Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,090)

Search Parameters:
Keywords = water surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2515 KB  
Article
Filtration of Emulsions: The Population Balance Modeling
by Simon Papine-Paktoris, Julia Trancoso Fernandes dos Santos, Simon Ivar Andersen and Alexander A. Shapiro
Liquids 2026, 6(1), 4; https://doi.org/10.3390/liquids6010004 (registering DOI) - 11 Jan 2026
Abstract
Filtration of emulsions is an important operation in multiple processes of chemical, environmental, and petroleum engineering. The primary concern of the present study is cleaning of water produced from a petroleum reservoir. The produced water is filtered from the oil droplets before being [...] Read more.
Filtration of emulsions is an important operation in multiple processes of chemical, environmental, and petroleum engineering. The primary concern of the present study is cleaning of water produced from a petroleum reservoir. The produced water is filtered from the oil droplets before being dumped into the sea or reinjected into the reservoir. Efficiency of filtration is determined, in particular, by the droplet size distribution and interfacial properties. We have developed a new population balance model of emulsion filtration, based on the Boltzmann–Smoluchowski approach. The model accounts for the droplet size distribution, as well as for the different mechanisms of the droplet capture: attachment to the surface and straining in the pore constrictions. The model can not only be applied to filtering of the produced water, but also to more general emulsion processing. It is capable of reproducing experimental data on the droplet production history and dynamic permeability decline. The sensitivity study indicates low sensitivity of the permeability decline curves to the model parameters. The production histories or other kinds of experimental data are necessary to discriminate between the different parametrizations of the model. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

20 pages, 6932 KB  
Article
The Regulating Effects of Ice-Templated Directional Microchannels on Surface Micro-Ceramicization Strengthening of Cement Paste Containing TiB2
by Zixiao Wang, Wenqing Shen, Zhen Zhang, Weizheng Shi, Tao Sun, Wenyu Li and Aming Xie
Buildings 2026, 16(2), 303; https://doi.org/10.3390/buildings16020303 (registering DOI) - 11 Jan 2026
Abstract
Cementitious materials prepared by the ice-templating method appear to have difficulty simultaneously possessing good mechanical properties and an oriented microstructure with microchannels. Surface micro-ceramicization of TiB2 and the decomposed products of cement hydrates at high temperatures can be regarded as in situ [...] Read more.
Cementitious materials prepared by the ice-templating method appear to have difficulty simultaneously possessing good mechanical properties and an oriented microstructure with microchannels. Surface micro-ceramicization of TiB2 and the decomposed products of cement hydrates at high temperatures can be regarded as in situ solid–solid reactions involving oxygen, thereby enhancing mechanical properties. This study investigates the mechanical property changes in cement paste with different water-to-cement ratios containing 25% TiB2 micron powder before and after high-temperature treatment. Cementitious samples are prepared using both freeze-casting (F-CAST) and regular casting (R-CAST) methods with and without the heating post-treatment. The average compressive strength of samples with a W/C of 0.65 prepared by the freeze-casting method at −60 °C with a heating post-treatment is much larger than that of samples prepared by the regular casting method with and without the same heating process. The freeze-casting process for preparing cementitious composites with TiB2 not only reorders the distribution of water molecules but also redistributes the concentrations of the TiB2 particles and the main hydrates in the frozen samples. Due to the concentration increase near ice crystal channels within the samples, led by the freeze concentration effect, the new products are formed and cover the channel surfaces after high-temperature treatment. This enhances both the overall and internal properties of the cement-based TiB2 composite material. The variation in TiB2 content within the specimens is of paramount importance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 (registering DOI) - 10 Jan 2026
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

22 pages, 1174 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 (registering DOI) - 10 Jan 2026
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
35 pages, 2759 KB  
Review
Recent Advances in the Application of Natural Coagulants for Sustainable Water Purification
by Davide Frumento and Ştefan Ţălu
Eng 2026, 7(1), 38; https://doi.org/10.3390/eng7010038 (registering DOI) - 10 Jan 2026
Abstract
Growing pressure from shrinking freshwater supplies and worsening pollution has heightened the demand for more effective water treatment solutions, especially those that promote reuse. This review synthesizes findings from 235 peer-reviewed papers examining plant-, mineral-, and other naturally derived coagulants used in surface [...] Read more.
Growing pressure from shrinking freshwater supplies and worsening pollution has heightened the demand for more effective water treatment solutions, especially those that promote reuse. This review synthesizes findings from 235 peer-reviewed papers examining plant-, mineral-, and other naturally derived coagulants used in surface water purification. Overall, these materials demonstrate turbidity reduction performance on par with conventional chemical coagulants across a wide range of initial turbidity levels (roughly 50–500 NTU). They are generally inexpensive, biodegradable, low in toxicity, and produce smaller volumes of residual sludge. Most function through mechanisms such as polymer-chain bridging or charge neutralization. However, their deployment at scale is still constrained by limited commercialization pathways, technical integration issues, and uneven public acceptance. Continued cross-disciplinary work is required to refine their performance and broaden their use, particularly in regions with limited resources or rural infrastructure. Full article
24 pages, 3111 KB  
Article
Effects of Stratified Vegetation Volume on Understory Erosion and Soil Coarsening in the Red Soil Region of Southern China
by Yanzi He, Zhujun Gu, Qinghua Fu, Hui Yue, Gengen Lin, Jiasheng Wu, Guanghui Liao and Fei Wang
Land 2026, 15(1), 143; https://doi.org/10.3390/land15010143 (registering DOI) - 10 Jan 2026
Abstract
Severe erosion persists in the red soil region of southern China despite dense vegetation. Stratified vegetation volume (SVV), which integrates horizontal and vertical vegetation density, better captures understory structure than fractional cover. Here, we established and surveyed 75 forest stands (10 m × [...] Read more.
Severe erosion persists in the red soil region of southern China despite dense vegetation. Stratified vegetation volume (SVV), which integrates horizontal and vertical vegetation density, better captures understory structure than fractional cover. Here, we established and surveyed 75 forest stands (10 m × 10 m) spanning an erosion-intensity gradient in Changting County, Fujian Province, China. Within each stand, soil was sampled by depth (0–20 cm), and living and dead vegetation volumes in the canopy, shrub–herb, and litter layers were quantified to derive SVV. Relative to slightly eroded soils, moderate and severe erosion reduced the soil water content by 38–41% and soil organic matter by 19–34%, while increasing bulk density by 25–30% and pH by 6–8%. Severe erosion increased the sand content by 20–31% and decreased the gravel content by ≤15%. SVV declined sharply with erosion, with the largest loss in the shrub–herb layer (66–97%). Erosion was most strongly associated with shrub–herb SVV, soil water content, organic matter, and bulk density (r = 0.5–0.6, p < 0.05). The shrub–herb layer was the key component resisting surface erosion. Overall, understory degradation accelerates erosion and soil coarsening, reinforcing a constrained vegetation–soil system; restoring native shrubs and grasses, coupled with targeted canopy thinning, may improve soil and water conservation. Full article
Show Figures

Figure 1

21 pages, 2856 KB  
Article
Influence of pH and Heat Treatment on the Physicochemical, Interfacial, and Emulsifying Properties of Hemp Seed Protein Dispersions
by Davide Odelli, Lingxin You, Jennyfer Fortuin, Jérôme Bour, Marcus Iken, Axel Archaimbault and Christos Soukoulis
Foods 2026, 15(2), 257; https://doi.org/10.3390/foods15020257 (registering DOI) - 10 Jan 2026
Abstract
This study reports the effect of pH (2, 7, 10) and heat treatment (80 °C for 30 min) on the oil–water (o/w) interfacial behavior of hemp seed protein isolate (HPI) aqueous dispersions. The physicochemical, interfacial adsorption, rheology, and emulsifying properties of protein dispersions [...] Read more.
This study reports the effect of pH (2, 7, 10) and heat treatment (80 °C for 30 min) on the oil–water (o/w) interfacial behavior of hemp seed protein isolate (HPI) aqueous dispersions. The physicochemical, interfacial adsorption, rheology, and emulsifying properties of protein dispersions were evaluated. HPI dispersions at pH 10 exhibited the highest water solubility (60%), the greatest net charge (−27 mV), and the lowest hydrophobicity (~5 a.u.), promoting o/w interfacial pressure (π) and interfacial viscoelasticity. Strong interfacial viscoelastic protein layers (E* = 25 mN/m) were also observed under acidic conditions (pH 2), where proteins exhibited high solubility (40%), a high positive net charge (21 mV), and increased hydrophobicity (46 a.u.). HPI dispersions in their neutral state (pH 7) were not able to form stable o/w emulsions due to their poor physicochemical properties such as low solubility (18%), low surface charge (−18 mV), and hydrophobicity (~5 a.u.). Heat treatment significantly increased the charge and hydrophobicity of both neutral and alkaline proteins (~30 mV and ~10 a.u., respectively), increasing their particle size distribution and ultimately reducing their interfacial protein layer elasticity (E* = 20 and 13 nM/m, respectively). While particles at acidic conditions showed high thermal resistance, heat treatment improved the emulsifying stability in alkaline conditions while further reducing it in the neutral state. Overall, HPI dispersions demonstrated the ability to form stable emulsions at both alkaline and acid pHs, with those formed at pH 2 exhibiting a lower droplet size and superior stability. Full article
(This article belongs to the Special Issue Research Trends in Plant-Based Foods)
Show Figures

Figure 1

22 pages, 1424 KB  
Review
Advances in CO2 Laser Treatment of Cotton-Based Textiles: Processing Science and Functional Applications
by Andris Skromulis, Lyubomir Lazov, Inga Lasenko, Svetlana Sokolova, Sandra Vasilevska and Jaymin Vrajlal Sanchaniya
Polymers 2026, 18(2), 193; https://doi.org/10.3390/polym18020193 (registering DOI) - 10 Jan 2026
Abstract
CO2 laser processing has emerged as an efficient dry-finishing technique capable of inducing controlled chemical and morphological transformations in cotton and denim textiles. The strong mid-infrared absorption of cellulose enables localised photothermal heating, leading to selective dye decomposition, surface oxidation, and micro-scale [...] Read more.
CO2 laser processing has emerged as an efficient dry-finishing technique capable of inducing controlled chemical and morphological transformations in cotton and denim textiles. The strong mid-infrared absorption of cellulose enables localised photothermal heating, leading to selective dye decomposition, surface oxidation, and micro-scale ablation while largely preserving the bulk fabric structure. These laser-driven mechanisms modify colour, surface chemistry, and topography in a predictable, parameter-dependent manner. Low-fluence conditions predominantly produce uniform fading through fragmentation and oxidation of indigo dye; in comparison, moderate thermal loads promote the formation of carbonyl and carboxyl groups that increase surface energy and enhance wettability. Higher fluence regimes generate micro-textured regions with increased roughness and anchoring capacity, enabling improved adhesion of dyes, coatings, and nanoparticles. Compared with conventional wet processes, CO2 laser treatment eliminates chemical effluents, strongly reduces water consumption and supports digitally controlled, Industry 4.0-compatible manufacturing workflows. Despite its advantages, challenges remain in standardising processing parameters, quantifying oxidation depth, modelling thermal behaviour, and assessing the long-term stability of functionalised surfaces under real usage conditions. In this review, we consolidate current knowledge on the mechanistic pathways, processing windows, and functional potential of CO2 laser-modified cotton substrates. By integrating findings from recent studies and identifying critical research gaps, the review supports the development of predictable, scalable, and sustainable laser-based cotton textile processing technologies. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

19 pages, 7965 KB  
Article
An Open-Path Eddy-Covariance Laser Spectrometer for Simultaneous Monitoring of CO2, CH4, and H2O
by Viacheslav Meshcherinov, Iskander Gazizov, Bogdan Pravuk, Viktor Kazakov, Sergei Zenevich, Maxim Spiridonov, Shamil Gazizov, Gennady Suvorov, Olga Kuricheva, Yuri Lebedev, Imant Vinogradov and Alexander Rodin
Sensors 2026, 26(2), 462; https://doi.org/10.3390/s26020462 (registering DOI) - 10 Jan 2026
Abstract
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using [...] Read more.
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using the eddy-covariance method. The instrument utilizes two interband cascade lasers operating at 2.78 µm and 3.24 µm within a novel four-pass M-shaped optical cell, which provides high signal power and long-term field operation without requiring active air sampling. Two detection techniques—tunable diode laser absorption spectroscopy (TDLAS) and a simplified wavelength modulation spectroscopy (sWMS)—were implemented and evaluated. Laboratory calibration demonstrated linear responses for all gases (R2 ≈ 0.999) and detection precisions at 10 Hz of 311 ppb for CO2, 8.87 ppb for CH4, and 788 ppb for H2O. Field tests conducted at a grassland site near Moscow showed strong correlations (R = 0.91 for CO2 and H2O, R = 0.74 for CH4) with commercial LI-COR LI-7200 and LI-7700 analyzers. The TDLAS mode demonstrated lower noise and greater stability under outdoor conditions, while sWMS provided baseline-free spectra but was more sensitive to power fluctuations. E-CAHORS combines high precision, multi-species sensing capability with low power consumption (10 W) and a compact design (4.2 kg). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

29 pages, 6258 KB  
Article
Response Surface Methodology for Wear Optimization of Irrigation Centrifugal Pumps in High-Sediment Water Conditions of Southern Xinjiang: Design and Experimental Validation
by Haoran Chen, Zhuo Shi, Shunjun Hong and Xiaozhou Hu
Agriculture 2026, 16(2), 177; https://doi.org/10.3390/agriculture16020177 (registering DOI) - 9 Jan 2026
Abstract
This study investigates the wear characteristics and optimization of a centrifugal pump (Q = 25 m3/h, H = 50 m, n = 2900 r/min) applied in sediment-laden waters of Southern Xinjiang irrigation systems. A numerical framework integrating the Realizable turbulence model, [...] Read more.
This study investigates the wear characteristics and optimization of a centrifugal pump (Q = 25 m3/h, H = 50 m, n = 2900 r/min) applied in sediment-laden waters of Southern Xinjiang irrigation systems. A numerical framework integrating the Realizable turbulence model, Discrete Phase Model (DPM), and Oka erosion model was established to analyze wear patterns under varying parameters (particle size, density, and mass flow rate). Results indicate that the average erosion rate peaks at 0.92 kg/s mass flow rate. Subsequently, a Response Surface Methodology (RSM)-based optimization was implemented: (1) Plackett–Burman (PB) screening identified the inlet placement angle (A), inlet diameter (C), and outlet width (E) as dominant factors; (2) Full factorial design (FFD) revealed significant interactions (e.g., A × C, C × E); (3) Box–Behnken Design (BBD) generated quadratic regression models for head, efficiency, shaft power, and wear rate (R2 > 0.94). Optimization reduced the average erosion rate by 31.35% (from 1.550 × 10−4 to 1.064 × 10−4 kg·m−2·s−1). Experimental validation confirmed the numerical model’s accuracy in predicting wear localization (e.g., impeller outlet). This work provides a robust methodology for enhancing the wear resistance of centrifugal pumps for agricultural irrigation in water with high fine sediment concentration environments. Full article
(This article belongs to the Section Agricultural Technology)
18 pages, 3634 KB  
Article
Spatiotemporal Analysis for Real-Time Non-Destructive Brix Estimation in Apples
by Ha-Na Kim, Myeong-Won Bae, Yong-Jin Cho and Dong-Hoon Lee
Agriculture 2026, 16(2), 172; https://doi.org/10.3390/agriculture16020172 - 9 Jan 2026
Abstract
Predicting internal quality parameters, such as Brix and water content, of apples, is essential for quality control. Existing near-infrared (NIR) and hyperspectral imaging (HSI)-based techniques have limited applicability due to their dependence on equipment and environmental sensitivity. In this study, a transportable quality [...] Read more.
Predicting internal quality parameters, such as Brix and water content, of apples, is essential for quality control. Existing near-infrared (NIR) and hyperspectral imaging (HSI)-based techniques have limited applicability due to their dependence on equipment and environmental sensitivity. In this study, a transportable quality assessment system was proposed using spatiotemporal domain analysis with long-wave infrared (LWIR)-based thermal diffusion phenomics, enabling non-destructive prediction of the internal Brix of apples during transport. After cooling, the thermal gradient of the apple surface during the cooling-to-equilibrium interval was extracted. This gradient was used as an input variable for multiple linear regression, Ridge, and Lasso models, and the prediction performance was assessed. Overall, 492 specimens of 5 cultivars of apple (Hongro, Arisoo, Sinano Gold, Stored Fuji, and Fuji) were included in the experiment. The thermal diffusion response of each specimen was imaged at a sampling frequency of 8.9 Hz using LWIR-based thermal imaging, and the temperature changes over time were compared. In cross-validation of the integrated model for all cultivars, the coefficient of determination (R2cv) was 0.80, and the RMSEcv was 0.86 °Brix, demonstrating stable prediction accuracy within ±1 °Brix. In terms of cultivar, Arisoo (Cultivar 2) and Fuji (Cultivar 5) showed high prediction reliability (R2cv = 0.74–0.77), while Hongro (Cultivar 1) and Stored Fuji (Cultivar 4) showed relatively weak correlations. This is thought to be due to differences in thermal diffusion characteristics between cultivars, depending on their tissue density and water content. The LWIR-based thermal diffusion analysis presented in this study is less sensitive to changes in reflectance and illuminance compared to conventional NIR and visible light spectrophotometry, as it enables real-time measurements during transport without requiring a separate light source. Surface heat distribution phenomics due to external heat sources serves as an index that proximally reflects changes in the internal Brix of apples. Later, this could be developed into a reliable commercial screening system to obtain extensive data accounting for diversity between cultivars and to elucidate the effects of interference using external environmental factors. Full article
24 pages, 1045 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
17 pages, 4456 KB  
Article
Sustainable Adsorption of Rhodamine B and Heavy Metals Using Sewage Sludge-Derived Biochar
by Yerkanat N. Kanafin, Assylzhan Mukhametrakhimova, Rauza Turpanova and Stavros G. Poulopoulos
ChemEngineering 2026, 10(1), 11; https://doi.org/10.3390/chemengineering10010011 - 9 Jan 2026
Abstract
The sustainable management of sewage sludge remains a key environmental challenge for rapidly urbanizing regions such as Kazakhstan. This study explores the potential of sewage sludge-derived biochar as an efficient, low-cost adsorbent for removing Rhodamine B (RhB) dye and toxic metals from water. [...] Read more.
The sustainable management of sewage sludge remains a key environmental challenge for rapidly urbanizing regions such as Kazakhstan. This study explores the potential of sewage sludge-derived biochar as an efficient, low-cost adsorbent for removing Rhodamine B (RhB) dye and toxic metals from water. Sewage sludge was pyrolyzed at 700 °C (BC) and subsequently activated with hydrochloric acid (BCH) and sodium hydroxide (BCN) to improve its surface functionality and porosity. The morphology, surface area, porosity, and functional groups of the obtained biochars were characterized using SEM-EDS, BET, FTIR, and XRD analyses. Batch adsorption experiments demonstrated that the pseudo-second-order kinetic model (R2 = 0.99) best described the data, indicating chemisorption-controlled uptake. Experimental RhB adsorption capacity was 14.53 mg/g for BCH at RhB concentration of 75 mg/L after 120 min. Moreover, BCH exhibited enhanced metal adsorption capacities of 22.85 mg/g (Cu2+), 17.55 mg/g (Zn2+), 15.08 mg/g (Cd2+), 7.97 mg/g (Cr3+), and 3.68 mg/g (As3+). These results confirm that acid activation significantly improves adsorption efficiency compared with pristine biochar due to increased surface area and the introduction of oxygen-containing functional groups. Overall, sewage sludge-derived biochar shows strong potential as a sustainable adsorbent for dye and heavy metal removal. Full article
Show Figures

Figure 1

28 pages, 5903 KB  
Article
Establishment and Application of Surface Water Quality Model Based on PhreeqcRM
by Shuna Hong, Kexin Wang, Qi Tang and Jun Kong
J. Mar. Sci. Eng. 2026, 14(2), 143; https://doi.org/10.3390/jmse14020143 - 9 Jan 2026
Abstract
In this study, we developed a novel water quality model that integrated hydrodynamic, solute transport, and geochemical reactions processes. This model was built upon the open-source ELCIRC hydrodynamic model, the TVD-format solute transport model, and the PhreeqcRM geochemical reaction engine. The accuracy of [...] Read more.
In this study, we developed a novel water quality model that integrated hydrodynamic, solute transport, and geochemical reactions processes. This model was built upon the open-source ELCIRC hydrodynamic model, the TVD-format solute transport model, and the PhreeqcRM geochemical reaction engine. The accuracy of the model was rigorously validated using a 2D chain decay analytical solution, demonstrating its capability to accurately simulate water flow, solute transport, and chemical reactions. To evaluate the practical applicability of the model, case studies involving the 2012 Huaihe River benzene leakage accident and the acetic acid leakage accident in the Gulei sea area were simulated. Findings indicate that the model effectively captures the diffusion and attenuation dynamics of the benzene contamination plume. Furthermore, it accurately depicts the reaction–diffusion interaction with seawater following acetic acid release. Notably, the versatility and flexibility of the model were further demonstrated by its ability to simulate a wide range of pollutants and their associated biochemical processes. This addresses the limitations of existing water quality models and provides a powerful tool for environmental monitoring and assessment. The results of this study offer valuable insights for improving water quality management and emergency response strategies in the face of environmental pollution incidents. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

31 pages, 1671 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Back to TopTop