Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,764)

Search Parameters:
Keywords = water resource consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3035 KiB  
Article
Physical, Mechanical, and Durability Behavior of Sustainable Mortars with Construction and Demolition Waste as Supplementary Cementitious Material
by Sandra Cunha, Kubilay Kaptan, Erwan Hardy and José Aguiar
Buildings 2025, 15(15), 2757; https://doi.org/10.3390/buildings15152757 - 5 Aug 2025
Abstract
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, [...] Read more.
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, highlighting the need for effective strategies to mitigate the associated environmental impacts of the sector. This investigation intends to evaluate the influence of mixed CDW on the physical, mechanical, and durability properties of mortars with CDW partially replacing Portland cement, and allow performance comparisons with mortars produced with fly ash, a commonly used supplementary binder in cement-based materials. Thus, three mortar formulations were developed (reference mortar, mortar with 25% CDW, and mortars with 25% fly ash) and several characterization tests were carried out on the CDW powder and the developed mortars. The work’s principal findings revealed that through mechanical grinding processes, it was possible to obtain a CDW powder suitable for cement replacement and with good indicators of pozzolanic activity. The physical properties of the mortars revealed a decrease of about 10% in water absorption by immersion, which resulted in improved performance regarding durability, especially with regard to the lower carbonation depth (−1.1 mm), and a decrease of 51% in the chloride diffusion coefficient, even compared to mortars incorporating fly ash. However, the mechanical performance of the mortars incorporating CDW was reduced (25% in terms of flexural strength and 58% in terms of compressive strength), but their practical applicability was never compromised and their mechanical performance proved to be superior to that of mortars incorporating fly ash. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Viewed by 264
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 167
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 210
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 268
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 323
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

24 pages, 3016 KiB  
Article
Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy Transition
by Marta Pacheco, Adrien Brac de la Perrière, Patrícia Moura and Carla Silva
C 2025, 11(3), 54; https://doi.org/10.3390/c11030054 - 23 Jul 2025
Viewed by 454
Abstract
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and [...] Read more.
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

15 pages, 1944 KiB  
Article
Coordination of Hydropower Generation and Export Considering River Flow Evolution Process of Cascade Hydropower Systems
by Pai Li, Hui Lu, Lu Nan and Jiayi Liu
Energies 2025, 18(15), 3917; https://doi.org/10.3390/en18153917 - 23 Jul 2025
Viewed by 139
Abstract
Focusing the over simplification of existing models in simulating river flow evolution process and lack of coordination of hydropower generation and export, this paper proposes a hydropower generation and export coordinated optimal operation model that, at the same time, incorporates dynamic water flow [...] Read more.
Focusing the over simplification of existing models in simulating river flow evolution process and lack of coordination of hydropower generation and export, this paper proposes a hydropower generation and export coordinated optimal operation model that, at the same time, incorporates dynamic water flow delay by finely modeling the water flow evolution process among cascade hydropower stations within a river basin. Specifically, firstly, a dynamic water flow evolution model is built based on the segmented Muskingum method. By dividing the river into sub-segments and establishing flow evolution equation for individual sub-segments, the model accurately captures the dynamic time delay of water flow. On this basis, integrating cascade hydropower systems and the transmission system, a hydropower generation and export coordinated optimal operation model is proposed. By flexibly adjusting the power export, the model balances local consumption and external transmission of hydropower, enhancing the utilization efficiency of hydropower resources and achieving high economic performance. A case study verified the accuracy of the dynamic water flow evolution model and the effectiveness of the proposed hydropower generation and export coordinated optimal operation model. Full article
Show Figures

Figure 1

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 226
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

26 pages, 3891 KiB  
Article
Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
by Ela Bahsude Gorur Avsaroglu
Buildings 2025, 15(15), 2587; https://doi.org/10.3390/buildings15152587 - 22 Jul 2025
Viewed by 278
Abstract
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials [...] Read more.
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials obtained in different sectors. The main objective of this study is to investigate the substitution of cotton (CW), chicken feather (CFF) and stone wool waste (SWW) from pumice aggregate in the production of environmentally friendly hollow blocks. To achieve this, CW, CFF and SWW were substituted for pumice at ratios of 2.5–5–7.5–10% in mass, and hollow blocks were produced with this mixture under low pressure and vibrations in a production factory. Various characterization methods, including a size and tolerance analysis, unit volume weight test, thermal conductivity test, durability test, water absorption test and strength tests, were carried out on the samples produced. This study showed that waste fibers of chicken feather and stone wool are suitable for the production of sustainable and environmentally friendly hollow blocks that can reduce the dead load of the building, have sufficient strength, provide energy efficiency due to low thermal conductivity and have a high durability due to a low water absorption value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 2239 KiB  
Article
Synthesis of Biomass Polycarboxylate Superplasticizer and Its Performance on Cement-Based Materials
by Zefeng Kou, Kaijian Huang, Muhua Chen, Hongyan Chu, Linye Zhou and Tianqi Yin
Materials 2025, 18(14), 3416; https://doi.org/10.3390/ma18143416 - 21 Jul 2025
Viewed by 361
Abstract
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the [...] Read more.
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the demand for petrochemical resources required for synthetic water-reducing agents will increase rapidly. Therefore, there is an urgent need to transition the synthetic raw materials of PCE from petrochemicals to biomass materials to reduce the consumption of nonrenewable resources as well as the burden on the environment. Biomass materials are inexpensive, readily available and renewable. Utilizing biomass resources to develop good-performing water-reducing agents can reduce the consumption of fossil resources. This is conducive to carbon emission reduction in the concrete material industry. In addition, it promotes the high-value utilization of biomass resources. Therefore, in this study, a biomass polyether monomer, acryloyl hydroxyethyl cellulose (AHEC), was synthesized from cellulose via the reaction route of ethylene oxide (EO) etherification and acrylic acid (AA) esterification. Biomass polycarboxylate superplasticizers (PCE-Cs) were synthesized through free radical polymerization by substituting AHEC for a portion of the frequently utilized polyether monomer isopentenyl polyoxyethylene ether (TPEG). This study primarily focused on the properties of PCE-Cs in relation to cement. The findings of this study indicated that the synthesized PCE-C5 at a dosing of 0.4% (expressed as mass fraction of cement) when the AHEC substitution ratio was 5% achieved good water reduction properties and significant delays. With the same fluidity, PCE-C5 could enhance the mechanical strength of cement mortar by 30% to 40%. This study utilized green and low-carbon biomass resources to develop synthetic raw materials for water-reducing agents, which exhibited effective water-reducing performance and enhanced the utilization rate of biomass resources, demonstrating significant application value. Full article
Show Figures

Figure 1

22 pages, 13221 KiB  
Article
Multi-Scenario Simulation of Ecosystem Service Value in Xiangjiang River Basin, China, Based on the PLUS Model
by Lisha Tang, Jingzhi Li, Chenmei Xie and Miao Wang
Land 2025, 14(7), 1482; https://doi.org/10.3390/land14071482 - 17 Jul 2025
Viewed by 266
Abstract
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This [...] Read more.
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This research examines the Xiangjiang River Basin and combines land use data from 1995 to 2020, Landsat images, meteorological data, and socio-economic data. These data are incorporated into the PLUS model to simulate land use patterns in 2035 under the following five scenarios: natural development, economic development, farmland protection, ecological protection, and coordinated development. Additionally, this research analyzes the dynamics of land use and changes in ESVs in the Xiangjiang River Basin. The results show that between 1995 and 2020 in the Xiangjiang River Basin, urbanization accelerated, human activities intensified, and the construction land area expanded significantly, while the areas of forest, farmland, and grassland decreased continuously. Based on multi-scenario simulations, the ESV showed the largest and smallest declines under economic development and ecological protection scenarios, respectively. This results from the economic development scenario inducing a rapid expansion in construction land. In contrast, construction land expansion was restricted under the ecological protection scenario, because the ecological functions of forests and water bodies were prioritized. This research proposes land use strategies to coordinate ecological protection and economic development to provide a basis for sustainable development in the Xiangjiang River Basin and constructing a national ecological security barrier, as well as offer Chinese experience and local cases for global ecological environment governance. Full article
Show Figures

Figure 1

28 pages, 9297 KiB  
Article
Sustainable Lightweight Aggregates from Diatomite Residue
by Maelson Mendonça de Souza, Normando Perazzo Barbosa, Marcos Alyssandro Soares dos Anjos, Evilane Cássia de Farias, João Gabriel Cruz Aguiar, José Anselmo da Silva Neto and Cinthia Maia Pederneiras
Sustainability 2025, 17(14), 6508; https://doi.org/10.3390/su17146508 - 16 Jul 2025
Viewed by 287
Abstract
This study assessed the feasibility of producing lightweight aggregates (LWAs) using diatomite waste (DW) as a clay substitute. The research aimed to reduce the consumption of natural resources and minimise the environmental impacts caused by the disorderly disposal of DW. Chemical, physical, and [...] Read more.
This study assessed the feasibility of producing lightweight aggregates (LWAs) using diatomite waste (DW) as a clay substitute. The research aimed to reduce the consumption of natural resources and minimise the environmental impacts caused by the disorderly disposal of DW. Chemical, physical, and mechanical tests were carried out on six formulations of mixtures containing 50% to 100% DW, sintered between 1100 and 1250 °C, resulting in 24 samples. The aggregates had a particle density between 1.14 and 2.13 g/cm3, a maximum bloating index of 5.7%, a crushing strength of up to 11.14 MPa, and a mass loss of up to 8.7%. Minimum porosity of 2.8 percent and water absorption of 2.0 percent were observed. Sixteen samples met the criteria required for commercial applications, demonstrating that replacing clay with DW is technically feasible. The high porosity of DW was found to influence the density of the LWAs. The findings of this study highlight the environmental sustainability of using DW as an alternative raw material, contributing to circular economy strategies in the construction sector. Full article
Show Figures

Figure 1

24 pages, 7521 KiB  
Article
Developing a Remote Sensing-Based Approach for Agriculture Water Accounting in the Amman–Zarqa Basin
by Raya A. Al-Omoush, Jawad T. Al-Bakri, Qasem Abdelal, Muhammad Rasool Al-Kilani, Ibraheem Hamdan and Alia Aljarrah
Water 2025, 17(14), 2106; https://doi.org/10.3390/w17142106 - 15 Jul 2025
Viewed by 460
Abstract
In water-scarce regions such as Jordan, accurate tracking of water flows is critical for informed water management. This study applied the Water Accounting Plus (WA+) framework using open-source remote sensing data from the FAO WaPOR portal to develop agricultural water accounting (AWA) for [...] Read more.
In water-scarce regions such as Jordan, accurate tracking of water flows is critical for informed water management. This study applied the Water Accounting Plus (WA+) framework using open-source remote sensing data from the FAO WaPOR portal to develop agricultural water accounting (AWA) for the Amman–Zarqa Basin (AZB) during 2014–2022. Inflows, outflows, and water consumption were quantified using WaPOR and other open datasets. The results showed a strong correlation between WaPOR precipitation (P) and rainfall station data, while comparisons with other remote sensing sources were weaker. WaPOR evapotranspiration (ET) values were generally lower than those from alternative datasets. To improve classification accuracy, a correction of the WaPOR-derived land cover map was performed. The revised map achieved a producer’s accuracy of 15.9% and a user’s accuracy of 86.6% for irrigated areas. Additionally, ET values over irrigated zones were adjusted, resulting in a fivefold improvement in estimates. These corrections significantly enhanced the reliability of key AWA indicators such as basin closure, ET fraction, and managed fraction. The findings demonstrate that the accuracy of P and ET data strongly affects AWA outputs, particularly the estimation of percolation and beneficial water use. Therefore, calibrating remote sensing data is essential to ensure reliable water accounting, especially in agricultural settings where data uncertainty can lead to misleading conclusions. This study recommends the use of open-source datasets such as WaPOR—combined with field validation and calibration—to improve agricultural water resource assessments and support decision making at basin and national levels. Full article
Show Figures

Figure 1

Back to TopTop