Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,807)

Search Parameters:
Keywords = water heating system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2278 KB  
Article
Experimental and Numerical Investigation of an Adsorption Desalination Exchanger for High-Purity Water Production in Hydrogen Systems
by Piotr Boruta, Tomasz Bujok, Karol Sztekler, Łukasz Mika, Wojciech Kalawa and Agata Mlonka-Mędrala
Energies 2026, 19(2), 484; https://doi.org/10.3390/en19020484 - 19 Jan 2026
Abstract
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was [...] Read more.
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was tested on saline feed using 300 s valve-switching periods at an 80 °C driving temperature and 20–30 °C cooling water. Dynamic vapour sorption measurements provided Dubinin–Astakhov equilibrium and linear driving force kinetic parameters, implemented in a CFD porous bed model via user-defined source terms. Experiments yielded COP values of 0.29–0.41, an SCP of 165 W·kg−1 of adsorbent, and an average distillate production of 1.68–1.82 kg·h−1, while distillate conductivity remained ≈2.3 μS·cm−1. The model reproduced the mean condensate production with a ≈6% underprediction. It was then used to compare six alternative fin geometries with a constant heat-transfer area. Fin-shape modifications changed inter-fin heating by <2 K and cumulative desorbed mass by <0.05%, indicating limited sensitivity to subtle local refinements. Performance gains are more likely to arise from operating conditions and exchanger-scale architecture than from minor fin-shape changes. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

23 pages, 3388 KB  
Article
Explainable Machine Learning for Hospital Heating Plants: Feature-Driven Modeling and Analysis
by Marjan Fatehijananloo and J. J. McArthur
Buildings 2026, 16(2), 397; https://doi.org/10.3390/buildings16020397 - 18 Jan 2026
Abstract
Hospitals are among the most energy-intensive buildings, yet their heating systems often operate below optimal efficiency due to outdated controls and limited sensing. Existing facilities often provide only a few accessible measurement points, many of which are locked within proprietary master controllers and [...] Read more.
Hospitals are among the most energy-intensive buildings, yet their heating systems often operate below optimal efficiency due to outdated controls and limited sensing. Existing facilities often provide only a few accessible measurement points, many of which are locked within proprietary master controllers and not integrated into the Building Automation System (BAS). To address these limitations, this study proposes a data-driven feature selection approach that supports the development of gray-box emulators for complex, real-world central heating plants. A year of operational and weather data from a large hospital was used to train multiple machine learning models to predict the heating demand and return water temperature of a hospital heating plant system. The model’s performance was evaluated under reduced-sensor conditions by intentionally removing unpredictable values such as the VFD speed and flow rate. XGBoost achieved the highest accuracy with full sensor data and maintained a strong performance when critical sensors were omitted. An explainability analysis using Shapley Additive Explanations (SHAP) is applied to interpret the models, revealing that outdoor temperature and time of day (as an occupancy proxy) are the dominant predictors of boiler load. The results demonstrate that, even under sparse instrumentation, an AI-driven digital twin of the heating plant can reliably capture system dynamics. Full article
Show Figures

Figure 1

18 pages, 3693 KB  
Article
Modeling and Performance Assessment of a NeWater System Based on Direct Evaporation and Refrigeration Cycle
by Yilin Huo, Eric Hu and Jay Wang
Energies 2026, 19(2), 468; https://doi.org/10.3390/en19020468 - 17 Jan 2026
Viewed by 45
Abstract
At present, the global shortage of water resources has led to serious challenges, and traditional water production technologies such as seawater desalination and atmospheric water harvesting have certain limitations due to inflexible operation and environmental conditions. This study proposes a novel water production [...] Read more.
At present, the global shortage of water resources has led to serious challenges, and traditional water production technologies such as seawater desalination and atmospheric water harvesting have certain limitations due to inflexible operation and environmental conditions. This study proposes a novel water production system (called “NeWater” system in this paper), which combines saline water desalination with atmospheric water-harvesting technologies to simultaneously produce freshwater from brackish water or seawater and ambient air. To evaluate its performance, an integrated thermodynamic and mathematical model of the system was developed and validated. The NeWater system consists of a vapor compression refrigeration unit (VRU), a direct evaporation unit (DEU), up to four heat exchangers, some valves, and auxiliary components. The system can be applied to areas and scenarios where traditional desalination technologies, like reverse osmosis and thermal-based desalination, are not feasible. By switching between different operating modes, the system can adapt to varying environmental humidity and temperature conditions to maximize its freshwater productivity. Based on the principles of mass and energy conservation, a performance simulation model of the NeWater system was developed, with which the impacts of some key design and operation parameters on system performance were studied in this paper. The results show that the performances of the VRU and DEU had a significant influence on system performance in terms of freshwater production and specific energy consumption. Under optimal conditions, the total freshwater yield could be increased by up to 1.9 times, while the specific energy consumption was reduced by up to 48%. The proposed system provides a sustainable and scalable water production solution for water-scarce regions. Optimization of the NeWater system and the selection of VRUs are beyond the scope of this paper and will be the focus of future research. Full article
Show Figures

Figure 1

21 pages, 4676 KB  
Article
Investigation of the Influence Mechanism and Analysis of Engineering Application of the Solar PVT Heat Pump Cogeneration System
by Yujia Wu, Zihua Li, Yixian Zhang, Gang Chen, Gang Zhang, Xiaolan Wang, Xuanyue Zhang and Zhiyan Li
Energies 2026, 19(2), 450; https://doi.org/10.3390/en19020450 - 16 Jan 2026
Viewed by 55
Abstract
Amidst the ongoing global energy crisis, environmental deterioration, and the exacerbation of climate change, the development of renewable energy, particularly solar energy, has become a central topic in the global energy transition. This study investigates a solar photovoltaic thermal (PVT) heat pump system [...] Read more.
Amidst the ongoing global energy crisis, environmental deterioration, and the exacerbation of climate change, the development of renewable energy, particularly solar energy, has become a central topic in the global energy transition. This study investigates a solar photovoltaic thermal (PVT) heat pump system that utilizes an expanded honeycomb-channel PVT module to enhance the comprehensive utilization efficiency of solar energy. A simulation platform for the solar PVT heat pump system was established using Aspen Plus software (V12), and the system’s performance impact mechanisms and engineering applications were researched. The results indicate that solar irradiance and the circulating water temperature within the PVT module are the primary factors affecting system performance: for every 100 W/m2 increase in solar irradiance, the coefficient of performance for heating (COPh) increases by 13.7%, the thermoelectric comprehensive performance coefficient (COPco) increases by 14.9%, and the electrical efficiency of the PVT array decreases by 0.05%; for every 1 °C increase in circulating water temperature, the COPh and COPco increase by 11.8% and 12.3%, respectively, and the electrical efficiency of the PVT array decreases by 0.03%. In practical application, the system achieves an annual heating capacity of 24,000 GJ and electricity generation of 1.1 million kWh, with average annual COPh and COPco values of 5.30 and 7.60, respectively. The Life Cycle Cost (LCC) is 13.2% lower than that of the air-source heat pump system, the dynamic investment payback period is 4–6 years, and the annual carbon emissions are reduced by 94.6%, demonstrating significant economic and environmental benefits. This research provides an effective solution for the efficient and comprehensive utilization of solar energy, utilizing the low-global-warming-potential refrigerant R290, and is particularly suitable for combined heat and power applications in regions with high solar irradiance. Full article
Show Figures

Figure 1

23 pages, 3500 KB  
Proceeding Paper
Modelling Heat Recovery System for Efficiency Enhancement in Alkaline Electrolyser
by Mohamed Amin, Edward Antwi, Taimoor Khan, Romy Sommer, Qahtan Thabit and Johannes Gulden
Eng. Proc. 2026, 121(1), 19; https://doi.org/10.3390/engproc2025121019 - 16 Jan 2026
Viewed by 93
Abstract
The global energy landscape is transitioning towards cleaner solutions, with hydrogen emerging as a key energy source. To unlock hydrogen’s potential, it is crucial to prioritize the development of a more efficient, cost-effective, and environmentally friendly production process. Enhancing the efficiency and scalability [...] Read more.
The global energy landscape is transitioning towards cleaner solutions, with hydrogen emerging as a key energy source. To unlock hydrogen’s potential, it is crucial to prioritize the development of a more efficient, cost-effective, and environmentally friendly production process. Enhancing the efficiency and scalability of these technologies will not only reduce their environmental impact but also accelerate the adoption of hydrogen as a viable alternative energy solution, fostering a cleaner and more sustainable future. This paper presents a study on simulating a heat recovery system in an alkaline electrolyser consisting of 30 cells, which integrates a plate heat exchanger to preheat the water entering the system, and assessing how it affects efficiency. The study uses a thermal model, employing the concept of lumped thermal capacitance, to analyze the impact of the heat recovery system utilization on the overall performance of the electrolyser. MATLAB/Simulink was used to simulate and provide a detailed visualization of how recovery systems affect the electrolyser’s efficiency. The results of the simulations confirmed that incorporating a heat recovery system significantly improves the efficiency of alkaline electrolysers up to 8%. The study provides a promising outlook for the future of hydrogen production, emphasizing the potential of waste heat recovery systems to make green hydrogen production more viable and sustainable. Full article
Show Figures

Figure 1

15 pages, 2439 KB  
Article
Development of Intelligent Genetic Optimization Algorithm for Fluid–Thermal Interaction in Machinery Engine Cooling Systems
by Jiwei Zhang, Xinze Song, Wenbin Yu and Feiyang Zhao
Energies 2026, 19(2), 441; https://doi.org/10.3390/en19020441 - 16 Jan 2026
Viewed by 119
Abstract
With advancements in simulation technology, fluid–thermal interaction (FTI) has become a vital tool in machinery powertrain development. Traditional engine cooling systems, with mechanically coupled components like water pumps and fans, lack adaptive cooling control. Electronic cooling systems, however, use variable-speed components to enhance [...] Read more.
With advancements in simulation technology, fluid–thermal interaction (FTI) has become a vital tool in machinery powertrain development. Traditional engine cooling systems, with mechanically coupled components like water pumps and fans, lack adaptive cooling control. Electronic cooling systems, however, use variable-speed components to enhance performance. Combining FTI simulations with intelligent optimization algorithms offers a novel approach to designing control strategies for these systems. This study establishes a multi-objective optimization model for pump and fan speed control in electronic cooling systems. Using MATLAB/Simulink 2018 and Fluent 2022R1, co-simulations were performed, and an elite-strategy-based NSGA-II algorithm was implemented. Different weights were assigned to optimization objectives based on engine performance requirements. The results provide fitted functions for heat exchange capacity and cylinder liner temperature versus flow rates, along with optimal solutions for a 65 kW engine under three weight configurations. These findings support control strategy design and demonstrate the integration of FTI with genetic algorithms. Full article
Show Figures

Figure 1

10 pages, 2128 KB  
Proceeding Paper
Artificial Neural Network Model for Predicting the Characteristics of a Solar Vacuum Tube System for Domestic Hot Water Heating
by Mariyana Sestrimska, Nikolay Komitov and Margarita Terziyska
Eng. Proc. 2026, 122(1), 10; https://doi.org/10.3390/engproc2026122010 - 15 Jan 2026
Viewed by 73
Abstract
The use of different energy sources for heating and year-round domestic water heating is driven by the European Union’s increasingly strict environmental and climate requirements. For this reason, consumers are seeking alternatives and show growing interest in implementing installations that utilize solar energy. [...] Read more.
The use of different energy sources for heating and year-round domestic water heating is driven by the European Union’s increasingly strict environmental and climate requirements. For this reason, consumers are seeking alternatives and show growing interest in implementing installations that utilize solar energy. Modern households typically employ at least two different energy sources for this purpose. In practice, these are hybrid installations that, depending on the season, can operate with one, two, or more energy sources. The system examined in this paper is of this type, comprising a pellet boiler, solar vacuum tubes, and electric heaters. Managing such a system is complex, and based on the conducted studies, process optimization can be pursued. This report presents an artificial neural network (ANN) model developed to predict the behavior of a real solar installation for domestic hot water heating during the summer season. This study aims, through the obtained model, to forecast the system’s performance during transitional periods such as autumn and spring, thereby enabling more efficient control. Full article
Show Figures

Figure 1

20 pages, 1399 KB  
Review
Nature-Based Solutions for Resilience: A Global Review of Ecosystem Services from Urban Forests and Cover Crops
by Anastasia Ivanova, Reena Randhir and Timothy O. Randhir
Diversity 2026, 18(1), 47; https://doi.org/10.3390/d18010047 - 15 Jan 2026
Viewed by 132
Abstract
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. [...] Read more.
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. However, their benefits are often viewed separately. This review combines 20 years of research to explore how these strategies, together, improve provisioning, regulating, supporting, and cultural ecosystem services across various landscapes. Urban forests help reduce urban heat islands, improve air quality, manage stormwater, and offer cultural and health benefits. Cover crops increase soil fertility, regulate water, support nutrient cycling, and enhance crop yields, with potential for carbon sequestration and biofuel production. We identify opportunities and challenges, highlight barriers to adopting these strategies, and suggest integrated frameworks—including spatial decision-support tools, incentive programs, and education—to encourage broader use. By connecting urban and rural systems, this review underscores vegetation as a versatile tool for resilience, essential for reaching global sustainability goals. Full article
(This article belongs to the Special Issue 2026 Feature Papers by Diversity's Editorial Board Members)
Show Figures

Graphical abstract

32 pages, 7384 KB  
Article
Unlocking Rooftop Cooling Potential: An Experimental Investigation of the Thermal Behavior of Cool Roof and Green Roof as Retrofitting Strategies in Hot–Humid Climate
by Tengfei Zhao, Kwong Fai Fong and Tin Tai Chow
Buildings 2026, 16(2), 365; https://doi.org/10.3390/buildings16020365 - 15 Jan 2026
Viewed by 101
Abstract
Cool roof and green roof have been acknowledged as effective heat mitigation strategies for fighting against the urban heat island (UHI). However, empirical data in hot–humid climate are still insufficient. Experimental conventional, cool and green roofs (three types) were established to comprehensively investigate [...] Read more.
Cool roof and green roof have been acknowledged as effective heat mitigation strategies for fighting against the urban heat island (UHI). However, empirical data in hot–humid climate are still insufficient. Experimental conventional, cool and green roofs (three types) were established to comprehensively investigate the thermal performances in Hong Kong under typical summer conditions, as retrofitting strategies for an office building. The holistic vertical thermal behavior was investigated. The comparative cooling potentials were assessed. The results reveal a “vertical thermal sequence” in peak temperatures of each substrate layer for the conventional, cool and green roofs on a sunny day. However, local reversion in the thermal sequence may occur on a rainy day. Green roof-plot C (GR_C) demonstrates the highest thermal damping effect, followed by plot B (GR_B), A (GR_A) and the cool roof (CR) in summer. On a sunny day, the thermal dampening effectiveness of the substrates in the three green roofs is consistent: drainage > soil > water reservoir > root barrier. The holistic vertical thermal profiling was constructed in a high-rise office context in Hong Kong. The diurnal temperature profiles indicate all roof systems could effectively attenuate the temperature fluctuations. The daily maximum surface temperature reduction (SDMR) was introduced for cooling potential characterization of the cool roof and green roofs with multiple vegetation types. On a sunny day, the cool roof and green roofs all showed significant cooling potential. SDMR on the concrete tile of the best performing system was GR_C (26 °C), followed by GR_B (22.4 °C), GR_A (20.7 °C) and CR (13.3 °C), respectively. The SDMR on the ceiling ranked as GR_C, GR_B, GR_A and CR, with 2.9 °C, 2.4 °C, 2.1 °C and 2.1 °C, separately. On a rainy day, the cooling effect was still present but greatly diminished. A critical insight of a “warming effect at the ceiling” of the green roof was revealed. This research offers critical insights for unlocking rooftop cooling potential, endorsing cool roof and green roof as pivotal solutions for sustainable urban environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 6196 KB  
Article
Subsurface Temperature Distributions Constrain Groundwater Flow in Salar Marginal Environments
by David F. Boutt, Julianna C. Huba, Lee Ann Munk and Kristina L. Butler
Hydrology 2026, 13(1), 32; https://doi.org/10.3390/hydrology13010032 - 15 Jan 2026
Viewed by 90
Abstract
Interactions between surface water and groundwater in arid regions regulate their response to climate and human impacts. In the salar systems of the Altiplano-Puna plateau (Bolivia, Chile, Argentina), understanding how surface waters connect to groundwater is crucial for accurate modeling and assessment. This [...] Read more.
Interactions between surface water and groundwater in arid regions regulate their response to climate and human impacts. In the salar systems of the Altiplano-Puna plateau (Bolivia, Chile, Argentina), understanding how surface waters connect to groundwater is crucial for accurate modeling and assessment. This study introduces new data and analysis using subsurface thermal profiles and modeling to identify flow patterns and possible surface water links. We document, to our knowledge, for the first time in the literature, deep-seated cooling of the subsurface caused by extreme evaporation rates. The subsurface is cooled by 4–5 degrees Celsius below the mean annual air temperature to depths greater than 50 m, even though groundwater inflow waters are elevated by 10 degrees °C due to geothermal heating. Three thermal zones are observed along the southern edge of Salar de Atacama, with temperature dropping from 28 °C to about 12 °C over 2.5 km. A 2D numerical model of groundwater and heat flow was developed to test various hydrological scenarios and understand the factors controlling the thermal regime. Two flow scenarios at the southern margin were examined: a diffuse flow model with uniform flow and flux to the surface and a focused flow model with preferential discharge at a topographic slope break. Results indicate that the focused flow scenario matches thermal data, with warm inflow water discharging into a transition zone between freshwater and brine, cooling through evaporation, re-infiltration, and surface flow, then re-emerging near lagoons at the halite nucleus margin. This research offers valuable insights into the groundwater hydraulics in the Salar de Atacama and can aid in monitoring environmental changes causally linked to lithium mining and upgradient freshwater extraction. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

26 pages, 3565 KB  
Article
Effect of GGBFS and Fly Ash on Elevated Temperature Resistance of Pumice-Based Geopolymers
by Mohammed Shubaili
Infrastructures 2026, 11(1), 28; https://doi.org/10.3390/infrastructures11010028 - 15 Jan 2026
Viewed by 81
Abstract
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive [...] Read more.
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive strength (7, 28, and 56 days), density, and water absorption (28 and 56 days) at ambient temperatures. Moreover, compressive strength, mass loss, density, and water absorption were evaluated after exposure of the mixtures to elevated temperatures (250 °C, 500 °C, and 750 °C) at 28 days. All specimens were initially cured at 60 °C for 24 h, followed by storage under ambient laboratory conditions until testing. The inclusion of GGBFS into the mixtures decreased flowability, and the inclusion of FA resulted in its improvement. At ambient temperature, GGBFS-based mixtures, which were high in calcium content, exhibited substantially superior compressive strength and reduced absorption relative to FA-based mixtures due to the development of dense C-A-S-H gel networks. However, the compressive strength of FA-based mixtures considerably increased when exposed to a temperature of 250 °C. Moreover, at 750 °C, the FA-based mixtures showed superior residual strength (up to 18.1 MPa), lower mass loss, and reduced absorption, indicating enhanced thermal stability due to the dominance of thermally resistant N-A-S-H gels. X-ray diffraction results further supported these trends by showing the rapid deterioration of calcium-rich phases under heat and the comparative stability of aluminosilicate structures in FA-based systems. Overall, the inclusion of up to 40% GGBFS is beneficial for early strength and densification, whereas the incorporation of up to 40% FA improves durability and mechanical retention under high-temperature conditions. Full article
Show Figures

Figure 1

19 pages, 3167 KB  
Article
A Novel Synergistic System for Geothermal Energy Extraction and Coal Seam Cooling in Deep Coal Mine Aquifers: A Numerical Simulation Study
by Yuliang Sun, Hongtao An and Xuehua Li
Appl. Sci. 2026, 16(2), 866; https://doi.org/10.3390/app16020866 - 14 Jan 2026
Viewed by 145
Abstract
As shallow coal resources become increasingly depleted, coal mining is extending to greater depths, making mine thermal hazards an increasingly prominent issue. This paper proposes a novel system for synergistic geothermal energy extraction from deep coal mine aquifers and coal seam cooling, aimed [...] Read more.
As shallow coal resources become increasingly depleted, coal mining is extending to greater depths, making mine thermal hazards an increasingly prominent issue. This paper proposes a novel system for synergistic geothermal energy extraction from deep coal mine aquifers and coal seam cooling, aimed at achieving integrated geothermal exploitation and mine thermal hazard control. Based on a high-temperature mine in the Yuanyanghu Mining Area of Ningxia, a dual-stage, single-branch three-dimensional numerical model was established to simulate the effects of water injection pressure, water injection temperature, and level spacing on the system’s cooling performance and geothermal energy extraction efficiency. The results indicate that increasing injection pressure enhances early-stage geothermal energy extraction capacity and coal seam cooling rate, but the heat extraction power declines over long-term operation as the produced water temperature approaches the injection temperature. Lowering injection temperature significantly improves water–rock heat exchange efficiency, accelerates coal seam cooling, and increases geothermal energy extraction. Increasing level spacing helps improve geothermal energy extraction power but weakens the direct cooling effect on the coal seam. Considering the influence patterns of each parameter, the optimal combination was determined as water injection pressure of 10 MPa, water injection temperature of 10 °C, and level spacing of 80 m, which delivers the best overall performance by enabling rapid coal seam cooling and sustained geothermal energy extraction, with a cumulative geothermal output reaching 129.45 MW after 10 years of operation. This study provides a theoretical basis and technical reference for the integrated management of thermal hazards and geothermal resource development in deep coal mines. Full article
Show Figures

Figure 1

20 pages, 1488 KB  
Article
Ozonized Water-Mediated Maillard Reaction of Fructose-Glycine: Characterization and Antioxidant Properties
by Worawan Panpipat, Natthawadee Khaochamnan, Sutasinee Thongkhaow, Visaka Anantawat, Nisa Saelee, Roberto Castro-Muñoz and Manat Chaijan
Foods 2026, 15(2), 303; https://doi.org/10.3390/foods15020303 - 14 Jan 2026
Viewed by 115
Abstract
This study investigates the use of ozonized water as a novel reaction medium for generating Maillard reaction products (MRPs) from fructose and glycine, comparing their physicochemical properties and antioxidant performance with those produced in phosphate buffer. Heating in ozonized water delayed early Maillard [...] Read more.
This study investigates the use of ozonized water as a novel reaction medium for generating Maillard reaction products (MRPs) from fructose and glycine, comparing their physicochemical properties and antioxidant performance with those produced in phosphate buffer. Heating in ozonized water delayed early Maillard stages, as indicated by slower browning, lower A294 and A420 absorbance, and higher L* values. However, prolonged heating led to intensified reddish-brown coloration and elevated intermediate formation, suggesting ozone-modified reaction pathways. pH declined more sharply in the ozone system, while conductivity increased significantly after 60 min, reflecting accelerated late-stage reactions. Antioxidant activity, assessed via DPPH and ABTS assays, developed more slowly in the ozone system but reached comparable levels to the buffer after 120 min. In emulsion models, MRPs from either system alone exhibited pro-oxidant effects, while blends, especially those produced using ozonized water and buffer at ratios of 75:25 and 50:50, significantly enhanced oxidative stability. Zeta-potential analysis showed that emulsions containing MRP blends had less negative initial charges but exhibited greater stability over 3 days compared to those with individual treatments. These findings highlight the potential of ozonized water to modulate Maillard reaction kinetics and suggest that blending MRPs from different reaction media can enhance antioxidant functionality and emulsion stability in complex food systems. Full article
Show Figures

Figure 1

18 pages, 2932 KB  
Article
Novel Glue-Stabilized Sorbent Layers for Adsorption Chillers: Thermal and Sorption Characteristics
by Tomasz Bujok, Karol Sztekler, Wojciech Kalawa, Ewelina Radomska, Agata Mlonka-Mędrala, Łukasz Mika and Piotr Boruta
Energies 2026, 19(2), 400; https://doi.org/10.3390/en19020400 - 14 Jan 2026
Viewed by 87
Abstract
Adsorption chillers can produce chilled and desalinated water using low-grade heat, but their performance is limited by low coefficient of performance (COP) and large system mass. Enhancing heat and mass transfer in the sorbent bed is key to improving efficiency. This work introduces [...] Read more.
Adsorption chillers can produce chilled and desalinated water using low-grade heat, but their performance is limited by low coefficient of performance (COP) and large system mass. Enhancing heat and mass transfer in the sorbent bed is key to improving efficiency. This work introduces and systematically evaluates binder-stabilized silica gel composites as a structural and thermal enhancement strategy for adsorption chillers. Silica gel composites bonded with epoxy resin and polyvinyl alcohol (PVA) were evaluated for adsorption chiller applications. Thermal stability, conductivity, microstructure, equilibrium sorption, and sorption hysteresis were assessed. The results indicate that PVA-based composites were thermally unstable and discarded, whereas epoxy-bonded silica gel showed high thermal stability and mechanically robust granules with preserved pore connectivity. The epoxy composite exhibited 109% higher thermal conductivity than loose silica gel, improving internal heat transfer. This improvement is accompanied by a reduction in sorption capacity of approximately 58%, attributable to the inert resin fraction. Notably, the composite exhibits a reduced and locally negative sorption hysteresis, indicating facilitated desorption and lowered internal diffusion resistance. The epoxy-bonded silica gel therefore provides a promising combination of thermal stability, improved heat transfer, and enhanced sorption–desorption behaviour, supporting its potential to increase the efficiency of next-generation adsorption chillers. Full article
Show Figures

Figure 1

17 pages, 3107 KB  
Article
Quercetin-Loaded Zein/Carboxymethyl Chitosan Nanoparticles: Preparation, Characterization and Evaluation for Enhanced Stability and Antioxidant Activity
by Haiqi Yu, Wanjun Chen, Yuhong Su, Mengdie Mo, Fei Yu and Xiaodong Chen
Molecules 2026, 31(2), 288; https://doi.org/10.3390/molecules31020288 - 13 Jan 2026
Viewed by 123
Abstract
As a natural flavonoid compound, quercetin possesses excellent antioxidant, anti-inflammatory and anti-atherosclerotic activities. However, the poor water solubility and sensitivity to the environment severely limit the application of quercetin. Initially, quercetin-loaded zein/carboxymethyl chitosan nanoparticles (ZCQ NPs) were prepared using an anti-solvent precipitation method. [...] Read more.
As a natural flavonoid compound, quercetin possesses excellent antioxidant, anti-inflammatory and anti-atherosclerotic activities. However, the poor water solubility and sensitivity to the environment severely limit the application of quercetin. Initially, quercetin-loaded zein/carboxymethyl chitosan nanoparticles (ZCQ NPs) were prepared using an anti-solvent precipitation method. The fabricated ZCQ NPs exhibited a small particle size and polydispersity index (PDI). The ZCQ NPs had a negative zeta potential with an absolute value of 41.50 ± 1.76 mV. ZCQ NPs could remain highly stable against light, heat and ion strength. In addition, ZCQ NPs maintained good monodispersity and displayed minimal changes in particle size under long-term storage conditions. Additionally, a superior antioxidant capacity of ZCQ NPs was also observed in the free radical and reactive oxygen species (ROS) scavenging study compared to that of free quercetin. All these results of this study suggest that ZCQ NPs could serve as an effective drug delivery system for encapsulating and delivering quercetin. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

Back to TopTop