Effects of Cardboard Box Ventilation Hole Size During Forced-Air Precooling on Postharvest Quality and Physiological Properties in Cut Roses
Abstract
1. Introduction
2. Materials and Methods
2.1. FAC Device
2.2. Plant Material and Treatments
2.3. Airflow Rate
2.4. Cooling Rate
2.5. Fresh Weight Loss Rate of Cut Roses
2.6. Leaf Relative Water Content, Transpiration Rate, and Stomatal Aperture of Cut Roses
2.7. Water Uptake and Transpiration Rates of Cut Roses
2.8. Respiration Rate and Cumulative Respiration Amount of Cut Roses
2.9. B. cinerea Incidence and Vase Life of Cut Roses
2.10. Statistical Analysis
3. Results
3.1. Cooling Efficiency of FAC in Cut Roses
3.2. Effect of FAC on Vase Life and B. cinerea Incidence in Cut Roses
3.3. Effect of Forced-Air Cooling on Respiration, Transpiration, and Water Uptake Rates of Cut Roses
3.4. Effect of FAC on Stomatal Function in Cut Roses
3.5. Correlation Analysis of Measured Indices
4. Discussion
4.1. Influence of Vent Hole Diameter on Commercial Quality of FAC-Treated Cut Roses
4.2. FAC Prolongs Vase Life Through Regulation of Respiration and Transpiration Properties in Cut Flowers
4.3. Stomatal Function Modulation by FAC Regulates Physiological Properties in Cut Flowers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, W.; Gong, F.; Zhang, Y.; Wang, R.; Liu, H.; Wei, Y.; Tang, K.; Jiang, Y.; Gao, J.; Sun, X. Cytokinin-responsive RhRR1–RhSCL28 transcription factor module positively regulates petal size by promoting cell division in rose. J. Exp. Bot. 2025, 76, 381–392. [Google Scholar] [CrossRef]
- Chen, C.; Hussain, N.; Ma, Y.; Zuo, L.; Jiang, Y.; Sun, X.; Gao, J. The ARF2–MYB6 module mediates auxin-regulated petal expansion in rose. J. Exp. Bot. 2023, 74, 4489–4502. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, C.; Zhao, Y.; Zhang, B.; Wu, Z.; Sun, X.; Gao, J. Transcription factors RhPIF4/8 and RhHY5 regulate autophagy-mediated petal senescence in rose (Rosa hybrida). Hortic. Adv. 2023, 1, 17. [Google Scholar] [CrossRef]
- Reid, M. Advances in shipping and handling of ornamentals. Acta Hortic. 2001, 543, 277–284. [Google Scholar] [CrossRef]
- Reid, M.S. Handling of cut flowers for air transport. In IATA Perishable. Cargo Manual Flowers; IATA: Montreal, QC, Canada, 2000; pp. 1–24. [Google Scholar]
- Leonard, R.T.; Alexander, A.M.; Nell, T.A. Postharvest performance of selected colombian cut flowers after three transport systems to the united states. Horttechnology 2011, 21, 435–442. [Google Scholar] [CrossRef]
- Ambaw, A.; Fadiji, T.; Opara, U.L. Thermo-mechanical analysis in the fresh fruit cold chain: A review on recent advances. Foods 2021, 10, 1357. [Google Scholar] [CrossRef] [PubMed]
- Elansari, A.M.; Fenton, D.L.; Callahan, C.W. Precooling. In Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 161–207. [Google Scholar] [CrossRef]
- Toan, K.N.; Youn, O.J.; Jin, H.L. Tools for cut flower for export: Is it a genuine challenge from growers to customers? Flower Res. J. 2020, 28, 241–249. [Google Scholar] [CrossRef]
- Yan, J.; Song, Y.; Li, J.; Jiang, W. Forced-air precooling treatment enhanced antioxidant capacities of apricots. J. Food Process Preserv. 2018, 42, e13320. [Google Scholar] [CrossRef]
- Cortbaoui, P.; Goyette, B.; Gariépy, Y.; Charles, M.T.; Raghavan, V.G.; Vigneault, C. Forced air cooling system for Zea mays. J. Food Agric. Environ. 2006, 4, 100. [Google Scholar] [CrossRef]
- Zhang, J.; Teng, J.; Liang, J.; Gibson, B.W.; Zhang, W.; Li, A.; Cheng, Y.; Zeng, Y. Effect of different pre-cooling strategies on the storage quality of kiwifruit. Sci. Hortic. 2025, 344, 114105. [Google Scholar] [CrossRef]
- Shilpa; Mahajan, B.V.C.; Singh, N.P.; Bhullar, K.S.; Kaur, S. Forced air cooling delays pericarp browning and maintains post-harvest quality of litchi fruit during cold storage. Acta Physiol. Plant 2022, 44, 66. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Liu, Y.; Huang, C.; Wu, Y.; Guo, H.; Chen, C.; Zeng, K.; Yao, S. Forced air pre-cooling effect on broccoli storage quality and reactive oxygen species metabolism. Food Ferment. Ind. 2023, 49, 227–235. [Google Scholar] [CrossRef]
- Jiao, X.; Gao, Y.; Gao, Z.; Zhang, X.; Feng, Z.; Zhang, L.; Bai, Y. Improving quality and antioxidant capacity of nectarine by forced-air precooling during storage and transportation. Food Ferment. Ind. 2020, 46, 173–179. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Yan, J.; Song, H.; Jiang, W. Forced air precooling enhanced storage quality by activating the antioxidant system of mango fruits. J. Food Qual. 2019, 2019, 1606058. [Google Scholar] [CrossRef]
- Fanourakis, D.; Pieruschka, R.; Savvides, A.; Macnish, A.J.; Sarlikioti, V.; Woltering, E.J. Sources of vase life variation in cut roses: A review. Postharvest Biol. Technol. 2013, 78, 1–15. [Google Scholar] [CrossRef]
- Sun, X.; Qin, M.; Yu, Q.; Huang, Z.; Xiao, Y.; Li, Y.; Ma, N.; Gao, J. Molecular understanding of postharvest flower opening and senescence. Mol. Hortic. 2021, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Fanourakis, D.; Papadopoulou, E.; Valla, A.; Tzanakakis, V.A.; Nektarios, P.A. Partitioning of transpiration to cut flower organs and its mediating role on vase life response to dry handling: A case study in chrysanthemum. Postharvest Biol. Technol. 2021, 181, 111636. [Google Scholar] [CrossRef]
- Daneshmand, B.; Gholami, M.; Etemadi, N.; Ehtemam, M.H. The water relation parameters are associated with the genotypic differences in the vase life of cut rose flowers. Postharvest Biol. Technol. 2024, 211, 112829. [Google Scholar] [CrossRef]
- Manzoor, A.; Bashir, M.A.; Naveed, M.S.; Akhtar, M.T.; Saeed, S. Postharvest chemical treatment of physiologically induced stem end blockage improves vase life and water relation of cut flowers. Horticulturae 2024, 10, 271. [Google Scholar] [CrossRef]
- Fang, H.; Wang, C.; Wang, S.; Liao, W. Hydrogen gas increases the vase life of cut rose ‘movie star’ by regulating bacterial community in the stem ends. Postharvest Biol. Technol. 2021, 181, 111685. [Google Scholar] [CrossRef]
- Thakur, N. Effect of pulsing and storage methods for extending vase life of cut flowers. Int. J. Chem. Stud. 2020, 8, 1320–1328. [Google Scholar] [CrossRef]
- Clark, J.W.; Harris, B.J.; Hetherington, A.J.; Hurtado-Castano, N.; Brench, R.A.; Casson, S.; Williams, T.A.; Gray, J.E.; Hetherington, A.M. The origin and evolution of stomata. Curr. Biol. 2022, 32, R539–R553. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. Emerging roles of protein phosphorylation in regulation of stomatal development. J. Plant Physiol. 2023, 280, 153882. [Google Scholar] [CrossRef]
- Hou, S.; Rodrigues, O.; Liu, Z.; Shan, L.; He, P. Small holes, big impact: Stomata in plant–pathogen–climate epic trifecta. Mol. Plant. 2024, 17, 26–49. [Google Scholar] [CrossRef] [PubMed]
- Márquez, D.; Gardner, A.; Busch, F. Navigating challenges in interpreting plant physiology responses through gas exchange results in stressed plants. Plant Ecophysiol. 2025, 1, 2. [Google Scholar] [CrossRef]
- Woltering, E.J.; Paillart, M.J.M. Effect of cold storage on stomatal functionality, water relations and flower performance in cut roses. Postharvest Biol. Technol. 2018, 136, 66–73. [Google Scholar] [CrossRef]
- Kilany, L.; Sawan, J.; El Assi, N. Maintaining high quality roses by a simple locally-made forced-air cooling unit. Jordan J. Agric. Sci. 2007, 3, 222–232. Available online: https://api.semanticscholar.org/CorpusID:117006460 (accessed on 25 May 2025).
- Ma, N.; Cai, L.; Lu, W.; Tan, H.; Gao, J. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci. China Ser. C 2005, 48, 434–444. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Li, J.; Zhang, Z. Numerical analysis of air supply alternatives for forced-air precooling of agricultural produce. Sustainability 2024, 16, 3119. [Google Scholar] [CrossRef]
- Chen, Q.; Qian, J.; Yang, H.; Li, J.; Lin, X.; Wang, B. Multiscale coupling analysis and modeling of airflow and heat transfer for warehouse-packaging-kiwifruit under forced-air cooling. Biosyst. Eng. 2024, 244, 166–176. [Google Scholar] [CrossRef]
- Alabi, K. An overview of recent advances in cooling techniques for fresh fruits and vegetables. Agri. Eng. Int. CIGR J. 2024, 26, 213–221. Available online: https://www.researchgate.net/publication/379435563 (accessed on 13 June 2025).
- Wang, D.; Lai, Y.; Zhao, H.; Jia, B.; Wang, Q.; Yang, X. Numerical and experimental investigation on forced-air cooling of commercial packaged strawberries. Int. J. Food Eng. 2019, 15, 20180384. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Moosa, A.; Ferrante, A.; Darras, A.; Sheteiwy, M.S.; Ali, B.; Altaf, M.A.; Soufan, W.; El Sabagh, A. Borage leaf extract improves the vase life of cut gladiolus flowers by delaying the senescence process and reducing water stress. Postharvest Biol. Technol. 2024, 210, 112766. [Google Scholar] [CrossRef]
- Ullah, I.; Yuan, W.; Khalil, H.B.; Khan, M.R.; Lak, F.; Uzair, M.; Abbas, A.; Mirzadi Gohari, A.; Wu, H. Understanding Botrytis cinerea infection and gray mold management: A review paper on deciphering the rose’s thorn. Phytopathol. Res. 2024, 6, 42. [Google Scholar] [CrossRef]
- He, D.; Yu, S.; Qu, L.; Yang, Y.; Luo, J.; Zhang, Y. Methyl jasmonate enhances vase life and alters physiological and molecular responses in tree peony ‘ Luoyang Hong ‘ cut flowers. Postharvest Biol. Technol. 2025, 224, 113481. [Google Scholar] [CrossRef]
- Ha, S.T.T.; Lim, J.H.; In, B. Extension of the vase life of cut roses by both improving water relations and repressing ethylene responses. Hortic. Sci. Technol. 2019, 37, 65–77. [Google Scholar] [CrossRef]
- Verdonk, J.; Ieperen, W.; Carvalho, D.; Geest, G.; Schouten, R. Effect of preharvest conditions on cut-flower quality. Front Plant Sci. 2023, 14, 1281456. [Google Scholar] [CrossRef]
- Sutrisno; Skutnik, E.; Rabiza-Świder, J. Optimising the vase life of cut hydrangeas: A review of the impact of various treatments. Agronomy 2025, 15, 1124. [Google Scholar] [CrossRef]
- Franzoni, G.; Rovera, C.; Farris, S.; Ferrante, A. Packaging materials and their effect on ruscus quality changes during storage and vase life. Postharvest Biol. Technol. 2024, 210, 112789. [Google Scholar] [CrossRef]
- Chavarria, G.; Dos Santos, H.P. Plant water relations: Absorption, transport and control mechanisms. Adv. Sel. Plant Physiol. Aspects 2012, 1, 105–132. [Google Scholar] [CrossRef]
- Priyanka, M.; Lakshminarayana, D.; Gowthami, P.; Sathish, G. Effect of biocides onvaselife of carnation cut flower (Dianthus caryophyllus L.) Cv. Dona. Plant Arch. 2024, 24, 2407–2413. [Google Scholar] [CrossRef]
- Gupta, J.; Dubey, R. Factors affecting post-harvest life of flower crops. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 548–557. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, P.; Sun, Y.; Shang, W.; Shi, L.; Yu, S.; He, S.; Song, Y.; Wang, Z. Melatonin treatment delays the senescence of cut flowers of “Diguan” tree peony by affecting water balance and physiological properties. Horticulturae 2025, 11, 181. [Google Scholar] [CrossRef]
- Jiang, H.; Su, J.; Ren, Z.; Wang, D.; Hills, A.; Kinoshita, T.; Blatt, M.R.; Wang, Y.; Wang, Y. Dual function of overexpressing plasma membrane H+-ATPase in balancing carbon-water use. Sci. Adv. 2024, 10, eadp8017. [Google Scholar] [CrossRef]
- Gong, L.; Alabdallah, N.M.; Altihani, F.A.; Al-Balawi, S.M.; Anazi, H.K.; Alharbi, B.M.; Hasan, M.M. TOT3–AHA1 module: Its role in fine-tuning stomatal responses. Front. Plant Sci. 2025, 16, 1582196. [Google Scholar] [CrossRef]
- Chen, G.; Qin, Y.; Wang, J.; Li, S.; Zeng, F.; Deng, F.; Chater, C.; Xu, S.; Chen, Z. Stomatal evolution and plant adaptation to future climate. Plant Cell Environ. 2024, 47, 3299–3315. [Google Scholar] [CrossRef]
- Lawson, T.; Leakey, A.D.B. Stomata: Custodians of leaf gaseous exchange. J. Exp. Bot. 2024, 75, 6677–6682. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Wei, S.; Gao, Y.; Pei, H.; Geng, R.; Lu, Z.; Wang, P.; Zhou, W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. Plant Physiol. 2024, 194, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Hazzazi, Y.; Alfaifi, T.; Alabdallah, N.M.; Alnusaire, T.; Altihani, F.; Dhawi, F.; Alharbi, B.; Hasan, M.M. Root-to-shoot hormonal and hydraulic signals in stomatal regulation during drought. J. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
Treatment | Control | FAC4 | FAC8 | FAC12 |
---|---|---|---|---|
Parameter | ||||
Qin (L·s−1) | 0 | 2.51 | 10.05 | 22.62 |
Ti (°C) | 19.8 a | 19.7 a | 20.1 a | 19.8 a |
ACR (°C h−1) | 1.5 b | 14.5 ab | 19.5 a | 24.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, R.; Bai, J.; Sun, J.; Li, L.; Wang, X.; Yan, H.; Zhang, H.; Wang, W.; Gao, J.; Sun, X. Effects of Cardboard Box Ventilation Hole Size During Forced-Air Precooling on Postharvest Quality and Physiological Properties in Cut Roses. Horticulturae 2025, 11, 959. https://doi.org/10.3390/horticulturae11080959
Gu R, Bai J, Sun J, Li L, Wang X, Yan H, Zhang H, Wang W, Gao J, Sun X. Effects of Cardboard Box Ventilation Hole Size During Forced-Air Precooling on Postharvest Quality and Physiological Properties in Cut Roses. Horticulturae. 2025; 11(8):959. https://doi.org/10.3390/horticulturae11080959
Chicago/Turabian StyleGu, Ruifeng, Jie Bai, Jiawei Sun, Lei Li, Xuan Wang, Huijun Yan, Hao Zhang, Wensheng Wang, Junping Gao, and Xiaoming Sun. 2025. "Effects of Cardboard Box Ventilation Hole Size During Forced-Air Precooling on Postharvest Quality and Physiological Properties in Cut Roses" Horticulturae 11, no. 8: 959. https://doi.org/10.3390/horticulturae11080959
APA StyleGu, R., Bai, J., Sun, J., Li, L., Wang, X., Yan, H., Zhang, H., Wang, W., Gao, J., & Sun, X. (2025). Effects of Cardboard Box Ventilation Hole Size During Forced-Air Precooling on Postharvest Quality and Physiological Properties in Cut Roses. Horticulturae, 11(8), 959. https://doi.org/10.3390/horticulturae11080959