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Abstract: In the lining of water conveyance tunnels, the expansion joint is susceptible to leakage issues,
significantly impacting the long-term safety of tunnel operations. Polyurea is a type of protective
coating commonly used on concrete surfaces, offering multiple advantages such as resistance to
seepage, erosion, and wear. Polyurea coatings are applied by spraying them onto the surfaces of
concrete linings in water conveyance tunnels to seal the expansion joint. These coatings endure
prolonged exposure to environmental elements such as water flow erosion, internal and external
water pressure, and temperature variations. However, the mechanism of polyurea coating’s long-term
leakage prevention failure in tunnel operations remains unclear. This study is a field investigation
to assess the anti-seepage performance of polyurea coating in a water conveyance tunnel project
located in Henan Province, China. The testing apparatus can replicate the anti-seepage conditions
experienced in water conveyance tunnels. An indoor accelerated aging test plan was formulated to
investigate the degradation regular pattern of the cohesive strength between polyurea coating and
concrete substrates. This study specifically examines the combined impacts of temperature, water
flow, and water pressure on the performance of cohesive strength. The cohesive strength serves
as the metric for predicting the service lifetime based on laboratory aging test data. This analysis
aims to evaluate the polyurea coating’s cohesive strength on the tunnel lining surface after five years
of operation.

Keywords: polyurea coatings; anti-seepage; accelerated aging test; cohesive strength

1. Introduction

Reinforced concrete has been widely used in the construction of civil infrastructure
facilities. Concrete material is prone to cracking, and the water permeability of its material
affects the long-term safety of the construction [1,2]. The development and utilization of
sustainable composite construction materials play a crucial role in creating buildings that
are not only environmentally friendly but also offer superior energy efficiency, leading to
lower operational costs [3,4]. Currently, surface protective coatings are used to improve
the impermeability of concrete. Research indicates that the effectiveness of these coatings
is closely related to the elasticity, anti-seepage of the coating itself, and the appropriate
bond strength between the substrates [5]. There are many kinds of surface coatings for
concrete, including epoxy resin, polyurethane, polyurea, and acrylic acid. Even when using
the same type of material, variations in formulations by different manufacturers can lead
to differences in the final protective efficacy [6,7].

Polyurea elastomer is a high molecular polymer containing urea bonds (-NHCONH-)
formed by the reaction of isocyanate (A component) and amine compounds (R compo-
nent). Polyurea is a block copolymer composed of alternating soft and hard segments [8].
Polyurea’s excellent mechanical properties can be attributed to the presence of physical
crosslinking. This crosslinking arises from intermolecular and intramolecular bidentate
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hydrogen bonds formed between the urea linkages [9]. Polyurea is a versatile material with
a wide range of applications in construction and other industries [10].

As a new type of polymer material, polyurea exhibits excellent wear and corrosion
resistance [11]. It also demonstrates strong bonding capabilities with various substrates
such as steel, wood, and concrete, making it an outstanding choice for surface protective
coatings [12–14]. After completing the pouring and maintenance of a concrete construction,
applying a spray coating to its surface can enhance the durability of the structure. Therefore,
polyurea can serve as an effective surface sealing material for expansion joints in concrete
linings within water conveyance tunnels. It offers advantages such as ease of construc-
tion, anti-seepage, and adaptability to expansion joint deformations. However, practical
engineering applications may encounter challenges, leading to polyurea coating failure.
Research indicates that coating deterioration is often linked to environmental factors such
as ultraviolet exposure, temperature fluctuations, air and water infiltration, and so on.
Numerous scholars have studied the degradation mechanisms of concrete surface coatings
in different environments [15–20]. The hydrothermal aging of polyurea materials is an
irreversible chemical reaction between infiltrating water molecules and functional groups,
leading to the cleavage of chemical bonds in polyurea elastomers [21]. High-energy ultravi-
olet radiation can cause the cleavage of active bonds in polymers, leading to an increase
in the number of polar functional groups [19]. Although several studies have shown that
the thickness of polyurea coatings can vary depending on the ambient temperature [22],
polyurea still exhibits excellent performance as a waterproofing coating. Polyurea coatings
with thicknesses of 2 mm and 4 mm could meet the impermeability requirements of 2 mm
and 5 mm cracks under the action of 300 m head water pressure [23]. The wear process
of the polyurea elastomer protective material is stable, and the wear loss is linear with
the time of abrasion [24]. In summary, polyurea materials exhibit excellent mechanical
properties, making them well-suited for the long-term operational environment of water
conveyance tunnels.

The adhesion of the coating is very important for the coating performance [25].
Horgnies et al. [26] employed a specialized peeling method and utilized scanning electron
microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to analyze the frac-
ture energy between high-performance concrete and polyurea coating. They found that
curing time, curing method, porosity of the concrete material, and surface roughness signif-
icantly influence the bond performance. Specifically, higher concrete surface roughness and
porosity lead to improved bond performance. Garbacz et al. [27] used four distinct methods
to characterize the roughness of concrete surfaces and examined the correlation between
surface roughness and concrete bond strength. Their findings indicate that the surface
roughness of concrete treated with steel shot blasting is higher than that treated with silicon
sandblasting. Additionally, they noted that apart from surface roughness, the presence of
cracks and loose concrete blocks are also critical factors influencing the bonding perfor-
mance. Delucchi et al. [28] conducted tests on the crack-bridging ability and anti-seepage
properties of four types of concrete coatings, including epoxy and polyurethane. They also
proposed two experimental methods to assess coating permeability and one for evaluating
coating bridging ability. The study concludes that appropriate coatings should be selected
based on the specific environmental conditions of the concrete. Significant variations in the
bond strength were observed before and after the water immersion test [29]. Additionally,
Nguyen et al. [30] discovered that water can lead to the debonding of organic coatings from
the metal substrate. They also developed a new technique for in situ measurement of water
at the interface between the organic coating and substrate. In conclusion, several factors
influence the bonding properties between polyurea and concrete, such as the concrete’s
inherent strength, surface roughness, and the conditions at the bonding interface. Never-
theless, there remains a lack of research on the adhesion aging rule of polyurea material in
the water conveyance tunnel.

In water conveyance tunnels, polyurea materials, as an anti-seepage coating on the
lining surface, play an important role in protecting key parts such as structural joints.
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Interface damage and debonding between the coating and the substrate are the most
common failure modes of coating protection. The key factor affecting the application
of polyurea coating in water conveyance tunnels is to ensure good adhesion between
the polyurea coating and the concrete lining. The pull-off bond test is one of the most
common portable tensile test methods for measuring bond strengths between a coating and
a concrete substrate in site [31]. To accurately predict the service life of polyurea materials
and ensure the safe operation of tunnels, it is necessary to establish accelerated aging tests
that can simulate real aging mechanisms effectively.

In this study, based on the analysis mentioned above and considering the environment
of water conveyance tunnels, the primary environmental factors influencing the aging of
polyurea coating are identified as water flow, water pressure, and temperature. Currently,
there is a scarcity of studies and analyses focusing on these aging factors. Therefore, it is
imperative to investigate the aging patterns of cohesive polyurea coatings in relation to
the environment of the water conveyance tunnel. This research will enable the reasonable
prediction of the service lifetime of polyurea coatings, thereby supporting the application
of polyurea anti-seepage coating in tunnels.

2. Materials and Methods
2.1. Field Investigation (In Situ Testing)

In the middle of November 2019, during the maintenance of the water supply in
Zhengzhou, China, the tunnel, the polyurea material at the structural joint and anchor
groove was investigated, and the bond strength between the polyurea material and the con-
crete lining of the tunnel was sampled and tested on site. The pull-off test is a dependable
method that offers several benefits. It is a simple, reliable, and easy-to-use technique for
evaluating the in situ strength of concrete and the bond strength between coatings and the
concrete substrate in situ. Due to the smooth surface of polyurea, achieving a strong bond
with the pull head for testing is challenging. This limitation hinders the use of adhesive fail-
ure tests to directly measure the bond strength between polyurea and the concrete matrix.
During the test process, the sediment is first cleaned from the coating surface. The coating
surface is then roughened using sandpaper. This roughening process ensures a strong bond
between the coating and the pull head. After 24 h of adhesive curing of the pull head, the
circumference of the pull head by the cutting device is used to penetrate the coating to the
concrete matrix. Then, a cohesive strength measuring instrument (Proceq-Dy216) is used
on the roughened surface to test the cohesive strength (Figure 1).
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Materials 2024, 17, 1782 4 of 16

2.2. Accelerated Aging Test
2.2.1. Preparation of Specimens

The prism concrete specimens (Figure 2) were prepared with dimensions of
70 mm × 70 mm × 20 mm for the spraying polyurea coating, aiming to conduct the
pull-off test. Commercial composite Portland cement P.O.42.5 was used in the specimens,
with medium sand (fineness modulus between 2.3 and 3.0) and 5–10 mm diameter crushed
stones mixed with pure water. The specimens underwent standard curing conditions
(20 ± 2 ◦C, 95% relative humidity) for a duration of 28 days. The mix ratio of the concrete
specimens was cement: water: sand: crushed stone: water reducer at 2.88:1:6.33:5.17:5.2%.
Subsequently, the concrete surfaces were dried at 60 ◦C for 48 h until the moisture content
dropped below 8%, following which the polyurea material was sprayed for pull-off testing
(Figure 3).
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Figure 3. Concrete specimens after spraying polyurea elastomer. (a) The top surface of the con-
crete sample sprayed with polyurea coating. (b) The side of the concrete sample sprayed with
polyurea coating.

The experiment used polyurea materials formulated by the China Institute of Water
Resources and Hydropower Research in Beijing and produced primers (SKJ-001, SKJ-002)
by Qingdao Ocean New Material Technology Co., Ltd. (Qingdao, China), as well as the
Spray Polyurea Elastomer (SPUA)-SKJ II polyurea coating produced by the Joint R&D
Production Base of Qingdao Jialian at the Marine Chemical Research Institute. In this
study, the polyurea elastomer used for spraying was synthesized as A, B dual components.
Component A comprises isocyanate, while component B contains amino polyether and
terminal amino chain expansion agent, tailored specifically for applications in water con-
veyance tunnels in Zhengzhou, Henan Province. These additives enhance the material’s
performance in low temperatures and humid environments and resist impact and wear.
Two primers utilized were two-component silane-modified epoxy primer and polyurethane
primer [32].
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2.2.2. Aging Test Device

Traditional accelerated aging experiments use hydrothermal aging methods. In this study,
the first step is to conduct traditional hydrothermal aging experiments using a thermostatic
water bath box with a heating temperature of 20–90 ◦C (Figure 4a).
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(b) Aging test equipment for simulating the operating environment of water conveyance tunnels.

The polyurea material in the water conveyance tunnel is mainly used for surface sealing
and the anti-seepage effect of the joints in the lining structure. It is affected by multiple
compound factors such as water flow impact, water pressure, and temperature changes in the
tunnel for a long time. Therefore, this study combines the actual engineering environment
and designs and manufactures an aging test device that can simulate the environmental
conditions of the water conveyance tunnel site. It can be used to study the performance
deterioration process of polyurea material under the combined effects of multiple factors such
as temperature, water flow, and pressure in the tunnel (Figure 4b).

The apparatus replicates the conditions of a water conveyance tunnel, facilitating acceler-
ated specimen aging through temperature elevation (Figure 4b). This device can examine the
variation in cohesive strength of polyurea specimens under a composite influence of temper-
ature, dynamic water flow, and pressure. The testing apparatus consists of a water tank, two
constant water pumps, an aging test chamber, a cooling water tank, a temperature measurement,
a flow meter, two pressure gauges, and a control device. To fulfill the demands of prolonged
continuous operation, two constant water pumps operate alternately. A heating device and
a temperature sensor were incorporated into the water tank to elevate the temperature and
expedite specimen aging. Aligned with the real water flow conditions of a water conveyance
tunnel in Henan Province, the test apparatus can simultaneously simulate aging environments
with varying water pressures of up to 0.65 MPa (with a maximum water temperature reaching
80 ◦C). Concrete specimens coated with polyurea material on the surface, each measuring 70
mm by 70 mm by 20 mm, were positioned on both sides of the unit, with a polyurea material
placed in the middle (Figure 5). During the experiment, water was heated to the designated
temperature in a water tank. A water pump was used to continuously circulate water with a
certain pressure and flow rate into the aging test chamber, simulating the operating conditions
of a real water delivery tunnel.
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2.2.3. Experimental Design

In traditional accelerated aging experiments, a well-established approach to expedite
the aging of polyurea coatings in the lab is to elevate the temperature. Align with the
environmental conditions encountered within water conveyance tunnels, the combined
effects of water and temperature aging factors were used to evaluate the cohesive strength
variation. Concrete specimens coated with polyurea material were immersed in water at
constant temperatures of 20 ◦C, 50 ◦C, 65 ◦C, and 80 ◦C. Subsequently, the degradation
performance of cohesive strength was measured after 7-day and 21-day test cycles.

The test water temperatures were set at 50 ◦C, 65 ◦C, and 80 ◦C during indoor tests
on the degradation behavior of polyurea materials in simulated on-site environments.
The polyurea coating–concrete specimen was placed in the central slot of the primary
testing apparatus to expose it to the combined effects of these factors. This configuration
allows water to flow over the material’s surface, simulating a hydraulic tunnel’s internal
water flow conditions. To prevent water erosion from undermining the bond between
the polyurea and the concrete specimen, the polyurea coating was applied to the side
of the specimen (Figure 3b). The aging period spans 1, 3, 7, 14, 21, 25, 27, and 28 days.
Previous research indicates significant discrepancies in cohesive strength measurement
results due to test instrument and method variations. Hence, to ensure comparability with
field measurements, the cohesive strength of the specimen was also assessed using the
same portable instrument (Prodeq-DY216) [33]. The following table (Table 1) details the
various experimental designs employed for the aging test of polyurea coatings.

Table 1. Experimental design for aging test of polyurea coatings.

Experiment Type Case Aging Temperature (◦C) Aging Duration (d)

Hydrothermal aging test

Case 1-1 20 7
Case 1-2 20 21
Case 1-3 50 7
Case 1-4 50 21
Case 1-5 65 7
Case 1-6 65 21
Case 1-7 80 7
Case 1-8 80 21

Aging test under simulated on-site environment

Case 2-1 50 1
Case 2-2 50 3
Case 2-3 50 7
Case 2-4 50 14
Case 2-5 50 21
Case 2-6 50 25
Case 2-7 50 27
Case 2-8 50 28
Case 3-1 65 1
Case 3-2 65 3
Case 3-3 65 7
Case 3-4 65 14
Case 3-5 65 21
Case 3-6 65 25
Case 3-7 65 27
Case 3-8 65 28
Case 4-1 80 1
Case 4-2 80 3
Case 4-3 80 7
Case 4-4 80 14
Case 4-5 80 21
Case 4-6 80 25
Case 4-7 80 27
Case 4-8 80 28

3. Results
3.1. The Results of In Situ Testing

In Zhengzhou Province, a water conveyance tunnel had been operating successfully for
five years prior to the commencement of this testing. However, recent investigations have
revealed the occurrence of bulging, rupturing, and water seepage in the polyurea material.
The cohesive strength of polyurea coatings was evaluated at the land and underwater
sections, with three repeated tests conducted near each sampling point. The following table
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(Table 2) details each sampling point. Test points 1 to 3 were chosen along the tunnel’s
sidewall, points 4 to 6 on the tunnel floor, and point 7 at the anchor channel. The result of
in situ testing is presented in the following figure (Figure 6). The average cohesive strength
recorded for the tunnel was 1.827 MPa and 1.367 MPa, with minimum values of 2.035 MPa
and 1.067 MPa, respectively.

Table 2. Sampling point of in situ testing.

Case Testing Location Chainage of Land Sections Chainage of Underwater Sections

1
The wall of the structural joint

27-28 96–97
2 68–69 255–256
3 174–175 342–343
4

The bottom of the structural joint
27–28 96–97

5 67–68 255–256
6 174–175 342–343
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Notably, test results at the same position exhibited significant variability. It is noted
that the cohesive strength between polyurea coating and the concrete lining can reach
2.2 MPa in wet or water environments. However, a substantial decrease in cohesive
strength between polyurea and the concrete lining was observed along the tunnel’s length,
compared to initial values, under the influence of the tunnel environment [32].

3.2. Aging Test Results in the Laboratory
3.2.1. Hydrothermal Aging Test

In this section, the results of cohesive strength between polyurea coating and concrete
after the hydrothermal aging tests are presented. The initial cohesive strength values for
the three sets of samples between polyurea coating and concrete substrates tested in the
laboratory were 3.829 MPa, 3.330 MPa, and 3.290 MPa, with an average cohesive strength
of 3.493 MPa. The specimens coated with polyurea were immersed in water baths set at
different temperatures, and changes in cohesive strength were recorded (Table 3).

Table 3. Results of hydrothermal aging test.

Case
Wrapped around Polyurea Wrapped on Both Sides of Polyurea

Values in MPa Average Standard Deviation Values in MPa Average Standard Deviation

Case 1-1 * 3.72 3.72 - 3.05 3.82 3.44 0.39
Case 1-2 2.93 3.53 3.23 0.30 3.00 3.49 3.25 0.25
Case 1-3 3.28 - 3.28 - 3.84 3.38 3.61 0.23
Case 1-4 3.07 3.49 3.43 0.21 3.42 3.09 3.26 0.17
Case 1-5 2.52 2.97 2.75 0.23 3.10 2.77 2.94 0.17
Case 1-6 2.22 2.45 2.34 0.12 2.16 2.04 2.10 0.06
Case 1-7 1.63 1.50 1.57 0.06 2.18 1.92 2.05 0.13
Case 1-8 * - - - 1.04 0.45 0.75 0.30

* Bonding adhesive failure at pull head.
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During the testing, the impact of temperature increase was considered. This led to
water vapor accumulation between the polyurea and concrete surfaces, which resulted
in accelerated bonding aging, which was evaluated using two specimens maintained at
the same temperature (Figure 3b). As the test water temperature increased, the decline
in cohesive strength became more pronounced. Notably, except for the 80 ◦C water tem-
perature condition, the cohesive strength test results differed between the two specimens
subjected to the same aging conditions. Specifically, when the test water temperature
reached 80 ◦C, the cohesive strength of the cut specimen was significantly higher than that
of the uncut specimen during the same test period. This analysis suggests that the uncut
specimen is more prone to water vapor accumulation at the bonding interface between
polyurea and concrete under high water temperature conditions, exacerbating the aging of
the bonding material.

3.2.2. Aging Test under Simulated On-Site Environment

This section presents the experimental results of aging tests under a simulated on-site
environment. The effect of aging on cohesive strength is shown in the following figure
(Figure 7).
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As expected, increasing ambient temperature and test duration significantly reduced
cohesive strength. This effect was particularly pronounced at 80 ◦C, where a rapid decline
in cohesive strength was observed, potentially leading to debonding after a short test
period. These findings are consistent with previous results of the hydrothermal aging
test. Notably, comparative analysis revealed that cohesive strength under water flow and
pressure conditions was superior to that observed in the current test, highlighting the
influence of these factors.

4. Discussion
4.1. Failure Types Analysis

To aid in understanding the failure mechanisms, Figure 8 defines and summarizes
the various failure types observed during the aging tests. Based on the different bond
failure types observed after cohesive strength measurement, the specimens can be classified
into three categories: A, B, and C. Type A damage can be summarized as cohesive failure
between concrete and epoxy resin, type B damage can be summarized as interfacial failure
between the epoxy resin and polyurethane primer, and type C damage can be summarized
as interfacial failure between polyurea and primer.
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4.1.1. Failure Types of the Hydrothermal Aging Test

This section illustrates the bond failure types of polyurea–concrete specimens after the
hydrothermal aging test (Figure 9). The first row in the figure shows the specimens at a
water temperature of 20 ◦C, the second row shows the specimens at 50 ◦C, the third row
shows the specimens at 65 ◦C, and the fourth row shows the specimens at 80 ◦C. Under the
experimental aging duration of 7 days, the failure modes of almost all specimens were of
class A. Under the aging duration of 21 days, when the test water temperature was 65 and
80 ◦C, the failure types of the test specimens appeared to be of class B/C.
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(a) Aging duration is 7 days. (b) Aging duration is 21 days.

Under mild aging conditions (short duration, low temperature), class A failure was
observed, characterized by an adhesive failure within the concrete layer and residual
concrete adhering to the epoxy surface. As aging time increased, debonding at the concrete–
epoxy interface became the dominant failure mode. Notably, at 80 ◦C for 21 days, spec-
imens wrapped around polyurea exhibited debonding with damage to the epoxy and
polyurethane coatings. Red polyurethane primer degradation was particularly evident
at 65 ◦C and 80 ◦C water temperatures, consistent with previous studies. Hydrothermal
aging demonstrably weakens the adhesive performance of the epoxy layer. The observed
failure progression suggests initial damage within the concrete substrates, debonding at
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the concrete–epoxy interface, and ultimately, with extended aging, degradation of the
polyurethane primer and epoxy coating.

4.1.2. Failure Types of the Simulated Tunnel Environment Aging Test

Following the simulated tunnel environment aging test, the bond failure types of
the specimens were observed to be as follows. At a test water temperature of 50 ◦C, the
specimens exhibited the failure type of class A. At a test water temperature of 65 ◦C, type B
failure occurred after 21 days of the aging duration. At a test water temperature of 80 ◦C,
type B/C failure occurred after only 7 days of the aging duration.

Consistent with prior observations, at shorter aging times, failure is dominated by
class A detachment, where the epoxy resin separates from the concrete base surface. As
aging temperature and duration increase, the destruction mode transitions to class B and
class C failures, characterized by the retention of epoxy and polyurethane undercoating
on the exposed concrete surface. These findings corroborate those reported by other
researchers [19,31,34]. At 80 ◦C water temperature, the adhesive interface degrades more
rapidly due to water pressure (Figure 10). The first row in figure shows the bond failure
types of specimens tested at 80 ◦C for 7 days. The second row shows the specimens
tested for 11 and 13 days, and the third row shows the specimens tested for 14 days.We
propose that water ingress along the concrete-polyurea interface triggers a reaction between
the epoxy resin and polyurethane primer with water, leading to the observed bulges on
some sample surfaces. By day 14, bond strength is significantly reduced, with an uneven
polyurea–concrete interface exhibiting exposed gray polyurea coating in some areas.
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tunnel environment.

4.1.3. SEM Characterization of Typical Failure Types

Following pull-off strength testing, scanning electron microscopy (SEM) was employed
to analyze the microscopic morphology of the fractured interface. The interfacial analysis after
exposure to Case 3-8 is depicted in the following figures (Figures 11a and 12a). Post-fracture
analysis revealed the presence of residual epoxy resin and polyurethane undercoating on the
concrete base surface. Microscopic magnification clearly visualized the coating and fracture
texture (Figure 11b). A specimen from the test Case 3-1 observed that there were obvious
defects on the concrete surface (Figure 11b). Preexisting defects necessitated epoxy resin
repair before spraying. The fractured interface displayed visible epoxy resin and concrete,
with the repair material completely filling the defect. High magnification revealed the epoxy
resin–concrete interface with small adhering concrete fragments. The bond strength measured
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for this repaired specimen exhibited a slight increase compared to the standard test group
under the same aging conditions. These findings suggest the potential utility of epoxy resin
for mitigating concrete surface defects and enhancing the contact area, thereby improving the
bond strength between the epoxy resin and the concrete surface.
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Figure 11. Macroscopic morphology of the fracture surface. (a) Case 3-8. (b) Case 3-1.
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4.2. Lifetime Prediction

This study employs artificial accelerated aging to simulate the effects of temperature, water
pressure, and water flow on the cohesive strength and bond failure types between polyurea
coating and concrete linings. Drawing on the test data in Section 3.2.2, this section predicts
the polyurea’s service life for the project to guarantee operational safety. Kinetic equations,
often expressed as exponential functions (Equation (1)), have been successfully employed to
describe the relationship between aging performance (P) and aging time (t) for similar polymeric
materials [35]. We will utilize this approach to predict the service life of the polyurea material.

f (P) = e−Ktα
, (1)
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where K is the chemical reaction rate constant, unit min−1, t is the time, unit day, and α is
the empirical constant. In terms of cohesive strength, f (Pσ) =

σ
σn

, σ is cohesive strength; σn
is the initial cohesive strength.

Differentiating Equation (1) results in Equation (2).

ln(Pσ) = A1 + B1tα , (2)

Equation (2) was employed to establish a mathematical relationship between cohesive
strength and aging time under varying temperature conditions within the simulated tunnel
environment aging test. The following table (Table 4) presents the fitting parameters, while
Figure 13 depicts the corresponding fitting curves.

Table 4. Fitting parameters at different temperatures.

Temperature/◦C
Parameter

Correlation
A1 B1 α

50 0.00185 ± 0.00587 −0.01937 ± 0.00359 0.80354 ± 0.05232 0.99719
65 0.03319 ± 0.03828 −0.07949 ± 0.02575 0.74491 ± 0.09072 0.98999
80 0.03273 ± 0.08136 −0.25358 ± 0.07937 0.65825 ± 0.10981 0.98892

Given the application of polyurea coatings in water conveyance tunnels, this study
acknowledges the limitations of the traditional Arrhenius lifetime model, which primarily
focuses on temperature. The Eyring reaction theory model incorporates nonthermal aging
factors, and its expression is as follows.

L(V) =
1
V

Const.·e
D
V , (3)

where V is the stress value in absolute units (such as relative humidity); L(V) is the life
scale; D is the undetermined parameters of the model.

This study integrates the Arrhenius lifetime model with the Eyring reaction theory
model to account for the combined effects of water and temperature on material aging,
yielding a comprehensive water–thermal aging life model [36].

L(H, T) =
a1

H
e

b1
H +

c1
T , (4)

where L(H,T) is the water–thermal aging life model, T is the thermodynamic temperature,
and K, a1, b1, c1 are the undetermined parameters of the model.

Following the cohesive strength results of the simulated tunnel environment aging
test, when the humidity is considered, Equation (4) can be simplified to [37]:

L(H0, T) = aH0 e
c1
T , (5)

where aH0 = a1e
b1
H0

/H0 ; H0 is the constant relative to humidity, consistent with the Arrhe-
nius model.

According to the specification GB/T 23446-2009 [38], the bond strength of polyurea
must exceed 2.5 MPa. The critical value of bond strength was set at 50% of this value. The
critical value of cohesive strength was also set at 1.25 MPa. After fitting, the parameter
substitution Equation (5) was obtained, as shown in Figure 14. If the annual average
temperature of the water conveyance tunnel is 15 ◦C, the estimated service life of the
polyurea coatings is approximately 16.52 years.

L(H0, T) = 4.96 × 10−12e
10008.5612

T (6)
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The water–thermal aging lifetime model suggests a service life for the polyurea coating.
This is attributed to the combined effects of temperature, water flow, and other factors
encountered during real-world engineering applications, as reflected by the time-dependent
cohesive strength profile in Figure 15. In the water conveyance tunnel project, with a
predicted temperature range of 10~30 ◦C and a service life of 5 years, the measured
cohesive strength of the polyurea exhibited a range of 0.83~2.93 MPa. The average estimated
value was 1.56 MPa, with the lowest and highest values being 1.067 MPa and 2.035 MPa,
respectively. These results demonstrate good agreement with the predicted values.
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5. Conclusions

This study investigates the degradation of polyurea-sprayed coatings used in a water
conveyance tunnel in Henan, China. The results reveal significant variations in the bond
strength between the polyurea coatings and the concrete substrate after five years of
operation, indicating environmental influence on bond performance.

An indoor accelerated aging test was designed to replicate the actual operating condi-
tions of the water conveyance tunnel project, including temperature, dynamic water flow,
and pressure. This test aimed to elucidate the deterioration of adhesive properties between
the polyurea coatings and concrete lining. Three distinct failure modes were identified
based on the observed debonding locations: (A) cohesive failure between concrete and
epoxy resin, (B) interfacial failure between epoxy resin and polyurethane primer, and (C)
interfacial failure between polyurea and primer.

The hydrothermal aging test demonstrated a progressive decrease in cohesive strength
between the polyurea and the concrete substrates with extended aging time at a constant
temperature. Notably, the aging test simulating the tunnel environment revealed that class
A failure dominated at shorter aging times. However, with extended aging, the failure
mode transitioned to class B failure and class C failure, characterized by debonding with
residual epoxy and polyurethane primer on the exposed concrete surface.

The water–thermal aging lifetime model was employed to predict the service life of the
polyurea coatings in the tunnel, with a threshold cohesive strength of 1.25 MPa, signifying
acceptable bond performance. Assuming an annual average water tunnel temperature of
15 ◦C, this model successfully captured the aging trend of the polyurea–concrete cohesive
strength, demonstrating good agreement with field investigations and testing.

This study designed an aging test device that simulates the real operating environment
of water delivery tunnels. Indoor accelerated experiments were conducted to study the
degradation law of the bond strength between polyurea and concrete under real conditions.
The reasonable service life of the polyurea–concrete waterproof system in the tunnel
environment was predicted. Considering the combined effects of temperature, water
flow, and water pressure on the bonding performance of polyurea, a water–thermal life
prediction model was constructed to predict its service life. In the future, more aging factors
such as stress in the tunnel will be considered. The aging constitutive model of polyurea
will be constructed, and the prediction model of its service life will be improved to predict
its service life more reasonably.
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