Establishment and Application of Surface Water Quality Model Based on PhreeqcRM
Abstract
1. Introduction
2. Method
2.1. Hydrodynamic and Solute Transport Reaction Equations
2.2. Water Quality Model Coupling
2.2.1. Coupled Water Quality Modeling Techniques
2.2.2. Parallel Computing Techniques in Water Quality Modeling
3. Model Calibration
4. Applications
4.1. Case Study of Hazardous Chemical Spills in Inland Waters
4.1.1. Study Area
4.1.2. Simulations and Studies Under Different Cases
4.2. Acid-Base Balance Analysis of Nearshore Waters
4.2.1. Study Area
4.2.2. Analysis of Model Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Model Validation
Appendix A.1. Case Study of Hazardous Chemical Spills in Inland Waters
| Monitoring Point | MAE | RMSE | Monitoring Point | MAE | RMSE |
|---|---|---|---|---|---|
| P1 | 0 | 0 | P11 | 0.003 | 0.004 |
| P2 | 0.062 | 0.079 | P12 | 0.007 | 0.008 |
| P3 | 0.021 | 0.036 | P13 | 0.003 | 0.004 |
| P4 | 0.020 | 0.027 | P14 | 0.002 | 0.003 |
| P5 | 0.009 | 0.011 | P15 | 0.003 | 0.004 |
| P6 | 0.007 | 0.009 | P16 | 0.003 | 0.004 |
| P7 | 0.012 | 0.014 | P17 | 0.002 | 0.004 |
| P8 | 0.007 | 0.009 | P18 | 0.001 | 0.002 |
| P9 | 0.007 | 0.008 | P19 | 0.002 | 0.002 |
| P10 | 0.003 | 0.004 | P20 | 0.001 | 0.002 |
Appendix A.2. Acid–Base Balance Analysis of Nearshore Waters






| Ion Transport Module Code (Fortran90) |
|---|
| status = RM_SetSpeciesSaveOn (id, 1) |
| status = RM_LoadDatabase (id, “phreeqc.dat”) |
| status = RM_LoadDatabase (id, “llnl.dat”) |
| nspecies = RM_GetSpeciesCount (id) |
| status = RM_GetSpeciesName (id, i, string) |
| status = RM_GetSpeciesConcentrations (id, species_c) |
| status = RM_InitialPhreeqc2SpeciesConcentrations (id, bc_conc, nbound, bc1) |
| status = RM_SpeciesConcentrations2Module (id, species_c) |
| Solute | Concentration (mol L−1) | Solute | Concentration (mol L−1) | Solute | Concentration (mol L−1) |
|---|---|---|---|---|---|
| AC− | 0 | CaCO3 | 0.368 × 10−4 | KSO4− | 0.177 × 10−3 |
| CO32− | 0.360 × 10−4 | MgCO3 | 0.944 × 10−4 | Mg (AC)2 | 0 |
| Ca2+ | 0.949 × 10−2 | Ca (AC)2 | 0 | Mg2+ | 0.416 × 10−1 |
| CaHCO3+ | 0.381 × 10−4 | CaAC+ | 0 | MgAC+ | 0 |
| H+ | 0.750 × 10−8 | CaCl+ | 0.251 × 10−3 | MgCl+ | 0.519 × 10−2 |
| HAC | 0 | CaCl2 | 0.672 × 10−4 | MgSO4 | 0.797 × 10−2 |
| HCO3− | 0.138 × 10−2 | CaSO4 | 0.776 × 10−3 | Na (AC)2− | 0 |
| MgHCO3+ | 0.210 × 10−3 | Cl− | 0.542 | Na+ | 0.460 |
| NaCO3− | 0.109 × 10−4 | K (AC)2− | 0 | NaAC | 0 |
| NaHCO3 | 0.407 × 10−3 | K+ | 0.103 × 10−1 | NaCl | 0.184 × 10−1 |
| OH− | 0.241 × 10−5 | KAC | 0 | NaSO4− | 0.690 × 10−2 |
| CO2 | 0.114 × 10−4 | KCl | 0.739 × 10−4 | SO42− | 0.134 × 10−1 |
| HCl | 4.60 × 10−10 | HSO4− | 2.06 × 10−9 | HSiO3− | 1.58 × 10−6 |
| KHSO4 | 6.32 × 10−13 | NaHSiO3 | 1.54 × 10−5 | NaOH | 8.35 × 10−8 |
| SiO2 | 5.69 × 10−5 | CaOH+ | 8.01 × 10−8 | KOH | 3.66 × 10−9 |
Appendix B. Results
| Solute | Mass (t) | Solute | Mass (t) |
|---|---|---|---|
| CH3COO− | 666.2571 | (CH3COO)2Mg | 0.00181 |
| CH3COOMg+ | 182.2202 | (CH3COO)2Ca | 0.00039 |
| CH3COONa | 118.4394 | (CH3COO)2Na− | 0.00019 |
| CH3COOCa+ | 14.5104 | (CH3COO)2K− | <0.00001 |
| CH3COOK | 1.70023 | Total | 983.1297 |
References
- Barré de Saint-Venant, A.-J.-C. Théorie du Mouvement Non Permanent des Eaux, Avec Application aux Crues des Rivières et à L’introduction des Marées Dans Leur Lit; Gauthier-Villars: Paris, France, 1871. [Google Scholar]
- Backhaus, J.O. A Three-Dimensional Model for the Simulation of Shelf Sea Dynamics. Dtsch. Hydrogr. Z. 1985, 38, 165–187. [Google Scholar] [CrossRef]
- Blumberg, A.; Mellor, G. A Description of a Three-Dimensional Coastal Ocean Circulation Model. In Three-Dimensional Coastal Ocean Models; American Geophysical Union: Washington, DC, USA, 1987; Volume 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Baptista, A.M.; Myers, E.P. A Cross-Scale Model for 3D Baroclinic Circulation in Estuary–Plume–Shelf Systems: I. Formulation and Skill Assessment. Cont. Shelf Res. 2004, 24, 2187–2214. [Google Scholar] [CrossRef]
- Delft Hydraulics, W.L. Delft3D-FLOW: Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments—User Manual. In Report of Delft Hydraulics; Deltares: Delft, The Netherlands, 2003. [Google Scholar]
- Qin, Z.H.; Hu, S.; Cheng, L.Q. Tidal simulation in the adjacent sea area of Cook Strait based on FVCOM. Coast. Eng. 2025, 44, 173–185. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Guo, Y. Seasonal Circulation and Influence Factors of the Bohai Sea: A Numerical Study Based on Lagrangian Particle Tracking Method. Ocean Dyn. 2010, 60, 1581–1596. [Google Scholar] [CrossRef]
- Peng, D.; Mao, J.; Li, J.; Zhao, L.; Peng, D.; Mao, J.; Li, J.; Zhao, L. Tidal Current Modeling Using Shallow Water Equa-tions Based on the Finite Element Method: Case Studies in the Qiongzhou Strait and Around Naozhou Island. Sustainability 2025, 17, 1256. [Google Scholar] [CrossRef]
- Peng, H.; Yao, Y.-M.; Liu, L. Study on the Features of Water Exchange in Xiangshangang Bay. J. Mar. Sci. 2012, 30, 1–12. [Google Scholar]
- Provenzale, A.; Babiano, A.; Villone, B. Single-Particle Trajectories in Two-Dimensional Turbulence. Chaos Solitons Fractals 1995, 5, 2055–2071. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Mamedov, R.M.; Kontar, A.E.; Korotenko, L.A. Particle Tracking Method in the Approach for Prediction of Oil Slick Transport in the Sea: Modelling Oil Pollution Resulting from River Input. J. Mar. Syst. 2004, 48, 159–170. [Google Scholar] [CrossRef]
- Liu, W.-C.; Chen, W.-B.; Hsu, M.-H. Using a Three-Dimensional Particle-Tracking Model to Estimate the Residence Time and Age of Water in a Tidal Estuary. Comput. Geosci. 2011, 37, 1148–1161. [Google Scholar] [CrossRef]
- Deleersnijder, E.; Delhez, E.J.M. Timescale- and Tracer-Based Methods for Understanding the Results of Complex Marine Models. Estuar. Coast. Shelf Sci. 2007, 74, 585–776. [Google Scholar] [CrossRef]
- Rubio, A.D.; Zalts, A.; El Hasi, C.D. Numerical Solution of the Advection–Reaction–Diffusion Equation at Different Scales. Environ. Model. Softw. 2008, 23, 90–95. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 1997, 135, 250–258. [Google Scholar] [CrossRef]
- Harten, A. High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 1997, 135, 260–278. [Google Scholar] [CrossRef]
- Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R. Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III. J. Comput. Phys. 1987, 71, 231–303. [Google Scholar] [CrossRef]
- Frink, N.T. Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes. AIAA J. 1992, 30, 70–77. [Google Scholar] [CrossRef]
- Tamamidis, P. A New Upwind Scheme on Triangular Meshes Using the Finite Volume Method. Comput. Methods Appl. Mech. Eng. 1995, 124, 15–31. [Google Scholar] [CrossRef]
- Gross, E.S.; Koseff, J.R.; Monismith, S.G. Evaluation of Advective Schemes for Estuarine Salinity Simulations. J. Hydraul. Eng. 1999, 125, 32–46. [Google Scholar] [CrossRef]
- Mingham, C.G.; Causon, D.M.; Ingram, D.M. A TVD MacCormack Scheme for Transcritical Flow. Proc. Inst. Civ. Eng. Water Marit. Eng. 2001, 148, 167–175. [Google Scholar] [CrossRef]
- Li, L.; Liao, H.; Qi, L. An Improved r-Factor Algorithm for TVD Schemes. Int. J. Heat Mass Transf. 2008, 51, 610–617. [Google Scholar] [CrossRef]
- Kong, J.; Xin, P.; Shen, C.-J.; Song, Z.-Y.; Li, L. A High-Resolution Method for the Depth-Integrated Solute Transport Equation Based on an Unstructured Mesh. Environ. Model. Softw. 2013, 40, 109–127. [Google Scholar] [CrossRef]
- Dong, W. A Review of Progress in Research on Water Quality Models in America. Water Resour. Hydropower Eng. 2006, 37, 68–73. [Google Scholar]
- Parkhurst, D.L.; Thorstenson, D.C.; Plummer, N. PHREEQE: A Computer Program for Geochemical Calculations; U.S. Geological Survey, Water Resources Division: Reston, VA, USA, 1980.
- Parkhurst, D.L.; Wissmeier, L. PhreeqcRM: A Reaction Module for Transport Simulators Based on the Geochemical Model PHREEQC. Adv. Water Resour. 2015, 83, 176–189. [Google Scholar] [CrossRef]
- FEFLOW® 6.2 User Manual 2012, DHI: Horsholm, Denmark, 2012.
- Preston, R.W. The Representation of Dispersion in Two-Dimensional Shallow Water Flow; Central Electricity Research Laboratories: Surrey, UK, 1985; Volume 84, pp. 1–13. [Google Scholar]
- Elder, J.W. The Dispersion of Marked Fluid in Turbulent Shear Flow. J. Fluid Mech. 1959, 5, 544–560. [Google Scholar] [CrossRef]
- Fischer, H.B. Longitudinal Dispersion and Turbulent Mixing in Open-Channel Flow. Annu. Rev. Fluid Mech. 1973, 5, 59–78. [Google Scholar] [CrossRef]
- Falconer, R.A. Review of Modelling Flow and Pollutant Transport Processes in Hydraulic Basins. In Water Pollution: Modelling, Measuring and Prediction; Wrobel, L.C., Brebbia, C.A., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 3–23. ISBN 978-94-011-3694-5. [Google Scholar]
- Liang, D.; Wang, X.; Falconer, R.A.; Bockelmann-Evans, B.N. Solving the Depth-Integrated Solute Transport Equation with a TVD-MacCormack Scheme. Environ. Model. Softw. 2010, 25, 1619–1629. [Google Scholar] [CrossRef]
- Valocchi, A.J.; Malmstead, M. Accuracy of Operator Splitting for Advection-Dispersion-Reaction Problems. Water Resour. Res. 1992, 28, 1471–1476. [Google Scholar] [CrossRef]
- Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; et al. Reactive Transport Codes for Subsurface Environmental Simulation. Comput Geosci. 2015, 19, 445–478. [Google Scholar] [CrossRef]
- Jacques, D.; Šimůnek, J.; Mallants, D.; van Genuchten, M.T. Modeling Coupled Hydrologic and Chemical Processes: Long-Term Uranium Transport Following Phosphorus Fertilization. Vadose Zone J. 2008, 7, 698–711. [Google Scholar] [CrossRef]
- Cohen, S.D.; Hindmarsh, A.C.; Dubois, P.F. CVODE, A Stiff/Nonstiff ODE Solver in C. Comput. Phys. 1996, 10, 138–143. [Google Scholar] [CrossRef]
- Jin, H.; Jespersen, D.; Mehrotra, P.; Biswas, R.; Huang, L.; Chapman, B. High Performance Computing Using MPI and OpenMP on Multi-Core Parallel Systems. Parallel Comput. 2011, 37, 562–575. [Google Scholar] [CrossRef]
- Rolle, M.; Sprocati, R.; Masi, M.; Jin, B.; Muniruzzaman, M. Nernst-Planck-based Description of Transport, Coulombic Interactions, and Geochemical Reactions in Porous Media: Modeling Approach and Benchmark Experiments. Water Resour. Res. 2018, 54, 3176–3195. [Google Scholar] [CrossRef]
- GB3838-2002; Environment Quality Standards for Surface Water. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- Deng, Z.-Q.; Bengtsson, L.; Singh, V.P.; Adrian, D.D. Longitudinal Dispersion Coefficient in Single-Channel Streams. J. Hydraul. Eng. 2002, 128, 901–916. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, Z.; Yang, Y.; Hu, S.; Tang, H.; Barry, D.A.; Li, L. Mitigation of Impact of a Major Benzene Spill into a River through Flow Control and In-Situ Activated Carbon Absorption. Water Res. 2020, 172, 115489. [Google Scholar] [CrossRef]
- Emerson, S.R.; Hamme, R.C. Chemical Oceanography: Element Fluxes in the Sea, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-316-84117-4. [Google Scholar]
- Bellwood, D.; Hughes, T.; Folke, C.; Nyström, M. Confronting the Coral Reef Crisis. Nature 2004, 429, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P.D.; Zeebe, R.E.; Morel, F.M.M. Reduced Calcification of Marine Plankton in Response to Increased Atmospheric CO2. Nature 2000, 407, 364–367. [Google Scholar] [CrossRef]
- Esbaugh, A.J.; Heuer, R.; Grosell, M. Impacts of Ocean Acidification on Respiratory Gas Exchange and Acid–Base Balance in a Marine Teleost, Opsanus Beta. J. Comp. Physiol. B 2012, 182, 921–934. [Google Scholar] [CrossRef]
- Zondervan, I.; Zeebe, R.E.; Rost, B.; Riebesell, U. Decreasing Marine Biogenic Calcification: A Negative Feedback on Rising Atmospheric pCO2. Glob. Biogeochem. Cycles 2001, 15, 507–516. [Google Scholar] [CrossRef]
- Langdon, C.; Broecker, W.S.; Hammond, D.E.; Glenn, E.; Fitzsimmons, K.; Nelson, S.G.; Peng, T.; Hajdas, I.; Bonani, G. Effect of Elevated CO2 on the Community Metabolism of an Experimental Coral Reef. Glob. Biogeochem. Cycles 2003, 17, 1020. [Google Scholar] [CrossRef]
















| Create PhreeqcRM Using Code (Fortran 90) |
|---|
| nthreads = 4 |
| nxyz = ne |
| id = RM_Create (nxyz, nthreads) |
| status = RM_SetComponentH2O (id, 1) |
| do i = 1, nxyz/2 |
| grid2chem (i) = i − 1 |
| grid2chem (i + nxyz/2) = i − 1 |
| end do |
| status = RM_Createmapping (id, grid2chem) |
| status = RM_SetRepresentativeVolume (id, rv) |
| status = RM_SetPorosity (id, por) |
| status = RM_SetSaturation (id, sat) |
| status = RM_SetUnitsSolution (id, 2) |
| status = RM_SetUnitsPPassemblage (id, 1) |
| status = RM_SetUnitsExchange (id, 1) |
| status = RM_SetUnitsSurface (id, 1) |
| status = RM_SetUnitsGasPhase (id, 1) |
| status = RM_SetUnitsSSassemblage (id, 1) |
| status = RM_SetUnitsKinetics (id, 1) |
| Setting the Initial Conditions of the Reaction Model Using Code (Fortran 90) |
|---|
| status = RM_LoadDatabase (id, “phreeqc.dat”) |
| status = RM_RunFile (id, 1, 1, 1, “A.pqi”) |
| do i = 1, nxyz |
| ic1 (i,1) = 1 |
| ic1 (i,2) = −1 |
| ic1 (i,3) = −1 |
| ic1 (i,4) = −1 |
| ic1 (i,5) = −1 |
| ic1 (i,6) = −1 |
| ic1 (i,7) = −1 |
| end do |
| status = RM_InitialPhreeqc2Module (id, ic1) |
| ncomps = RM_FindComponents (id) |
| status = RM_GetComponent (id, i, components) |
| status = RM_SetTime (id, 0) |
| status = RM_SetTimeStep (id, 0) |
| status = RM_RunCells (id) |
| status = RM_GetConcentrations (id, c) |
| Setting Boundary Conditions for Reaction Models Using Code (Fortran 90) |
|---|
| nbound = 1 |
| bc1 = 0 |
| status = RM_InitialPhreeqc2Concentrations (id, bc_conc, nbound, bc1) |
| Data Transfer and Response Calculation Using Code (Fortran 90) |
|---|
| status = RM_SetPressure (id, pressure) |
| status = RM_SetSaturation (id, sat) |
| status = RM_SetPorosity (id, por) |
| status = RM_SetTemperature (id, temperature) |
| status = RM_SetConcentrations (id, c) |
| status = RM_SetDensity (id, density) |
| status = RM_SetTimeStep (id, time_step) |
| time = time + time_step |
| status = RM_SetTime (id, time) |
| status = RM_RunCells (id) |
| status = RM_GetConcentrations(id, c) |
| status = RM_GetDensity (id, density) |
| status = RM_GetSolutionVolume (id, volume) |
| status = RM_GetSaturation (id, sat_calc) |
| CaCl2 Solution Composition | NaNO3-KNO3 Solution Composition | |
|---|---|---|
| Temperature (°C) | 25 | 25 |
| pH | 7 | 7 |
| Pe | 12.5 | 12.5 |
| Ca (mmol kgw−1) | 0.6 | 0 |
| Cl (mmol kgw−1) | 1.2 | 0 |
| Na (mmol kgw−1) | 0 | 1 |
| K (mmol kgw−1) | 0 | 0.2 |
| N(5) (mmol kgw−1) | 0 | 1.2 |
| Monitoring Points | x (km) | River Sections | Activated Carbon | KV (s−1) Case A and C | KV (s−1) Case B and D | KN (1/s) | KAC (s−1) Case A and B |
|---|---|---|---|---|---|---|---|
| P1–P3 | 13.5 | S1 | × | 2.15 × 10−6 | 2.15 × 10−6 | 1.61 × 10−7 | 0 |
| P4–P6 | 19.4 | S2 | × | 5.58 × 10−7 | 4.93 × 10−7 | 1.45 × 10−7 | 0 |
| P7–P8 | 26.4 | S3 | × | 4.62 × 10−7 | 4.19 × 10−7 | 2.43 × 10−7 | 0 |
| P9 | 29.6 | S4 | × | 5.29 × 10−7 | 4.74 × 10−7 | 1.81 × 10−7 | 0 |
| P10 | 33.1 | S5 | √ | 4.47 × 10−7 | 3.75 × 10−7 | 2.63 × 10−7 | 2.22 × 10−6 |
| P11–P12 | 43 | S6 | × | 6.04 × 10−7 | 5.21 × 10−7 | 1.12 × 10−7 | 0 |
| P13 | 44.9 | S7 | √ | 6.55 × 10−7 | 7.35 × 10−7 | 5.46 × 10−8 | 2.12 × 10−6 |
| P14–P15 | 52.2 | S8 | × | 5.79 × 10−7 | 4.53 × 10−7 | 1.32 × 10−7 | 0 |
| P16 | 58.2 | S9 | × | 5.61 × 10−7 | 4.93 × 10−7 | 1.27 × 10−7 | 0 |
| P17–P20 | 68.8 | S10 | √ | 5.49 × 10−7 | 4.79 × 10−7 | 1.41 × 10−7 | 3.12 × 10−6 |
| Case | Volatilization | Natural Attenuation | Activated Carbon Adsorption |
|---|---|---|---|
| A | 39.00% | 12.13% | 48.85% |
| B | 33.30% | 11.40% | 55.30% |
| C | 77.06% | 22.94% | 0% |
| D | 75.02% | 24.95% | 0% |
| Reaction Equation | Product | Log K (25 °C) |
|---|---|---|
| 2CH3COOH + Ca2+ = (CH3COO)2Ca + 2H+ | (CH3COO)2Ca, H+ | −7.3814 |
| CH3COOH + Ca2+ = CH3COOCa+ + H+ | CH3COOCa+, H+ | −3.8263 |
| 2CH3COOH + K+ = (CH3COO)2K− + 2H+ | (CH3COO)2K−, H+ | −10.2914 |
| CH3COOH + K+ = CH3COOK + H+ | CH3COOK, H+ | −5.0211 |
| 2CH3COOH + Mg2+ = (CH3COO)2Mg + 2H+ | (CH3COO)2Mg, H+ | −7.473 |
| CH3COOH + Mg2+ = CH3COOMg+ + H+ | CH3COOMg+, H+ | −3.4781 |
| 2CH3COOH + Na+ = (CH3COO)2Na− + 2H+ | (CH3COO)2Na−, H+ | −9.9989 |
| CH3COOH + Na+ = CH3COONa + H+ | CH3COONa, H+ | −4.8606 |
| Type | Quality (t) | Type | Quality (t) |
|---|---|---|---|
| CH3COO− | 666.2571 | (CH3COO)2Mg | 0.00181 |
| CH3COOMg+ | 182.2202 | (CH3COO)2Ca | 0.00039 |
| CH3COONa | 118.4394 | (CH3COO)2Na− | 0.00019 |
| CH3COOCa+ | 14.5104 | (CH3COO)2K− | <0.00001 |
| CH3COOK | 1.70023 | Total | 983.1297 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hong, S.; Wang, K.; Tang, Q.; Kong, J. Establishment and Application of Surface Water Quality Model Based on PhreeqcRM. J. Mar. Sci. Eng. 2026, 14, 143. https://doi.org/10.3390/jmse14020143
Hong S, Wang K, Tang Q, Kong J. Establishment and Application of Surface Water Quality Model Based on PhreeqcRM. Journal of Marine Science and Engineering. 2026; 14(2):143. https://doi.org/10.3390/jmse14020143
Chicago/Turabian StyleHong, Shuna, Kexin Wang, Qi Tang, and Jun Kong. 2026. "Establishment and Application of Surface Water Quality Model Based on PhreeqcRM" Journal of Marine Science and Engineering 14, no. 2: 143. https://doi.org/10.3390/jmse14020143
APA StyleHong, S., Wang, K., Tang, Q., & Kong, J. (2026). Establishment and Application of Surface Water Quality Model Based on PhreeqcRM. Journal of Marine Science and Engineering, 14(2), 143. https://doi.org/10.3390/jmse14020143

