerobic and Anaerobic Bioreactor. Environ. Technol. Innov. 2020, 18, 100714. [Google Scholar] [CrossRef]
- Sepehri, A.; Sarrafzadeh, M.-H.; Avateffazeli, M. Interaction Between Chlorella vulgaris and Nitrifying-Enriched Activated Sludge in the Treatment of Wastewater with Low C/N Ratio. J. Clean. Prod. 2020, 247, 119164. [Google Scholar] [CrossRef]
- Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of Microbial Consortia for Microbial Degradation of Complex Compounds. Front. Bioeng. Biotechnol. 2022, 10, 1051233. [Google Scholar] [CrossRef] [PubMed]
- Tarekegn, M.M.; Salilih, F.Z.; Ishetu, A.I. Microbes Used as a Tool for Bioremediation of Heavy Metal from the Environment. Cogent Food Agric. 2020, 6, 1783174. [Google Scholar] [CrossRef]
- Imron, M.F.; Kurniawan, S.B.; Soegianto, A. Characterization of Mercury-Reducing Potential Bacteria Isolated from Keputih Non-Active Sanitary Landfill Leachate, Surabaya, Indonesia under Different Saline Conditions. J. Environ. Manag. 2019, 241, 113–122. [Google Scholar] [CrossRef]
- Njoku, K.L.; Akinyede, O.R.; Obidi, O.F. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer. Sci. Afr. 2020, 10, e00545. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Megharaj, M.; Naidu, R. Bioremediation Potential of a Highly Mercury Resistant Bacterial Strain Sphingobium SA2 Isolated from Contaminated Soil. Chemosphere 2016, 144, 330–337. [Google Scholar] [CrossRef]
- Wang, S.; Liu, T.; Xiao, X.; Luo, S. Advances in Microbial Remediation for Heavy Metal Treatment: A Mini Review. J. Leather Sci. Eng. 2021, 3, 1. [Google Scholar] [CrossRef]
- Giwa, O.; Ibitoye, F. Bioremediation of Heavy Metal in Crude Oil Contaminated Soil Using Isolated Indigenous Microorganism Cultured with E. coli DE3 BL21. Int. J. Eng. Appl. Sci. 2017, 4, 257436. [Google Scholar]
- Ibarrolaza, A.; Coppotelli, B.M.; Del Panno, M.T.; Donati, E.R.; Morelli, I.S. Application of the Knowledge-Based Approach to Strain Selection for a Bioaugmentation Process of Phenanthrene- and Cr(VI)-Contaminated Soil. J. Appl. Microbiol. 2011, 111, 26–35. [Google Scholar] [CrossRef]
- Upadhyay, N.; Vishwakarma, K.; Singh, J.; Mishra, M.; Kumar, V.; Rani, R.; Mishra, R.K.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Tolerance and Reduction of Chromium(VI) by Bacillus sp. MNU16 Isolated from Contaminated Coal Mining Soil. Front. Plant Sci. 2017, 8, 778. [Google Scholar] [CrossRef]
- Xu, H.; Hao, R.; Xu, X.; Ding, Y.; Lu, A.; Li, Y. Removal of Hexavalent Chromium by Aspergillus niger through Reduction and Accumulation. Geomicrobiol. J. 2021, 38, 20–28. [Google Scholar] [CrossRef]
- Infante, J.C.; De Arco, R.D.; Angulo, M.E. Removal of Lead, Mercury and Nickel Using the Yeast Saccharomyces cerevisiae. Rev. MVZ Córdoba 2014, 19, 4141–4149. [Google Scholar] [CrossRef]
- Al-Hagar, O.E.; Bayoumi, R.A.; Aziz, O.A.; Mousa, A.M. Biosorption and Adsorption of Some Heavy Metals by Fusarium sp. F6c Isolate as Affected by Gamma Irradiation and Agricultural Wastes. ScienceAsia 2020, 46, 37–45. [Google Scholar] [CrossRef]
- Chatterjee, A.; Das, R.; Abraham, J. Bioleaching of Heavy Metals from Spent Batteries Using Aspergillus nomius JAMK1. Int. J. Environ. Sci. Technol. 2020, 17, 49–66. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, H.; Cheng, H.; Yan, Y.; Chang, M.; Cao, Y.; Huang, F.; Zhang, G.; Yan, M. Spent Ganoderma lucidum Substrate Derived Biochar as a New Bio-Adsorbent for Pb2+/Cd2+ Removal in Water. Chemosphere 2020, 241, 125121. [Google Scholar] [CrossRef]
- Mohd, S.; Kushwaha, A.S.; Shukla, J.; Mandrah, K.; Shankar, J.; Arjaria, N.; Saxena, P.N.; Khare, P.; Narayan, R.; Dixit, S.; et al. Fungal Mediated Biotransformation Reduces Toxicity of Arsenic to Soil Dwelling Microorganism and Plant. Ecotoxicol. Environ. Saf. 2019, 176, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Herliana, O.; Soesanto, L.; Mawadah, E. Phytobioremediation of Cadmium-Contaminated Soil Using Combination of Ipomoea reptans Poir and Trichoderma sp. and Its Effect on Spinach Growth and Yield. J. Degrad. Min. Land Manag. 2018, 6, 1519–1526. [Google Scholar] [CrossRef]
- Al-Homaidan, A.A.; Al-Qahtani, H.S.; Al-Ghanayem, A.A.; Ameen, F.; Ibraheem, I.B.M. Potential Use of Green Algae as a Biosorbent for Hexavalent Chromium Removal from Aqueous Solutions. Saudi J. Biol. Sci. 2018, 25, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Borah, D.; Kennedy, B.; Gopalakrishnan, S.; Chithonirai, A.; Nooruddin, T. Bioremediation and Biomass Production with the Green Microalga Chlorococcum humicola and Textile Mill Effluent (TE). Proc. Natl. Acad. Sci. India Sect. B 2020, 90, 415–423. [Google Scholar] [CrossRef]
- Saavedra, R.; Muñoz, R.; Taboada, M.E.; Vega, M.; Bolado, S. Comparative Uptake Study of Arsenic, Boron, Copper, Manganese and Zinc from Water by Different Green Microalgae. Bioresour. Technol. 2018, 263, 49–57. [Google Scholar] [CrossRef]
- Shamshad, I.; Khan, S.; Waqas, M.; Asma, M.; Nawab, J.; Gul, N.; Raiz, A.; Li, G. Heavy Metal Uptake Capacity of Fresh Water Algae (Oedogonium westti) from Aqueous Solution: A Mesocosm Research. Int. J. Phytoremediation 2016, 18, 393–398. [Google Scholar] [CrossRef]
- Shanab, S.; Essa, A.; Shalaby, E. Bioremoval Capacity of Three Heavy Metals by Some Microalgae Species (Egyptian Isolates). Plant Signal. Behav. 2012, 7, e19173. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, R.A.; El-Naggar, N.E.A.; Doleib, N.M.; Saddiq, A.A. Bioprocessing Strategies for Cost-Effective Simultaneous Removal of Chromium and Malachite Green by Marine Alga Enteromorpha intestinalis. Sci. Rep. 2020, 10, 13479. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, R.; Reddy Prasad, D.M.; Govindarajan, L.; Saravanakumar, K.; Naveen Prasad, B.S. Synthesis of Green Marine Algal-Based Biochar for Remediation of Arsenic(V) from Contaminated Waters in Batch and Column Mode of Operation. Int. J. Phytoremediat. 2020, 22, 279–286. [Google Scholar] [CrossRef]
- Buayam, N.; Davey, M.P.; Smith, A.G.; Pumas, C. Effects of Copper and pH on the Growth and Physiology of Desmodesmus sp. AARLG074. Metabolites 2019, 9, 84. [Google Scholar] [CrossRef]
- Henriques, B.; Rocha, L.S.; Lopes, C.B.; Figueira, P.; Monteiro, R.J.; Duarte, A.; Pardal, M.; Pereira, E. Study on Bioaccumulation and Biosorption of Mercury by Living Marine Macroalgae: Prospecting for a New Remediation Biotechnology Applied to Saline Waters. Chem. Eng. J. 2015, 281, 759–770. [Google Scholar] [CrossRef]
- Bahafid, W.; Tahri Joutey, N.; Sayel, H.; Boularab, I.; El Ghachtouli, N. Bioaugmentation of Chromium-Polluted Soil Microcosms with Candida tropicalis Diminishes Phytoavailable Chromium. J. Appl. Microbiol. 2013, 115, 727–734. [Google Scholar] [CrossRef]
- Benazir, J.F.; Suganthi, R.; Rajvel, D.; Pooja, M.P.; Mathithumilan, B. Bioremediation of Chromium in Tannery Effluent by Microbial Consortia. Afr. J. Biotechnol. 2010, 9, 3140–3143. [Google Scholar]
- Nwaehiri, U.L.; Akwukwaegbu, P.I.; Nwoke, B.E.B. Bacterial Remediation of Heavy Metal Polluted Soil and Effluent from Paper Mill Industry. Environ. Health Toxicol. 2020, 35, e2020007. [Google Scholar] [CrossRef]
- Polti, M.A.; Aparicio, J.D.; Benimeli, C.S.; Amoroso, M.J. Simultaneous Bioremediation of Cr(VI) and Lindane in Soil by Actinobacteria. Int. Biodeterior. Biodegrad. 2014, 88, 48–55. [Google Scholar] [CrossRef]
- De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Mar. Biotechnol. 2008, 10, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Cao, L.; Zhang, R. Combined Effects of Cu, Cd, Pb, and Zn on the Growth and Uptake of Consortium of Cu-Resistant Penicillium sp. A1 and Cd-Resistant Fusarium sp. A19. J. Hazard. Mater. 2009, 171, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Saxena, G.; Kishor, R.; Saratale, G.D.; Bharagava, R.N. Genetically Modified Organisms (GMOs) and Their Potential in Environmental Management: Constraints, Prospects, and Challenges. In Bioremediation of Industrial Waste for Environmental Safety; Bharagava, R., Saxena, G., Eds.; Springer: Singapore, 2019; pp. 1–19. [Google Scholar]
- Abo-Alkasem, M.I.; Hassan, N.H.; Abo Elsoud, M.M. Microbial Bioremediation as a Tool for the Removal of Heavy Metals. Bull. Natl. Res. Cent. 2023, 47, 31. [Google Scholar] [CrossRef]
- Wu, C.H.; Wood, T.K.; Mulchandani, A.; Chen, W. Engineering Plant–Microbe Symbiosis for Rhizoremediation of Heavy Metals. Appl. Environ. Microbiol. 2006, 72, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Singh, R.; Singh, R.; Pandey, S.; Rai, A.; Singh, V.K.; Rahul, B. Genetically Engineered Bacteria for the Degradation of Dye and Other Organic Compounds. In Abatement of Environmental Pollutants; Singh, P., Kumar, A., Borthakur, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–350. [Google Scholar]
- Verma, S.; Verma, P.; Chakrabarty, D. Arsenic Bio-Volatilization by Engineered Yeast Promotes Rice Growth and Reduces Arsenic Accumulation in Grains. Int. J. Environ. Res. 2019, 13, 475–485. [Google Scholar] [CrossRef]
- Gutleben, J.; Chaib De Mares, M.; Van Elsas, J.D.; Smidt, H.; Overmann, J.; Sipkema, D. The Multi-Omics Promise in Context: From Sequence to Microbial Isolate. Crit. Rev. Microbiol. 2018, 44, 212–229. [Google Scholar] [CrossRef]
- Meena, M.D.; Yadav, R.K.; Narjary, B.; Yadav, G.; Jat, H.S.; Sheoran, P.; Meena, M.K.; Antil, R.S.; Meena, B.L.; Singh, H.V.; et al. Municipal Solid Waste (MSW): Strategies to Improve Salt Affected Soil Sustainability—A Review. Waste Manag. 2019, 84, 38–53. [Google Scholar] [CrossRef]
- Lam, K.N.; Charles, T.C. Strong Spurious Transcription Likely Contributes to DNA Insert Bias in Typical Metagenomic Clone Libraries. Microbiome 2015, 3, 1. [Google Scholar] [CrossRef]
- Chen, G.; Bai, R.; Zhang, Y.; Zhao, B.; Xiao, Y. Application of Metagenomics to Biological Wastewater Treatment. Sci. Total Environ. 2022, 807, 150737. [Google Scholar] [CrossRef]
- Akao, P.K.; Kaplan, A.; Avisar, D.; Dhir, A.; Avni, A.; Mamane, H. Removal of Carbamazepine, Venlafaxine and Iohexol from Wastewater Effluent Using Coupled Microalgal–Bacterial Biofilm. Chemosphere 2022, 308, 136399. [Google Scholar] [CrossRef]
- Kumar, N.; Shukla, P. Microalgal-Based Bioremediation of Emerging Contaminants: Mechanisms and Challenges. Environ. Pollut. 2023, 337, 122591. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.L.; Gao, F. Phytohormones: Novel Strategy for Removing Emerging Contaminants and Recovering Resources. Trends Biotechnol. 2023, 41, 992–995. [Google Scholar] [CrossRef]
- Gutierrez, D.B.; Gant-Branum, R.L.; Romer, C.E.; Farrow, M.A.; Allen, J.L.; Dahal, N.; Nei, Y.-W.; Codreanu, S.G.; Jordan, A.T.; Palmer, L.D.; et al. An Integrated, High-Throughput Strategy for “Multi-Omic” Systems Level Analysis. J. Proteome Res. 2018, 17, 3396–3408. [Google Scholar] [CrossRef]
- Lim, J.; Park, C.; Kim, M.; Kim, H.; Kim, J.; Lee, D.-S. Advances in Single-Cell Omics and Multiomics for High-Resolution Molecular Profiling. Exp. Mol. Med. 2024, 56, 515–526. [Google Scholar] [CrossRef]
- Sanches, P.H.G.; de Melo, N.C.; Porcari, A.M.; de Carvalho, L.M. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology 2024, 13, 848. [Google Scholar] [CrossRef]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef]
- Kumar, L.; Bharadvaja, N. Enzymatic Bioremediation: A Smart Tool to Fight Environmental Pollutants. In Smart Bioremediation Technologies: Microbial Enzymes; Bhatt, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–118. [Google Scholar]
- Choudhury, S.; Chatterjee, A. Microbial Application in Remediation of Heavy Metals: An Overview. Arch. Microbiol. 2022, 204, 268. [Google Scholar] [CrossRef]
- Ivask, A.; Dubourguier, H.C.; Pollumaa, L.; Kahru, A. Bioavailability of Cd in 110 Polluted Top Soils to Recombinant Bioluminescent Sensor Bacteria: Effect of Soil Particulate Matter. J. Soils Sediments 2011, 11, 231–237. [Google Scholar] [CrossRef]
- Kostal, J.; Yang, R.; Wu, C.H.; Mulchandani, A.; Chen, W. Enhanced Arsenic Accumulation in Engineered Bacterial Cells Expressing ArsR. Appl. Environ. Microbiol. 2004, 70, 4582–4587. [Google Scholar] [CrossRef]
- Patel, J.; Zhang, Q.; Michael, R.; McKay, L.; Vincent, R.; Xu, Z. Genetic Engineering of Caulobacter crescentus for Removal of Cadmium from Water. Appl. Biochem. Biotechnol. 2010, 160, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Minakawa, T.; Miyazaki, A.; Silver, S.; Kusano, T. Functional Dissection of a Mercuric Ion Transporter MerC from Acidithiobacillus ferrooxidans. Biosci. Biotechnol. Biochem. 2005, 69, 1394–1402. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, F.; Chen, J.; Sun, G.X. Arsenic Removal from Contaminated Soil via Biovolatilization by Genetically Engineered Bacteria Under Laboratory Conditions. J. Environ. Sci. 2011, 23, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Ackerley, D.F.; Gonzalez, C.F.; Keyhan, M.; Blake, R.; Matin, A. Mechanism of Chromate Reduction by the Escherichia coli Protein NfsA and the Role of Different Chromate Reductases in Minimizing Oxidative Stress. Environ. Microbiol. 2004, 6, 851–860. [Google Scholar] [CrossRef]
- Deng, X.; Yi, X.E.; Liu, G. Cadmium Removal from Aqueous Solution by Gene Modified Escherichia coli JM109. J. Hazard. Mater. 2007, 139, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Rolova, T.; Kahru, A.; Ivask, A. Bioavailability of Cd, Zn and Hg in Soil to Recombinant Luminescent Metal Sensor Bacteria. Sensors 2008, 8, 6899–6923. [Google Scholar] [CrossRef]
- Hasin, A.A.; Gurman, S.J.; Murphy, L.M.; Perry, A.; Smith, T.J.; Gardiner, P.E. Remediation of Chromium (VI) by a Methane-Oxidizing Bacterium. Environ. Sci. Technol. 2010, 44, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Kiyono, M.; Sone, Y.; Nakamura, R.; Pan-Hou, H.; Sakabe, K. The MerE Protein Encoded by Transposon Tn21 Is a Broad Mercury Transporter in Escherichia coli. FEBS Lett. 2009, 583, 1127–1131. [Google Scholar] [CrossRef]
- Ng, S.P.; Davis, B.; Polombo, E.A.; Bhave, M. Tn5051-Like Mer-Containing Transposon Identified in a Heavy Metal Tolerant Strain Achromobacter sp. AO22. BMC Res. Notes 2009, 7, 2–38. [Google Scholar] [CrossRef]
- Bae, W.; Wu, C.H.; Kostal, J.; Mulchandani, A.; Chen, W. Enhanced Mercury Biosorption by Bacterial Cells with Surface-Displayed MerR. Appl. Environ. Microbiol. 2003, 69, 3176–3180. [Google Scholar] [CrossRef]
- Singh, S.; Kang, S.H.; Mulchandani, A.; Chen, W. Bioremediation: Environmental Cleanup Through Pathway Engineering. Curr. Opin. Biotechnol. 2008, 19, 437–444. [Google Scholar] [CrossRef]
- Brim, H.; McFarlan, S.C.; Fredrickson, J.K.; Minton, K.W.; Zhai, M.; Wackett, L.P.; Daly, M.J. Engineering Deinococcus radiodurans for Metal Remediation in Radioactive Mixed Waste Environments. Nat. Biotechnol. 2000, 18, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.L.; Persans, M.W.; Nieman, K.; Salt, D.E. Nickel and Cobalt Resistance Engineered in Escherichia coli by Overexpression of Serine Acetyltransferase from the Nickel Hyperaccumulator Plant Thlaspi goesingense. Appl. Environ. Microbiol. 2005, 71, 8627–8633. [Google Scholar] [CrossRef] [PubMed]
- Sriprang, R.; Hayashi, M.; Ono, H.; Takagi, M.; Hirata, K.; Murooka, Y. Enhanced Accumulation of Cd2+ by a Mesorhizobium sp. Transformed with a Gene from Arabidopsis thaliana Coding for Phytochelatin Synthase. Appl. Environ. Microbiol. 2003, 69, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, O.N.; Alvarez, D.; Gonzalez-Ruiz, G.; Torres, C. Characterization of Mercury Bioremediation by Transgenic Bacteria Expressing Metallothionein and Polyphosphate Kinase. BMC Biotechnol. 2011, 11, 82. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Samaraweera, H.; Mondol, M.M.H.; Septian, A.; Kumar, R.; Terry, L.G. Iron biochar synergy in aquatic systems through surface functionalities electron transfer and reactive species dynamics. Npj Clean Water 2025, 8, 46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, K.; Masud, M.A.A.; Sarker, A.; Arafa, R.A.; Patel, M. Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review. Sustainability 2025, 17, 7357. https://doi.org/10.3390/su17167357
Das K, Masud MAA, Sarker A, Arafa RA, Patel M. Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review. Sustainability. 2025; 17(16):7357. https://doi.org/10.3390/su17167357
Chicago/Turabian StyleDas, Kallol, Md Abdullah Al Masud, Aniruddha Sarker, Ramadan A. Arafa, and Margi Patel. 2025. "Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review" Sustainability 17, no. 16: 7357. https://doi.org/10.3390/su17167357
APA StyleDas, K., Masud, M. A. A., Sarker, A., Arafa, R. A., & Patel, M. (2025). Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review. Sustainability, 17(16), 7357. https://doi.org/10.3390/su17167357