Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = water conveyance pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6492 KiB  
Review
Review on Multifactorial Coupling Effects and the Time-Dependent Behavior of Lateral Pressure on Concrete Formworks
by Kekuo Yuan, Min Zhang, Yichu Lu and Hongdan Yu
Buildings 2025, 15(15), 2764; https://doi.org/10.3390/buildings15152764 - 5 Aug 2025
Viewed by 278
Abstract
This critical review synthesizes evidence on the multifactorial coupling mechanisms and time-dependent evolution of lateral pressure in concrete formworks, addressing significant limitations in current design standards (GB50666, CIRIA 108, ACI 347). Through a structured analysis of 60+ experimental and theoretical studies, we establish [...] Read more.
This critical review synthesizes evidence on the multifactorial coupling mechanisms and time-dependent evolution of lateral pressure in concrete formworks, addressing significant limitations in current design standards (GB50666, CIRIA 108, ACI 347). Through a structured analysis of 60+ experimental and theoretical studies, we establish that lateral pressure is governed by nonlinear interactions between concrete rheology, casting dynamics, thermal conditions, and formwork geometry. The key findings reveal that (1) casting rate increments >5 m/h amplify peak pressure by 15–27%, while SCC thixotropy (Athix > 0.5) reduces it by 15–27% at <5 m/h; (2) secondary vibration induces 52–61% pressure surges through liquefaction; and (3) sections with a width >2 m exhibit 40% faster pressure decay due to arching effects. (4) Temporal evolution follows three distinct phases—rapid rise (0–2 h), slow decay (2–10 h), and sharp decline (>10 h)—with the temperature critically modulating transition kinetics. Crucially, the existing codes inadequately model temperature dependencies, SCC/HPC rheology, and high-speed casting (>10 m/h). This work proposes a parameter-specific framework integrating rheological thresholds (Athix, Rstr), casting protocols, and real-time monitoring to enhance standard accuracy, enabling an optimized formwork design and risk mitigation in complex scenarios, such as water conveyance construction and slipforming. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

34 pages, 6467 KiB  
Article
Predictive Sinusoidal Modeling of Sedimentation Patterns in Irrigation Channels via Image Analysis
by Holger Manuel Benavides-Muñoz
Water 2025, 17(14), 2109; https://doi.org/10.3390/w17142109 - 15 Jul 2025
Viewed by 408
Abstract
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel [...] Read more.
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel Sinusoidal Morphodynamic Bedload Transport Equation (SMBTE) to predict sediment deposition patterns with high precision. Conducted along the Malacatos River in La Tebaida Linear Park, Loja, Ecuador, the research captured a natural sediment transport event under controlled flow conditions, transitioning from pressurized pipe flow to free-surface flow. Observed sediment deposition reduced the hydraulic cross-section by approximately 5 cm, notably altering flow dynamics and water distribution. The final SMBTE model (Model 8) demonstrated exceptional predictive accuracy, achieving RMSE: 0.0108, R2: 0.8689, NSE: 0.8689, MAE: 0.0093, and a correlation coefficient exceeding 0.93. Complementary analyses, including heatmaps, histograms, and vector fields, revealed spatial heterogeneity, local gradients, and oscillatory trends in sediment distribution. These tools identified high-concentration sediment zones and quantified variability, providing actionable insights for optimizing canal design, maintenance schedules, and sediment control strategies. By leveraging open-source software and real-world validation, this methodology offers a scalable, replicable framework applicable to diverse water conveyance systems. The study advances understanding of sediment dynamics under subcritical (Fr ≈ 0.07) and turbulent flow conditions (Re ≈ 41,000), contributing to improved irrigation efficiency, system resilience, and sustainable water management. This research establishes a robust foundation for future advancements in sediment transport modeling and hydrological engineering, addressing critical challenges in agricultural water systems. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

18 pages, 7690 KiB  
Article
Experimental Study on the Hydraulic Characteristics and Shape Optimization of Ship Lock Water Conveyance Systems
by Yu Duan, Dianguang Ma, Weidong Gan, Chao Ji and Junwei Zhou
J. Mar. Sci. Eng. 2025, 13(4), 784; https://doi.org/10.3390/jmse13040784 - 15 Apr 2025
Cited by 1 | Viewed by 455
Abstract
To enhance the passing capacity of the Bailongtan Ship Lock on the Hongshui River, this study focused on the design scheme of its water conveyance system reconstruction and expansion project. A three-dimensional mathematical model meeting the experimental accuracy requirements was established based on [...] Read more.
To enhance the passing capacity of the Bailongtan Ship Lock on the Hongshui River, this study focused on the design scheme of its water conveyance system reconstruction and expansion project. A three-dimensional mathematical model meeting the experimental accuracy requirements was established based on the RNG k-ε turbulence model and the Volume of Fluid (VOF) free-surface tracking method. A 1:30 scale ship lock water conveyance system physical model was built and used the independently developed system for hydraulic test monitoring, acquisition, and control. Experimental research on the hydraulic characteristics and shape optimization of the water conveyance system was carried out. The experimental results show that, under the condition of a maximum head difference of 16.0 m between the upstream and downstream of the ship lock, in the design scheme, the flow in the corridor after the filling valve fails to diffuse adequately, forming a high-velocity zone and a significant pressure difference between the inner and outer sides, which poses an operational risk. By optimizing the shape of the corridor after the valve (deepening the bottom end by 2.0 m and adjusting the turning angle from 75° to 70°), the range of the high-velocity zone can be shortened from 3.0 m to 1.5 m. The pressure difference between the inner and outer sides of the corridor at the horizontal turning section is reduced by 19.2% from 5.35 m to 4.32 m of the pressure head at the moment of maximum flow rate, and the velocity in the horizontal section is less than 15 m/s. Physical model tests confirmed these improvements, with mooring forces within safety limits (longitudinal ≤ 32 kN, transverse ≤ 16 kN). The research findings indicate that integrating numerical simulation with physical model testing can effectively mitigate risks in the original design of the ship lock water conveyance system. This approach notably enhances the reliability and safety of the design scheme, as demonstrated by the significant reduction in high-velocity zones and pressure differentials. Moreover, it offers a robust scientific basis and practical technical reference for in-depth hydraulic research and targeted optimization of ship lock water conveyance systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 5709 KiB  
Article
Agriculture Resilient at Three Irrigation Modules of Zacatecas, Mexico: Water Scarcity and Climate Variability
by Carlos Bautista-Capetillo, Hugo Pineda-Martínez, Luis Alberto Flores-Chaires and Luis Felipe Pineda-Martínez
Agronomy 2025, 15(4), 800; https://doi.org/10.3390/agronomy15040800 - 24 Mar 2025
Viewed by 833
Abstract
Agriculture is the largest consumer of freshwater resources, accounting for approximately 70% of total water withdrawals. In semi-arid regions like Zacatecas, Mexico, water scarcity and climate variability pose critical challenges to small-scale farmers. This study evaluates the effectiveness of integrating modern irrigation technologies [...] Read more.
Agriculture is the largest consumer of freshwater resources, accounting for approximately 70% of total water withdrawals. In semi-arid regions like Zacatecas, Mexico, water scarcity and climate variability pose critical challenges to small-scale farmers. This study evaluates the effectiveness of integrating modern irrigation technologies with traditional water management practices to enhance agricultural resilience. Analysis of climatic data (1961–2020) revealed a statistically significant increase in annual precipitation of 2.01 mm year−1 in the Leobardo Reynoso module (p < 0.05), while the Miguel Alemán module exhibited a decline ranging from −0.54 mm year−1 to −2.22 mm year−1, exacerbating water scarcity. Pressurized irrigation systems in Leobardo Reynoso improved application efficiency to 87.5%, compared to 50% in traditional furrow irrigation. Despite these advancements, conveyance efficiency remains low (60%) due to extensive open canal networks. Climate projections indicate a 6–11% increase in irrigation water demand for staple crops by 2065, driven by rising evapotranspiration rates. Findings underscore the need for policy interventions, infrastructure upgrades, and financial support to sustain agricultural productivity in water-stressed environments. Full article
Show Figures

Figure 1

23 pages, 3631 KiB  
Article
Optimization and Reliability Analysis of the Combined Application of Multiple Air Tanks Under Extreme Accident Conditions Based on the Multi-Objective Whale Optimization Algorithm
by Ran Li, Yanqiang Gao, Yihong Guan, Mou Lv and Hang Li
Sustainability 2025, 17(5), 2172; https://doi.org/10.3390/su17052172 - 3 Mar 2025
Viewed by 704
Abstract
The operational condition of fire water supply aims to ensure the continuous and reliable supply of high-pressure water in emergency situations. Assuming a fire breaks out in a mountain village located far from the city center, due to the significantly higher flow rate [...] Read more.
The operational condition of fire water supply aims to ensure the continuous and reliable supply of high-pressure water in emergency situations. Assuming a fire breaks out in a mountain village located far from the city center, due to the significantly higher flow rate and velocity of the water supply pipeline compared to normal operating conditions, any malfunction or shutdown of the pump caused by improper operation could result in catastrophic damage to the pipeline system. In response to the call for sustainable development, addressing this urgent academic challenge means finding a way to safely and economically maintain a continuous water supply to the target water demand point, even under extreme accident conditions. In this paper, drawing on engineering examples, we considered air tanks with varying process parameters installed at multiple locations within a water conveyance system to prevent water hammer and ensure water supply safety. To ensure that air tanks are of high quality and cost-effective after procurement and use, a multi-objective optimization design model comprising fitting, optimization, and evaluation plates was constructed, aimed at selecting certain process parameters. In the multi-objective optimization design model, Latin hypercube sampling improved by simulated annealing (LHS-SA), stepwise regression analysis (SRA), the Multi-Objective Whale Optimization Algorithm (MOWOA), and the Multi-Criteria Decision Analysis (MCDA) method with various weight biases are used to ensure the rationality of the optimization process. By comparing the optimization results obtained using these different MCDA methods, it is evident that the results output after AHP-EWM evaluation tend to be economic indicators, whereas the results output after FN-MABAC evaluation tend to be safety indicators. In addition, according to the sensitivity analysis of weight distribution, it can be inferred that the changes in maximum transient pressure head caused by water hammer have the most significant impact on final decision-making. Full article
Show Figures

Figure 1

20 pages, 5881 KiB  
Article
Impact of Branch Pipe Valve Closure Procedures on Pipeline Water Hammer Pressure: A Case Study of Xinlongkou Hydropower Station
by Zilong Li, Jin Jin, Zhanpeng Pan, Jianren Sun, Kaiqiang Geng and Yu Qiao
Appl. Sci. 2025, 15(2), 897; https://doi.org/10.3390/app15020897 - 17 Jan 2025
Cited by 1 | Viewed by 1082
Abstract
To investigate the impact of different valve closure strategies on water hammer pressure variations in pipelines and terminal valves under accident conditions, this study focuses on the Xinlongkou Hydropower Station water conveyance project. The Bentley Hammer calculation software was used to simulate the [...] Read more.
To investigate the impact of different valve closure strategies on water hammer pressure variations in pipelines and terminal valves under accident conditions, this study focuses on the Xinlongkou Hydropower Station water conveyance project. The Bentley Hammer calculation software was used to simulate the changes in water hammer pressure in the pipeline and unit terminal valves under various valve closure scenarios. Additionally, computational fluid dynamics (CFD) was applied to analyze the dynamic effects of different factors on the water hammer in the branch pipelines of the station. The results showed that shorter valve closure times resulted in higher peak water hammer pressures, with the maximum pressure occurring at the terminal valve. Extending the valve closure time effectively reduced both the peak pressure and number of pressure oscillations at the terminal valve, with pressure fluctuations stabilizing within approximately 30 s. Two-stage valve closures led to water hammer pressures 8–14.1% higher than those from one-stage linear closures. Based on these findings, it is recommended that stations adopt a valve closure time greater than 9 s during load shedding or implement a combined strategy of fast closure (60%) and slow closure (40%). The study also revealed that the primary factors influencing the water hammer are valve closure time, number of valves, valve diameter, and valve distance, in that order, with the distance having a relatively minor impact. The results of this study provide valuable insights into valve closure strategies for water conveyance projects. Full article
Show Figures

Figure 1

16 pages, 8732 KiB  
Article
Experimental Study on Improving the Impermeability of Concrete under High-Pressure Water Environments Using a Polymer Coating
by Baobao Tan, Long Qu, Yong Xia, Xingyi Yang, Bo Su, Jiaqi Wu and Mingli Xiao
Appl. Sci. 2024, 14(18), 8507; https://doi.org/10.3390/app14188507 - 21 Sep 2024
Cited by 4 | Viewed by 1950
Abstract
The concrete lining of high-pressure water conveyance tunnels permeates under high-pressure water. Dense and hydrophobic coating can effectively improve the impermeability of concrete. However, the coating exhibits varying impermeability in different high-pressure environments, which can even lead to coating detachment or damage. The [...] Read more.
The concrete lining of high-pressure water conveyance tunnels permeates under high-pressure water. Dense and hydrophobic coating can effectively improve the impermeability of concrete. However, the coating exhibits varying impermeability in different high-pressure environments, which can even lead to coating detachment or damage. The objectives of this study are to improve the high-pressure impermeability of concrete by using a polymer coating, and to study the varying impermeability through experiments. This study applied a polymer coating called SCU-SD-SP-II (SSS) to concrete surfaces, and it formed a composite protective layer with an epoxy-modified silicone (EMS) coating. A series of high-pressure impermeability tests were conducted to study the seepage regulation of the coated concrete and the failure mechanism of the SSS coating under cracks in the concrete. The results indicate that the SSS coating has excellent impermeability. Pressurized water of 3 MPa could not permeate the SSS coating with a thickness of 0.5 mm within 24 h. Under both external and internal water pressure conditions, the SSS coatings improved concrete impermeability. Additionally, the average seepage height and relative permeability coefficient of the latter decreased by 49.6% and 71.2%, respectively, compared with the former. After concrete cracking, the SSS coating could withstand 3 MPa pressure on crack surfaces smaller than 1 mm. When the crack width was greater than 2 mm, the SSS coating deformed under 1 MPa pressure. As the pressure increased to 2 MPa or even 3 MPa, the SSS coating was punctured or torn due to stress concentration. This study provides new insights into the impermeability of concrete under high water pressure. Full article
Show Figures

Figure 1

19 pages, 5038 KiB  
Article
Characteristics and Leak Localization of Transient Flow in Gas-Containing Water Pipelines
by Qiaoling Zhang, Zhen Zhang, Biyun Huang, Ziyuan Yu, Xingqi Luo and Zhendong Yang
Water 2024, 16(17), 2459; https://doi.org/10.3390/w16172459 - 29 Aug 2024
Cited by 1 | Viewed by 1171
Abstract
When water pipelines undergo scenarios such as valve closure or leakage, they often operate in a gas-liquid two-phase flow state, which can easily cause abnormal pressure fluctuations, exacerbating the destructiveness of water hammer and affecting the safe operation of the pipeline. To study [...] Read more.
When water pipelines undergo scenarios such as valve closure or leakage, they often operate in a gas-liquid two-phase flow state, which can easily cause abnormal pressure fluctuations, exacerbating the destructiveness of water hammer and affecting the safe operation of the pipeline. To study the problem of abnormal fluctuations in complex water pipelines, this paper establishes a transient flow model for gas-containing pipelines, considering unsteady friction, and solves it using the discrete gas cavity model (DGCM). It also studies the influence of factors such as valve closing time, initial flow rate, gas content rate, leakage location, and leakage amount on the end-of-valve pressure. Furthermore, it locates the leakage position using a genetic algorithm-backpropagation neural network (GA-BP neural network). The results show that increasing the valve closing time, increasing the gas content rate, decreasing the initial flow rate, and increasing the leakage amount all reduce the pressure peak inside the pipeline. The model constructed using the GA-BP neural network effectively predicts the leakage location with a mean absolute percentage error (MAPE) of 9.26%. The research results provide a reference for studies related to the safety protection of water conveyance projects. Full article
Show Figures

Figure 1

14 pages, 3080 KiB  
Article
Analytical Solution for Lined Circular Water Conveyance Tunnels under the Action of Internal and External Hydraulic Pressure
by Yunqian Xu, Tengfei Bao, Mingdao Yuan, Yijie Liu and Shu Zhang
Appl. Sci. 2024, 14(17), 7443; https://doi.org/10.3390/app14177443 - 23 Aug 2024
Cited by 1 | Viewed by 854
Abstract
The interaction between the surrounding rock and the support structure in a circular water conveyance tunnel with lining comprises two main aspects: internal and external hydraulic pressures, and the contact load between the post-excavation lining and the surrounding rock. There is currently no [...] Read more.
The interaction between the surrounding rock and the support structure in a circular water conveyance tunnel with lining comprises two main aspects: internal and external hydraulic pressures, and the contact load between the post-excavation lining and the surrounding rock. There is currently no reasonable calculation method to consider both factors simultaneously. Therefore, by utilizing the assumption of smooth contact between the surrounding rock and the lining, an analytical model for a circular water conveyance tunnel with lining is developed through the complex function method. Smooth contact indicates continuity of radial contact stress, coordination of radial displacement, and the absence of shear stress transmission. Considering the inner and outer boundary stress conditions of the lining, two sets of undetermined analytical functions are established, corresponding to internal and external water pressure, as well as the contact stress between the surrounding rock and the lining. Ultimately, the stress and displacement components at any point within the surrounding rock and lining can be derived under the conditions outlined in this study. The analytical model elucidates the mechanism of load transfer within the circular water conveyance tunnel with lining, considering the combined effects of internal and external water pressure and excavation loads. Of particular note, it quantifies the restrictive impact of external water pressure on lining hydrofracturing when subjected to high internal water pressure. Additionally, the model offers a theoretical foundation for designing and assessing support structures for use in long-distance water conveyance projects. Full article
Show Figures

Figure 1

20 pages, 13509 KiB  
Article
Responses of Soil Moisture to Gully Land Consolidation in Asian Areas with Monsoon Climate
by Mingyi Lin, Jing Zhang, Guofan Cao, Hao Han, Zhao Jin, Da Luo and Guang Zeng
Water 2024, 16(14), 2001; https://doi.org/10.3390/w16142001 - 15 Jul 2024
Viewed by 1096
Abstract
Groundwater resources are essential for sustaining ecosystems and human activities, especially under the pressures of climate change. This study employed Electrical Resistivity Tomography (ERT) to assess the impact of Gully Land Consolidation (GLC) engineering on the groundwater hydrological field of small watersheds in [...] Read more.
Groundwater resources are essential for sustaining ecosystems and human activities, especially under the pressures of climate change. This study employed Electrical Resistivity Tomography (ERT) to assess the impact of Gully Land Consolidation (GLC) engineering on the groundwater hydrological field of small watersheds in the China Loess Plateau (CLP). Results revealed ample subsurface water storage in backfilled areas, primarily migrating along the original river path owing to topographical limitations. Although the distribution patterns of soil moisture in each backfilling block varied slightly, the boundaries of soil moisture content and variation mainly appeared at depths of 8 m and 20 m underground. Significant moisture variation occurred across the 0–20 m underground layers, suggesting the 8–20 m layer could function as a groundwater collection zone in the study area. Human activities could disturb groundwater, altering migration pathways from the original river path. An optimized “Drainage–Conveyance–Barrier” system is proposed to enhance GLC sustainability, involving upstream groundwater level control, midstream soil moisture management, and downstream hydrological connectivity improvement. These findings carry substantial implications for guiding the planning and execution of GLC engineering initiatives. The novelty of this study lies in its application of ERT to provide a detailed spatial and temporal understanding of soil moisture dynamics in the GLC areas. Future research should focus on factors such as soil types and topographical changes for a comprehensive assessment of GLC’s impact on small watershed groundwater hydrology. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

16 pages, 11928 KiB  
Article
Degradation Behavior and Lifetime Prediction of Polyurea Anti-Seepage Coating for Concrete Lining in Water Conveyance Tunnels
by Chengcheng Peng, Jie Ren and Yuan Wang
Materials 2024, 17(8), 1782; https://doi.org/10.3390/ma17081782 - 12 Apr 2024
Cited by 5 | Viewed by 1920
Abstract
In the lining of water conveyance tunnels, the expansion joint is susceptible to leakage issues, significantly impacting the long-term safety of tunnel operations. Polyurea is a type of protective coating commonly used on concrete surfaces, offering multiple advantages such as resistance to seepage, [...] Read more.
In the lining of water conveyance tunnels, the expansion joint is susceptible to leakage issues, significantly impacting the long-term safety of tunnel operations. Polyurea is a type of protective coating commonly used on concrete surfaces, offering multiple advantages such as resistance to seepage, erosion, and wear. Polyurea coatings are applied by spraying them onto the surfaces of concrete linings in water conveyance tunnels to seal the expansion joint. These coatings endure prolonged exposure to environmental elements such as water flow erosion, internal and external water pressure, and temperature variations. However, the mechanism of polyurea coating’s long-term leakage prevention failure in tunnel operations remains unclear. This study is a field investigation to assess the anti-seepage performance of polyurea coating in a water conveyance tunnel project located in Henan Province, China. The testing apparatus can replicate the anti-seepage conditions experienced in water conveyance tunnels. An indoor accelerated aging test plan was formulated to investigate the degradation regular pattern of the cohesive strength between polyurea coating and concrete substrates. This study specifically examines the combined impacts of temperature, water flow, and water pressure on the performance of cohesive strength. The cohesive strength serves as the metric for predicting the service lifetime based on laboratory aging test data. This analysis aims to evaluate the polyurea coating’s cohesive strength on the tunnel lining surface after five years of operation. Full article
Show Figures

Figure 1

29 pages, 7481 KiB  
Article
Reducing Water Conveyance Footprint through an Advanced Optimization Framework
by Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi
Water 2024, 16(6), 874; https://doi.org/10.3390/w16060874 - 18 Mar 2024
Cited by 16 | Viewed by 1891
Abstract
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm (NCHBA), a novel and robust optimization method. [...] Read more.
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm (NCHBA), a novel and robust optimization method. The proposed method utilizes chaotic maps to enhance exploration and convergence speed, incorporating a nonlinear control parameter to effectively balance local and global search dynamics. Single-objective optimization results on a WDS show that NCHBA outperforms other algorithms in solution accuracy and convergence speed. The application of the proposed approach on a water network with two variable-speed pumps demonstrated a significant 27% reduction in energy consumption. Expanding our focus to the multi-objective optimization of pump scheduling programs in large-scale water distribution systems (WDSs), we employ the non-dominated sorting nonlinear chaotic honey badger algorithm (MONCHBA). The findings reveal that the use of variable-speed pumps not only enhances energy efficiency but also bolsters WDS reliability compared to the use of single-speed pumps. The results showcase the potential and robustness of the proposed multi-objective NCHBA in achieving an optimal Pareto front that effectively balances energy consumption, pressure levels, and water quality risk, facilitating carbon footprint reduction and sustainable management of WDSs. Full article
Show Figures

Figure 1

25 pages, 7727 KiB  
Article
Simulation of the Entire Process of an Interbasin Water Transfer Project for Flow Routing
by Xiangmin Ye, Yimin Wang, Zhengyi Xie and Mengdi Huang
Water 2024, 16(4), 572; https://doi.org/10.3390/w16040572 - 15 Feb 2024
Cited by 1 | Viewed by 2356
Abstract
The flow routing process plays a crucial role in underpinning the execution of real-time operations within interbasin water transfer projects (IWTPs). However, the water transfer process within the supplying area is significantly affected by the time lag of water flow over extended distances, [...] Read more.
The flow routing process plays a crucial role in underpinning the execution of real-time operations within interbasin water transfer projects (IWTPs). However, the water transfer process within the supplying area is significantly affected by the time lag of water flow over extended distances, which results in a misalignment with the water demand process in the receiving area. Hence, there is an imperative need to investigate the flow routing patterns in long-distance water transfer processes. While MIKE11(2014 version) software and the Muskingum method are proficient in simulating flow routing within a water transfer network, they fall short in addressing issues arising from mixed free-surface-pressure flows in water transfer pipelines. This study enhanced the capabilities of the MIKE11(2014 version) software and the Muskingum method by introducing the Preissmann virtual narrow gap method to tackle the challenge of simulating mixed free-surface-pressure flows, a task unattainable by the model independently. This approach provides a clear elucidation of hydraulic characteristics within the water transfer network, encompassing flow rates and routing times. Furthermore, this is integrated with the Muskingum inverse method to compute the actual water demand process within the supplying area. This methodology is implemented in the context of the Han River to Wei River Diversion Project (HTWDP). The research findings reveal that the routing time for the Qinling water conveyance tunnel, under maximum design flow rate conditions, is 12.78 h, while for the south and north main lines, it stands at 15.85 and 20.15 h, respectively. These results underscore the significance of the time lag effect in long-distance water conveyance. It is noteworthy that the average errors between simulated and calculated values for the south and north main lines in the flow routing process are 0.45 m3/s and 0.51 m3/s, respectively. Compared to not using the Preissmann virtual narrow gap method, these errors are reduced by 59.82% and 70.35%, indicating a significant decrease in the discrepancy between simulated and calculated values through the adoption of the Preissmann virtual narrow gap method. This substantially improves the model’s fitting accuracy. Furthermore, the KGE indices for the flow routing model are all above 0.5, and the overall trend of the reverse flow routing process closely aligns with the simulated process. The relative errors for most time periods are constrained within a 5% range, demonstrating the reasonability and precision of the model. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

36 pages, 3264 KiB  
Review
Methodologies for Water Accounting at the Collective Irrigation System Scale Aiming at Optimizing Water Productivity
by Antónia Ferreira, João Rolim, Paula Paredes and Maria do Rosário Cameira
Agronomy 2023, 13(7), 1938; https://doi.org/10.3390/agronomy13071938 - 22 Jul 2023
Cited by 7 | Viewed by 4732
Abstract
To improve water use efficiency and productivity, particularly in irrigated areas, reliable water accounting methodologies are essential, as they provide information on the status and trends in irrigation water availability/supply and consumption/demand. At the collective irrigation system level, irrigation water accounting (IWA) relies [...] Read more.
To improve water use efficiency and productivity, particularly in irrigated areas, reliable water accounting methodologies are essential, as they provide information on the status and trends in irrigation water availability/supply and consumption/demand. At the collective irrigation system level, irrigation water accounting (IWA) relies on the quantification of water fluxes from the diversion point to the plants, at both the conveyance and distribution network and the irrigated field level. Direct measurement is the most accurate method for IWA, but in most cases, there is limited metering of irrigation water despite the increasing pressure on both groundwater and surface water resources, hindering the water accounting procedures. However, various methodologies, tools, and indicators have been developed to estimate the IWA components, depending on the scale and the level of detail being considered. Another setback for the wide implementation of IWA is the vast terminology used in the literature for different scales and levels of application. Thus, the main objectives of this review, which focuses on IWA for collective irrigation services, are to (i) demonstrate the importance of IWA by showing its relationship with water productivity and water use efficiency; (ii) clarify the concepts and terminology related to IWA; and (iii) provide an overview of various approaches to obtain reliable data for the IWA, on the demand side, both at the distribution network and on-farm systems. From the review, it can be concluded that there is a need for reliable IWA, which provides a common information base for all stakeholders. Future work could include the development of user-friendly tools and methodologies to reduce the bridge between the technology available to collect and process the information on the various water accounting components and its effective use by stakeholders. Full article
Show Figures

Figure 1

19 pages, 7928 KiB  
Article
Application of Digital Twin in the Industry of Axial Hollow-Wall Pipes
by Zeyuan Guo, Shaowei Hu, Wencan Jin, Yuxiao Ye and Changxi Shan
Appl. Sci. 2023, 13(14), 8093; https://doi.org/10.3390/app13148093 - 11 Jul 2023
Cited by 6 | Viewed by 1651
Abstract
With the increasing demand for automation in agriculture, more and more researchers are exploring the application of digital twin in agricultural production. However, existing studies have predominantly focused on enhancing resource utilization efficiency and improving irrigation control systems in agricultural production through the [...] Read more.
With the increasing demand for automation in agriculture, more and more researchers are exploring the application of digital twin in agricultural production. However, existing studies have predominantly focused on enhancing resource utilization efficiency and improving irrigation control systems in agricultural production through the implementation of digital twins. Unfortunately, there is a noticeable research gap when it comes to applying digital twins specifically to buried water conveyance pipelines within an agricultural irrigation infrastructure. Focusing on the long-term performance requirements of buried pipelines in agricultural irrigation and drainage, this study established a digital twin system for the industry of axial hollow-wall pipes with an outer diameter of 200 mm, specifically designed for this field of operation. The system was used to optimize the end-forming process of axial hollow-wall pipes, resulting in improved leak tightness under internal pressure and angular deflection of the pipes. The study suggests that the most effective method for the end-forming process of axial hollow-wall pipes is to heat the pipe for 60 s at the ambient temperature of 15 °C, with heating temperatures of 225 °C on both the inner and outer sides. Additionally, preheating the stamping equipment to 70 °C and controlling the cooling temperature, during pipe detachment, to between 35 °C and 45 °C is recommended. In terms of the leak tightness under internal pressure and angular deviation, the study found that increasing the thickness of the protruding end of the sealing ring to 16 mm, and shortening the chamfer length to 20 mm, while maintaining the same slope, can enhance the sealing effectiveness of the pipeline interface. The implementation of the digital twin system improves the production efficiency of the hollow pipe production line during the end-forming process, resulting in a yield rate of the pipe of up to 95% for qualified products. Moreover, the system provides intelligent closed-loop feedback which ensures the long-term operation and maintenance of the pipelines, making it easier to identify problems and implement design improvements. By doing so, it contributes to ensuring the long-term stability of related agricultural production. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

Back to TopTop