Synergistic Effects of Non-Thermal Plasma Exposure Time and Drought on Alfalfa (Medicago sativa L.) Germination, Growth and Biochemical Responses
Abstract
1. Introduction
2. Results and Discussion
2.1. Alfalfa Seed Wettability
2.2. Surface Structural Changes in Alfalfa Seeds Coats After NTP Exposure
2.2.1. SEM
2.2.2. ATR-FTIR
2.3. Effect of NTP Exposure Time on Imbibition and Germination of Alfalfa Seeds
2.4. Effects of NTP on Growth and Production of Alfalfa Plants Grown Under Different Field Capacity Levels
2.4.1. Fresh Weight
2.4.2. Dry Weight
2.4.3. Stem Elongation
2.4.4. Root Elongation
2.5. Biochemical Composition
2.5.1. Chlorophylls and Carotenoids
2.5.2. Proteins
2.5.3. Total Polyphenol Content (TPC) and Total Flavonoid Content (TFC)
2.5.4. Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Plasma Treatment
3.3. Seeds Surface Characterization (WCA, SEM, FTIR)
3.3.1. Water Contact Angle (WCA)
3.3.2. Scanning Electron Microscopy (SEM)
3.3.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.4. Experiments in Petri Dishes
3.4.1. Seeds Water Imbibition
3.4.2. Seeds Germination
3.5. Experiment in Pots Under Different Field Capacities
3.6. Biomass Production and Growth
3.6.1. Fresh and Dry Weights
3.6.2. Stem and Roots Length
3.7. Biochemical and Antioxidant Analyses
3.7.1. Chlorophylls and Carotenoids
3.7.2. Protein Content
3.7.3. Total Polyphenol Contents (TPC) & Total Flavonoids Contents (TFC)
3.7.4. Antioxidant Capacity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NTP | Non-thermal plasma |
| SEM | Scanning Electron Microscopy |
| FTIR-ATR | Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance |
| WCA | Water contact angel |
| FC | Field capacity |
| TPC | Total polyphenol contents |
| TFC | Total flavonoids contents (TFC) |
References
- Wang, R.; Yang, Y.; Wang, X.; Li, J.; Gao, Y.; Huang, H.; Zhou, Z.; Wang, P.; Zhao, L. Response of seed germination and seedling growth of perennial ryegrass (Lolium perenne L.) to drought, salinity, and pH in Karst regions. Sci. Rep. 2025, 15, 16874. [Google Scholar] [CrossRef]
- Bormashenko, E.; Grynyov, R.; Bormashenko, Y.; Drori, E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci. Rep. 2012, 2, 741. [Google Scholar] [CrossRef] [PubMed]
- Sivachandiran, L.; Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, L.; Li, J.; Hou, D.; Zeng, B.; Zhang, L.; Liu, C.; Bi, Q.; Tan, J.; Yu, X.; et al. Factors influencing seed dormancy and germination and advances in seed priming technology. Plants 2024, 13, 1319. [Google Scholar] [CrossRef]
- Kumar, S.P.; Chintagunta, A.D.; Lichtfouse, E.; Naik, B.; Kumari, K.; Kumar, S. Non-thermal plasmas for disease control and abiotic stress management in plants. Environ. Chem. Lett. 2022, 20, 2135–2164. [Google Scholar] [CrossRef]
- Sultan, S.M.E.; Yousef, A.F.; Ali, W.M.; Mohamed, A.A.A.; Ahmed, A.-R.M.; Shalaby, M.E.; Teiba, I.I.; Hassan, A.M.; Younes, N.A.; Kotb, E.F. Cold atmospheric plasma enhances morphological and biochemical attributes of tomato seedlings. BMC Plant Biol. 2024, 24, 420. [Google Scholar] [CrossRef]
- Benabderrahim, M.A.; Bettaieb, I.; Rejili, M. Boosting seed performance with cold plasma. Appl. Sci. 2025, 15, 10996. [Google Scholar] [CrossRef]
- Holc, M.; Gselman, P.; Primc, G.; Vesel, A.; Mozetič, M.; Recek, N. Wettability and water uptake improvement in plasma-treated alfalfa seeds. Agriculture 2022, 12, 96. [Google Scholar] [CrossRef]
- Mohajer, M.H.; Monfaredi, M.; Rahmani, M.; Martami, M.; Razaghiha, E.; Mirjalili, M.H.; Hamidi, A.; Ghomi, H.R. Impact of dielectric barrier discharge plasma and plasma-activated water on cotton seed germination and seedling growth. Heliyon 2024, 10, e38160. [Google Scholar] [CrossRef] [PubMed]
- Starič, P.; Vogel-Mikuš, K.; Mozetič, M.; Junkar, I. Effects of nonthermal plasma on morphology, genetics and physiology of seeds: A review. Plants 2020, 9, 1736. [Google Scholar] [CrossRef]
- Molina, R.; Lalueza, A.; López-Santos, C.; Ghobeira, R.; Cools, P.; Morent, R.; De Geyter, N.; González-Elipe, A.R. Physicochemical surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds. Plasma Process. Polym. 2021, 18, 2000086. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Meng, Y.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chem. Plasma Process. 2017, 37, 1621–1634. [Google Scholar] [CrossRef]
- Park, Y.; Oh, K.S.; Oh, J.; Seok, D.C.; Kim, S.B.; Yoo, S.J.; Lee, M.J. Biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Process. Polym. 2018, 15, 1600056. [Google Scholar] [CrossRef]
- Molina, R.; López-Santos, C.; Gómez-Ramírez, A.; Vílchez, A.; Espinós, J.P.; González-Elipe, A.R. Influence of irrigation conditions in the germination of plasma-treated Nasturtium seeds. Sci. Rep. 2018, 8, 16442. [Google Scholar] [CrossRef]
- Waskow, A.; Howling, A.; Furno, I. Advantages and limitations of surface analysis techniques on plasma-treated Arabidopsis thaliana seeds. Front. Mater. 2021, 8, 642099. [Google Scholar] [CrossRef]
- Canteri, M.H.; Renard, C.M.; Le Bourvellec, C.; Bureau, S. ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydr. Polym. 2019, 212, 186–196. [Google Scholar] [CrossRef]
- Heredia-Guerrero, J.A.; Benítez, J.J.; Domínguez, E.; Bayer, I.S.; Cingolani, R.; Athanassiou, A.; Heredia, A. Infrared and Raman spectroscopic features of plant cuticles: A review. Front. Plant Sci. 2014, 5, 305. [Google Scholar] [CrossRef]
- Lei, Y.; Hannoufa, A.; Christensen, D.; Shi, H.; Prates, L.L.; Yu, P. Molecular structural changes in alfalfa detected by ATR-FTIR spectroscopy in response to silencing of TT8 and HB12 genes. Int. J. Mol. Sci. 2018, 19, 1046. [Google Scholar] [CrossRef]
- Luan, X.; Song, Z.; Xu, W.; Li, Y.; Ding, C.; Chen, H. Spectral characteristics on increasing hydrophilicity of alfalfa seeds treated with alternating current corona discharge field. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 236, 118350. [Google Scholar] [CrossRef]
- Puițel, A.C.; Bârjoveanu, G.; Balan, C.D.; Nechita, M.T. Medicago sativa stems—A multi-output integrated biorefinery approach. Polymers 2025, 17, 1709. [Google Scholar] [CrossRef]
- Ramlath, K.; Sajna, P.; Nusrath, P.; Rajesh, C. Isolation and characterisation of cellulose fibre from Pennisetum polystachion and its application in biocomposites with EPDM rubber. Cellul. Chem. Technol. 2023, 57, 10. [Google Scholar] [CrossRef]
- Tomeková, J.; Kyzek, S.; Medvecká, V.; Gálová, E.; Zahoranová, A. Influence of cold atmospheric pressure plasma on pea seeds: DNA damage of seedlings and optical diagnostics of plasma. Plasma Chem. Plasma Process. 2020, 40, 1571–1584. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Zhang, H.; Qu, G.; Wang, T.; Sun, Q.; Liang, D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017, 7, 16680. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Jiangang, L.; Minchong, S.; Chunlei, Z.; Yuanhua, D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci. Rep. 2015, 5, 13033. [Google Scholar] [CrossRef] [PubMed]
- Matra, K. Non-thermal plasma for germination enhancement of radish seeds. Procedia Comput. Sci. 2016, 86, 132–135. [Google Scholar] [CrossRef]
- Jiang, J.; He, X.; Li, L.; Li, J.; Shao, H.; Xu, Q.; Ye, R.; Dong, Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014, 16, 54. [Google Scholar] [CrossRef]
- Abeysingha, D.N.; Dinesh, S.; Kottage, S.M.; Chen, L.; Roopesh, M.S.; Thilakarathna, M.S. Effects of cold plasma seed treatment on pea (Pisum sativum L.) plant performance under drought and well-watered conditions. PLoS ONE 2025, 20, e0322108. [Google Scholar] [CrossRef]
- Ling, L.; Jiafeng, J.; Jiangang, L.; Minchong, S.; Xin, H.; Hanliang, S.; Yuanhua, D. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef]
- Shan, D.; Wang, C.; Song, H.; Bai, Y.; Zhang, H.; Hu, Z.; Wang, L.; Shi, K.; Zheng, X.; Yan, T.; et al. The MdMEK2–MdMPK6–MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. Plant J. 2021, 108, 814–828. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S.; Wang, B.; Zhao, J. Physiological and biochemical changes in drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiol. Plant. 2018, 40, 25. [Google Scholar] [CrossRef]
- Medyouni, I.; Zouaoui, R.; Rubio, E.; Serino, S.; Ahmed, H.B.; Bertin, N. Effects of water deficit on leaves and fruit quality during tomato development. Food Sci. Nutr. 2021, 9, 1949–1960. [Google Scholar] [CrossRef]
- Waskow, A.; Howling, A.; Furno, I. Mechanisms of plasma-seed treatments as a potential seed processing technology. Front. Phys. 2021, 9, 617345. [Google Scholar] [CrossRef]
- Saini, R.; Das, R.; Adhikary, A.; Kumar, R.; Singh, I.; Nayyar, H.; Kumar, S. Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.). Plant Cell Rep. 2022, 41, 2005–2022. [Google Scholar] [CrossRef]
- Čėsnienė, I.; Čėsna, V.; Mildažienė, V.; Miškelytė, D.; Vaitiekūnaitė, D.; Sirgedaitė-Šėžienė, V. The impact of seed treatment with cold plasma on antioxidants, sugars, and pigments in needles of Norway spruce is genotype-dependent. Plants 2025, 14, 1404. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M. Plant drought stress: Effects, mechanisms and management. J. Sustain. Agric. 2009, 153, 188. [Google Scholar] [CrossRef]
- Mildaziene, V.; Ivankov, A.; Sera, B.; Baniulis, D. Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants 2022, 11, 856. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Priatama, R.A.; Pervitasari, A.N.; Park, S.; Park, S.J.; Lee, Y.K. Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth. Int. J. Mol. Sci. 2022, 23, 4609. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Gusein-Zade, N.; Burmistrov, D.E.; Kolik, L.V.; Dorokhov, A.S.; Izmailov, A.Y.; Shokri, B.; Gudkov, S.V. Advancements in plasma agriculture: A review of recent studies. Int. J. Mol. Sci. 2023, 24, 15093. [Google Scholar] [CrossRef] [PubMed]
- Patil, J.R.; Mhatre, K.J.; Yadav, K.; Yadav, L.S.; Srivastava, S.; Nikalje, G.C. Flavonoids in plant–environment interactions and stress responses. Discov. Plants 2024, 1, 68. [Google Scholar] [CrossRef]
- Mehravi, S.; Hanifei, M.; Gholizadeh, A.; Khodadadi, M. Water deficit stress changes in physiological, biochemical and antioxidant characteristics of anise (Pimpinella anisum L.). Plant Physiol. Biochem. 2023, 201, 107806. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Yu, N.N.; Zheng, W.; Zhang, L.N.; Liu, Y.; Yu, J.B.; Zhang, Y.Q.; Park, G.; Sun, H.N.; Kwon, T. Effect of non-thermal plasma (NTP) on common sunflower (Helianthus annuus L.) seed growth via upregulation of antioxidant activity and energy metabolism-related gene expression. Plant Growth Regul. 2021, 95, 271–281. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Molina, R.; Ligero, C.; Jovančić, P.; Bertran, E. In situ polymerization of aqueous solutions of NIPAAm initiated by atmospheric plasma treatment. Plasma Process. Polym. 2013, 10, 506–516. [Google Scholar] [CrossRef]








| Plasma | FW (mg/Plant) | DW (mg/Plant) | SL (mm) | RL (mm) | |
|---|---|---|---|---|---|
| Full field capacity (100% FC) | UT | 77.0 ± 7.5 a | 16.8 ± 2.9 a | 31.8 ± 11.3 b | 27.4 ± 1.9 c |
| 1 min | 78.8 ± 8.7 a | 17.0 ± 6.7 a | 42.9 ± 4.0 a | 51.0 ± 8.0 ab | |
| 5 min | 78.0 ± 36.2 a | 20.0 ± 12.4 a | 44.4 ± 10.3 a | 49.9 ± 9.2 ab | |
| 10 min | 64.3 ± 12.3 ab | 19.5 ± 7.6 a | 34.6 ± 8.7 ab | 46.6 ± 3.0 b | |
| Moderate water deficit (60% FC) | UT | 52.3 ± 10.8 b | 13.3 ± 5.0 b | 25.4 ± 2.2 b | 48.5 ± 8.5 ab |
| 1 min | 94.8 ± 25.0 a | 29.5 ± 10.1 a | 33.5 ± 1.6 ab | 40.9 ± 2.8 b | |
| 5 min | 120.8 ± 30.2 a | 31.3 ± 4.6 a | 38.5 ± 9.6 a | 58.0 ± 7.1 a | |
| 10 min | 82.8 ± 39.4 a | 23.0 ± 12.8 ab | 32.9 ± 10.9 ab | 62.5 ± 24.0 a | |
| Severe water deficit (30% FC) | UT | 65.5 ± 18.0 ab | 20.0 ± 6.0 a | 20.1 ± 6.7 ab | 49.9 ± 7.2 a |
| 1 min | 48.5 ± 25.6 b | 14.5 ± 5.8 ab | 17.4 ± 2.9 b | 45.3 ± 2.2 ab | |
| 5 min | 43.8 ± 18.4 b | 13.0 ± 7.0 ab | 22.7 ± 5.3 a | 52.0 ± 7.7 a | |
| 10 min | 44.3 ± 4.2 b | 19.3 ± 5.1 a | 20.9 ± 3.3 ab | 40.8 ± 1.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Benabderrahim, M.A.; Bettaieb, I.; Secco, V.; Hannachi, H.; Molina, R. Synergistic Effects of Non-Thermal Plasma Exposure Time and Drought on Alfalfa (Medicago sativa L.) Germination, Growth and Biochemical Responses. Int. J. Mol. Sci. 2026, 27, 330. https://doi.org/10.3390/ijms27010330
Benabderrahim MA, Bettaieb I, Secco V, Hannachi H, Molina R. Synergistic Effects of Non-Thermal Plasma Exposure Time and Drought on Alfalfa (Medicago sativa L.) Germination, Growth and Biochemical Responses. International Journal of Molecular Sciences. 2026; 27(1):330. https://doi.org/10.3390/ijms27010330
Chicago/Turabian StyleBenabderrahim, Mohamed Ali, Imen Bettaieb, Valentina Secco, Hedia Hannachi, and Ricardo Molina. 2026. "Synergistic Effects of Non-Thermal Plasma Exposure Time and Drought on Alfalfa (Medicago sativa L.) Germination, Growth and Biochemical Responses" International Journal of Molecular Sciences 27, no. 1: 330. https://doi.org/10.3390/ijms27010330
APA StyleBenabderrahim, M. A., Bettaieb, I., Secco, V., Hannachi, H., & Molina, R. (2026). Synergistic Effects of Non-Thermal Plasma Exposure Time and Drought on Alfalfa (Medicago sativa L.) Germination, Growth and Biochemical Responses. International Journal of Molecular Sciences, 27(1), 330. https://doi.org/10.3390/ijms27010330

