Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,031)

Search Parameters:
Keywords = water level peaks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5262 KiB  
Article
Alternative Hydraulic Modeling Method Based on Recurrent Neural Networks: From HEC-RAS to AI
by Andrei Mihai Rugină
Hydrology 2025, 12(8), 207; https://doi.org/10.3390/hydrology12080207 (registering DOI) - 6 Aug 2025
Abstract
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural [...] Read more.
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural architectures were analyzed as follows: S-RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU. The input data for the neural networks were derived from 2D hydraulic simulations conducted using HEC-RAS software, which provided the necessary training data for the models. It should be mentioned that the input data for the hydraulic model are synthetic hydrographs, derived from the statistical processing of recorded floods. Performance evaluation was based on standard metrics such as NSE, R2 MSE, and RMSE. The results indicate that all studied networks performed well, with NSE and R2 values close to 1, thus validating their capacity to reproduce complex hydrological dynamics. Overall, all models yielded satisfactory results, making them useful tools particularly the GRU and Bi-GRU architectures, which showed the most balanced behavior, delivering low errors and high stability in predicting peak discharge, water level, and flood wave volume. The GRU and Bi-GRU networks yielded the best performance, with RMSE values below 1.45, MAE under 0.3, and volume errors typically under 3%. On the other hand, LSTM architecture exhibited the most significant instability and errors, especially in estimating the flood wave volume, often having errors exceeding 9% in some sections. The study concludes by identifying several limitations, including the heavy reliance on synthetic data and its local applicability, while also proposing solutions for future analyses, such as the integration of real-world data and the expansion of the methodology to diverse river basins thus providing greater significance to RNN models. The final conclusions highlight that RNNs are powerful tools in flood risk management, contributing to the development of fast and efficient early warning systems for extreme hydrological and meteorological events. Full article
Show Figures

Figure 1

13 pages, 1739 KiB  
Article
Study on the Shear Characteristics of the Frozen Soil–Concrete Interface at Different Roughness Levels
by Ming Xie, Mengqi Xu, Fangbo Xu, Zhangdong Wang, Lie Yin and Xiangdong Wu
Buildings 2025, 15(15), 2783; https://doi.org/10.3390/buildings15152783 - 6 Aug 2025
Abstract
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 [...] Read more.
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 to R-4) on the interfacial freezing strength was quantitatively analyzed for the first time through direct shear tests, and the evolution characteristics of the contribution ratio of the ice cementation strength were revealed. The results show that the peak shear strength of the interface increases significantly with the roughness (when the normal stress is 400 kPa and the water content is 14%, the increase in R-4 is 47.7% compared with R-0); the ice cementation strength increases synchronously and its contribution ratio increases with the increase in roughness. Although the absolute value of the residual strength increase is small, the relative amplitude is larger (178.5% increase under the same working conditions). The peak cohesion increased significantly with the roughness (R-0 to R-4 increased by 268.6%), while the residual cohesion decreased. The peak and residual internal friction angle increased slightly with the roughness. The study clarifies the differential influence mechanism of roughness on the interface’s shear parameters and provides a key quantitative basis for the anti-frost heave design of engineering interfaces in cold regions. Full article
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Unveiling Radon Concentration in Geothermal Installation: The Role of Indoor Conditions and Human Activity
by Dimitrios-Aristotelis Koumpakis, Savvas Petridis, Apostolos Tsakirakis, Ioannis Sourgias, Alexandra V. Michailidou and Christos Vlachokostas
Gases 2025, 5(3), 18; https://doi.org/10.3390/gases5030018 - 5 Aug 2025
Abstract
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The [...] Read more.
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The accumulation of radon indoors in sealed or poorly ventilated areas leads to dangerous concentrations that elevate human health risks of lung cancer. The research examines environmental variables affecting radon concentration indoors by studying geothermal installations and their drilling activities, which potentially increase radon emissions. The study was conducted in the basement of the plumbing educational building at the Aristotle University of Thessaloniki to assess the potential impact of geothermal activity on indoor radon levels, as the building is equipped with a geothermal heating system. The key findings based on 150 days of continuous data showed that radon levels peak during the cold days, where the concentration had a mean value of 41.5 Bq/m3 and reached a maximum at about 95 Bq/m3. The reason was first and foremost poor ventilation and pressure difference. The lowest concentrations were on days with increased human activity with measures that had a mean value of 14.8 Bq/m3, which is reduced by about 65%. The results that are presented confirm the hypotheses and the study is making clear that ventilation and human activity are crucial in radon mitigation, especially on geothermal and energy efficient structures. Full article
Show Figures

Figure 1

13 pages, 906 KiB  
Article
Integrated Flushing and Corrosion Control Measures to Reduce Lead Exposure in Households with Lead Service Lines
by Fatemeh Hatam, Mirjam Blokker and Michele Prevost
Water 2025, 17(15), 2297; https://doi.org/10.3390/w17152297 - 2 Aug 2025
Viewed by 174
Abstract
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase [...] Read more.
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase lead release from lead service lines. This study employs numerical modeling to assess how combined corrosion control and flushing strategies affect lead levels in household taps with lead service lines under reduced water use. To estimate potential health risks, the U.S. EPA model is used to predict the percentage of children likely to exceed safe blood lead levels. Lead exceedances are assessed based on various regulatory requirements. Results show that exceedances at the kitchen tap range from 3 to 74% of usage time for the 5 µg/L standard, and from 0 to 49% for the 10 µg/L threshold, across different scenarios. Implementing corrosion control treatment in combination with periodic flushing proves effective in lowering lead levels under the studied low-consumption scenarios. Under these conditions, the combined strategy limits lead exceedances above 5 µg/L to only 3% of usage time, with none above 10 µg/L. This demonstrates its value as a practical short-term strategy for households awaiting full pipe replacement. Targeted flushing before peak water use reduces the median time that water remains stagnant in household pipes from 8 to 3 h at the kitchen tap under low-demand conditions. Finally, the risk model indicates that the combined approach can reduce the predicted percentage of children with blood lead levels exceeding 5 μg/dL from 61 to 6% under low water demand. Full article
Show Figures

Figure 1

10 pages, 3658 KiB  
Proceeding Paper
A Comparison Between Adam and Levenberg–Marquardt Optimizers for the Prediction of Extremes: Case Study for Flood Prediction with Artificial Neural Networks
by Julien Yise Peniel Adounkpe, Valentin Wendling, Alain Dezetter, Bruno Arfib, Guillaume Artigue, Séverin Pistre and Anne Johannet
Eng. Proc. 2025, 101(1), 12; https://doi.org/10.3390/engproc2025101012 - 31 Jul 2025
Abstract
Artificial neural networks (ANNs) adjust to the underlying behavior in the dataset using a training rule or optimizer. The most popular first-and second-order optimizers, Adam (AD) and Levenberg–Marquardt (LM), were compared with the aim of predicting extreme flash floods of a runoff-dominated hydrological [...] Read more.
Artificial neural networks (ANNs) adjust to the underlying behavior in the dataset using a training rule or optimizer. The most popular first-and second-order optimizers, Adam (AD) and Levenberg–Marquardt (LM), were compared with the aim of predicting extreme flash floods of a runoff-dominated hydrological system. A fully connected multilayer perceptron with a shallow structure was used to reduce complexity and limit overfitting. The inputs of the ANN were determined by rainfall–water level cross-correlation analysis. For each optimizer, the hyperparameters of the ANN were selected using a grid search and the cross-validation score on a novel criterion (PERS PEAK) mixing the persistency (PERS) and the quality of flood-peak restitution (PEAK). For an extreme and unseen event used as a test set, LM outperformed AD by 25% on all performance criteria. The peak water level of this event, 66% greater than that of the training set, was predicted by 92% after more training iterations were done by the LM optimizer. This shows that the ANN can predict beyond the ranges of the training set, given the right optimizer. Nevertheless, the LM training time was up to five times longer than that of AD during grid search. Full article
Show Figures

Figure 1

36 pages, 2981 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 - 31 Jul 2025
Viewed by 159
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
Show Figures

Figure 1

23 pages, 16311 KiB  
Article
Stratum Responses and Disaster Mitigation Strategies During Pressurized Pipe Bursts: Role of Geotextile Reinforcement
by Zhongjie Hao, Hui Chao, Yong Tan, Ziye Wang, Zekun Su and Xuecong Li
Buildings 2025, 15(15), 2696; https://doi.org/10.3390/buildings15152696 - 30 Jul 2025
Viewed by 179
Abstract
Urban subsurface pipeline bursts can induce catastrophic cascading effects, including ground collapse, infrastructure failure, and socioeconomic losses. However, stratum responses during the erosion cavity expansion phase and corresponding disaster mitigation strategies have rarely been researched. In this study, a numerical model validated through [...] Read more.
Urban subsurface pipeline bursts can induce catastrophic cascading effects, including ground collapse, infrastructure failure, and socioeconomic losses. However, stratum responses during the erosion cavity expansion phase and corresponding disaster mitigation strategies have rarely been researched. In this study, a numerical model validated through experimental tests was employed to investigate the effects of internal water pressures, burial depths, and different geotextile-based disaster mitigation strategies. It was revealed that a burial depth-dependent critical internal water pressure governed the erosion cavity expansion, and a predictive equation was derived based on the limit equilibrium theory. Higher internal water pressure accelerated the erosion cavity expansion and amplified the stratum stress within a range of twice the diameter D. Increased burial depth d reduced peak ground heave but linearly expanded the heave zone range, concurrently elevating the overall stratum stress level and generating larger stress reduction zones (i.e., when d/D = 3.0, the range of the stress reduction zone was 8.0D). All geotextile layout configurations exhibited different disaster mitigation effects (the peak ground heave was reduced by at least 15%). The semi-circular closely fitted configuration (SCCF) optimally restricted the expansion of the erosion cavity, reduced the stratum displacement (i.e., 39% reduction in the peak ground heave), and avoided stress concentration. Comprehensive analysis indicated that SCCF was suited for low-pressure pipelines in deformation-sensitive stratum and semi-circular configuration (SC) was suitable for deformation-insensitive pipeline sections. These findings provide actionable insights for tailoring mitigation strategies to specific operational risks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 5779 KiB  
Article
Regional Wave Spectra Prediction Method Based on Deep Learning
by Yuning Liu, Rui Li, Wei Hu, Peng Ren and Chao Xu
J. Mar. Sci. Eng. 2025, 13(8), 1461; https://doi.org/10.3390/jmse13081461 - 30 Jul 2025
Viewed by 216
Abstract
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave [...] Read more.
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model’s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

24 pages, 42622 KiB  
Article
Seasonal Comparative Monitoring of Plastic and Microplastic Pollution in Lake Garda (Italy) Using Seabin During Summer–Autumn 2024
by Marco Papparotto, Claudia Gavazza, Paolo Matteotti and Luca Fambri
Microplastics 2025, 4(3), 44; https://doi.org/10.3390/microplastics4030044 - 28 Jul 2025
Viewed by 344
Abstract
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in [...] Read more.
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in calm waters while monitoring water pollution. A Seabin was used to conduct a comparative analysis of plastic and microplastic concentrations in northern Lake Garda (Italy) during peak and low tourist seasons. The composition of the litter was further investigated using Fourier-Transform Infrared (FTIR) spectroscopy. The analysis showed a decreased mean amount of plastic from summer (32.5 mg/m3) to autumn (17.6 mg/m3), with an average number of collected microplastics per day of 45 ± 15 and 15 ± 3, respectively. Packaging and foam accounted for 92.2% of the recognized plastic waste products. The material composition of the plastic mass (442 pieces, 103.0 g) was mainly identified as polypropylene (PP, 47.1%) and polyethylene (PE, 21.8%). Moreover, 313 microplastics (approximately 2.0 g) were counted with average weight in the range of 1–16 mg. A case study of selected plastic debris was also conducted. Spectroscopic, microscopic, and thermal analysis of specimens provided insights into how aging affects plastics in this specific environment. The purpose of this study was to establish a baseline for further research on the topic, to provide guidelines for similar analyses from a multidisciplinary perspective, to monitor plastic pollution in Lake Garda, and to inform policy makers, scientists, and the public. Full article
(This article belongs to the Collection Feature Paper in Microplastics)
Show Figures

Figure 1

25 pages, 20396 KiB  
Article
Constructing Ecological Security Patterns in Coal Mining Subsidence Areas with High Groundwater Levels Based on Scenario Simulation
by Shiyuan Zhou, Zishuo Zhang, Pingjia Luo, Qinghe Hou and Xiaoqi Sun
Land 2025, 14(8), 1539; https://doi.org/10.3390/land14081539 - 27 Jul 2025
Viewed by 305
Abstract
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal [...] Read more.
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal mining subsidence areas with high groundwater levels. This study employed the patch-generating land use simulation (PLUS) model to predict the landscape evolution trend of the study area in 2032 under three scenarios, combining environmental characteristics and disturbance features of coal mining subsidence areas with high groundwater levels. In order to determine the differences in ecological network changes within the study area under various development scenarios, morphological spatial pattern analysis (MSPA) and landscape connectivity analysis were employed to identify ecological source areas and establish ecological corridors using circuit theory. Based on the simulation results of the optimal development scenario, potential ecological pinch points and ecological barrier points were further identified. The findings indicate that: (1) land use changes predominantly occur in urban fringe areas and coal mining subsidence areas. In the land reclamation (LR) scenario, the reduction in cultivated land area is minimal, whereas in the economic development (ED) scenario, construction land exhibits a marked increasing trend. Under the natural development (ND) scenario, forest land and water expand most significantly, thereby maximizing ecological space. (2) Under the ND scenario, the number and distribution of ecological source areas and ecological corridors reach their peak, leading to an enhanced ecological network structure that positively contributes to corridor improvement. (3) By comparing the ESP in the ND scenario in 2032 with that in 2022, the number and area of ecological barrier points increase substantially while the number and area of ecological pinch points decrease. These areas should be prioritized for ecological protection and restoration. Based on the scenario simulation results, this study proposes a planning objective for a “one axis, four belts, and four zones” ESP, along with corresponding strategies for ecological protection and restoration. This research provides a crucial foundation for decision-making in enhancing territorial space planning in coal mining subsidence areas with high groundwater levels. Full article
Show Figures

Figure 1

13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 436
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

17 pages, 1816 KiB  
Article
Physical Aspects, Phytochemical Profiles, and Nutritional Properties of Lemon (Citrus limon) Slices Under Different Drying Technologies
by Zhirong Wang, Qingqing Fu, Guijie Hao, Yuanwei Gu, Tianqi Sun, Lu Gao, Bo Wang, Shuai Wang, Xiangfeng Zheng, Zhenquan Yang and Shengqi Rao
Foods 2025, 14(15), 2586; https://doi.org/10.3390/foods14152586 - 23 Jul 2025
Viewed by 166
Abstract
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried [...] Read more.
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried LSs and their brewed beverages. The results show that FD-LSs and their corresponding beverages have the most appealing appearance and maximum levels of ascorbic acid (2.47 and 0.80 mg/g, respectively), synephrine (8.15 and 0.94 mg/g, respectively), and the overwhelming majority of natural and available phenolic compounds, as well as the strongest antioxidant activity, although numerous volatile compounds in FD-LSs were in the lowest abundances. HPD-LSs exhibited similar trends to FD-LSs but contained the peak concentrations of limonene (2258.87 μg/g), γ-terpinene (704.19 μg/g), β-pinene (502.92 μg/g), and α-pinene (188.91 μg/g), which were the four most abundant volatile compounds in dried LSs. Additionally, active ingredients in HPD-LSs generally featured relative high levels of available amounts. In contrast, HAD- and FID-LSs typically displayed unfavorable coloration and low retention levels of natural and available active ingredients. Consequently, FD and HPD demonstrate superior suitability for the commercial-scale production of dried LSs. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 8441 KiB  
Article
Upper Pleistocene Marine Levels of the Es Copinar–Es Estufadors (Formentera, Balearic Islands, West Mediterranean)
by Laura del Valle, Guillem X. Pons and Joan J. Fornós
Quaternary 2025, 8(3), 38; https://doi.org/10.3390/quat8030038 - 21 Jul 2025
Viewed by 408
Abstract
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, [...] Read more.
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, 5c, and possibly 5a, based on sedimentological features, fossil assemblages, and Optically Stimulated Luminescence (OSL) dating. The oldest beach level (Sef-1) is attributed to MIS 5e (ca. 128–116 ka) and is characterised by the widespread presence of thermophilic Senegalese fauna—including Thetystrombus latus, Conus ermineus, and Linatella caudata—which mark the onset of this interglacial phase and are associated with two peaks in relative sea-level highstand. A subsequent cooling event during MIS 5d is recorded by the development of thin palaeosols and the disappearance of these warm-water taxa. The second beach level (Sef-2) reflects renewed sea-level rise and warmer conditions during MIS 5c, with abundant macrofauna and red algae. The transition to MIS 5b (~97 ka) is marked by a significant sea-level drop (down to –60 m), cooler climate, and enhanced colluvial sedimentation linked to increased runoff and erosion. In total, 54 macrofaunal species were identified—16 from Sef-1 and 46 from Sef-2—highlighting ecological shifts across substages. These results improve our understanding of coastal response to sea-level oscillations and paleoenvironmental dynamics in the western Mediterranean during the Late Pleistocene. Full article
Show Figures

Figure 1

10 pages, 721 KiB  
Article
Pharmacokinetic Analysis of the Bioavailability of AQUATURM®, a Water-Soluble Curcumin Formulation, in Comparison to a Conventional Curcumin Tablet, in Human Subjects
by Lillian Jabur, Rishi Pandey, Meena Mikhael, Garry Niedermayer, Erika Gyengesi, David Mahns and Gerald Münch
Pharmaceuticals 2025, 18(7), 1073; https://doi.org/10.3390/ph18071073 - 21 Jul 2025
Viewed by 397
Abstract
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed [...] Read more.
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed to overcome these limitations. This study aimed to evaluate and compare the pharmacokinetic profile of AQUATURM®, a novel, water-soluble curcumin formulation, with that of a widely available commercial curcumin supplement. Methods: A randomized, double-blind, two-period crossover study was conducted in 12 healthy adult participants (6 male, 6 female; aged 20–45 years). Each participant received a single oral dose of either AQUATURM® or the comparator product, followed by a 7-day washout period before receiving the alternate treatment. Blood samples were collected at multiple time points over a 12-h period post-dosing. Plasma curcumin concentrations were quantified using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Results: AQUATURM® achieved a significantly higher systemic exposure compared to the comparator, with a more than 7-fold increase in area under the curve (AUC0–12h) and higher peak plasma concentrations (Cmax). AQUATURM® also maintained detectable curcumin levels for the full 12-h observation period, whereas levels from the comparator fell below quantification limits in most participants after 4 h. Conclusions: AQUATURM® significantly enhances curcumin bioavailability in humans compared to a standard curcumin formulation. These pharmacokinetic improvements support its potential for greater clinical efficacy and warrant further evaluation in therapeutic setting Full article
Show Figures

Graphical abstract

Back to TopTop