Responses of Soil Moisture to Gully Land Consolidation in Asian Areas with Monsoon Climate
Abstract
:1. Introduction
- How can the application of ERT technology improve our understanding of underground hydrological characteristics in GLC watersheds?
- What are the spatial distribution patterns and seasonal variations of soil moisture content in the backfilled area, as revealed by ERT measurements?
- How can the relationship between electrical resistivity and soil moisture content be modeled to enhance the accuracy of soil moisture monitoring?
- What insights can be gained regarding the hydrological pathways and shallow groundwater movement dynamics within the GLC engineering area?
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis Processing
2.2.1. Electrical Resistivity
2.2.2. Soil Moisture Content
2.3. Electrical Resistivity—Soil Moisture Content Model
2.4. Statistical Analysis of Soil Moisture Content
2.4.1. Descriptive Statistics
- Mean Soil Moisture Content
- 2.
- Standard Deviation
2.4.2. Cluster Analysis
- Data Standardization
- 2.
- Euclidean Distance Calculation:
- 3.
- Hierarchical Clustering
3. Results
3.1. Temporal and Spatial Distribution of Soil Moisture
3.2. Soil Moisture Variation in Deep Profiles
3.3. Distribution of Groundwater
4. Discussion
4.1. Temporal and Spatial Dynamics of Groundwater
4.2. Potential Hydrological Pathway
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiesel, P.G.; Dresch, E.; de Santana, E.R.R.; Lobo, E.A. Urban afforestation and its ecosystem balance contribution: A bibliometric review. Manag. Environ. Qual. Int. J. 2021, 32, 453–469. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L.S. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land use and land cover change in the Yellow River Basin from 1980 to 2015 and its impact on the ecosystem services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Raimi, M.O.; Abiola, I.; Alima, O.; Omini, D.E. Exploring how human activities disturb the balance of biogeochemical cycles: Evidence from the carbon, nitrogen and hydrologic cycles. Nitrogen Hydrol. Cycles 2021, 02, 23–44. [Google Scholar]
- Lerch, R.N.; Baffaut, C.; Kitchen, N.R.; Sadler, E.J. Long-term agroecosystem research in the Central Mississippi River Basin: Dissolved nitrogen and phosphorus transport in a high-runoff-potential watershed. J. Environ. Qual. 2015, 44, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jin, Z.; Zhang, J.; Yang, S. Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China. J. Arid Land 2021, 13, 777–789. [Google Scholar] [CrossRef]
- Luo, K.; Moiwo, J.P. Sensitivity of the land surface hydrological cycle to human activities in China. Gondwana Res. 2023, 123, 255–264. [Google Scholar] [CrossRef]
- Wu, L.; Long, T.; Liu, X.; Guo, J. Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China. J. Hydrol. 2012, 475, 26–41. [Google Scholar] [CrossRef]
- He, X.; Zhou, J.; Zhang, X.; Tang, K. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Reg. Environ. Change 2006, 6, 62–70. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Sun, H.; Lin, H.; Jin, Z.; He, M.; Yu, Y.; Zhou, W.; An, Z. Intensive land restoration profoundly alters the spatial and seasonal patterns of deep soil water storage at watershed scales. Agric. Ecosyst. Environ. 2019, 280, 129–141. [Google Scholar] [CrossRef]
- Jin, Z.; Guo, L.; Wang, Y.; Yu, Y.; Lin, H.; Chen, Y.; Chu, G.; Zhang, J.; Zhang, N. Valley reshaping and damming induce water table rise and soil salinization on the Chinese Loess Plateau. Geoderma 2019, 339, 115–125. [Google Scholar] [CrossRef]
- Francis, D.M.; Bryson, L.S. Proposed methodology for site-specific soil moisture obtainment utilizing coarse satellite-based data. Environ. Earth Sci. 2023, 82, 377. [Google Scholar] [CrossRef]
- Mirzaei, M.; Shirmohammadi, A. Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table. Water 2024, 16, 1500. [Google Scholar] [CrossRef]
- Sasaki, Y. Resolution of resistivity tomography inferred from numerical-simulation. Geophys. Prospect. 1992, 40, 453–463. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Coscia, I.; Linde, N.; Greenhalgh, S.; Vogt, T.; Green, A. Estimating traveltimes and groundwater flow patterns using 3D time-lapse crosshole ERT imaging of electrical resistivity fluctuations induced by infiltrating river water. Geophysics 2012, 77, E239–E250. [Google Scholar] [CrossRef]
- McClymont, A.F.; Roy, J.W.; Hayashi, M.; Bentley, L.R.; Maurer, H.; Langston, G. Investigating groundwater flow paths within proglacial moraine using multiple geophysical methods. J. Hydrol. 2011, 399, 57–69. [Google Scholar] [CrossRef]
- González, J.A.M.; Comte, J.C.; Legchenko, A.; Ofterdinger, U.; Healy, D. Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: Sensitivity and uncertainty associated with petrophysical modelling. J. Hydrol. 2021, 593, 125637. [Google Scholar] [CrossRef]
- Soulsby, C.; Bradford, J.; Dick, J.; McNamara, J.P.; Geris, J.; Lessels, J.; Blumstock, M.; Tetzlaff, D. Using geophysical surveys to test tracer-based storage estimates in headwater catchments. Hydrol. Process. 2016, 30, 4434–4445. [Google Scholar] [CrossRef]
- McLachlan, P.J.; Chambers, J.E.; Uhlemann, S.; Binley, A. Geophysical characterisation of the groundwater–surface water interface. Adv. Water Resour. 2017, 109, 302–319. [Google Scholar] [CrossRef]
- Lesparre, N.; Robert, T.; Nguyen, F.; Boyle, A.; Hermans, T. 4D electrical resistivity tomography (ERT) for aquifer thermal energy storage monitoring. Geothermics 2019, 77, 368–382. [Google Scholar] [CrossRef]
- Comte, J.C.; Ofterdinger, U.; Legchenko, A.; Caulfield, J.; Cassidy, R.; Mézquita González, J.A. Catchment-scale heterogeneity of flow and storage properties in a weathered/fractured hard rock aquifer from resistivity and magnetic resonance surveys: Implications for groundwater flow paths and the distribution of residence times. Geol. Soc. Lond. Spec. Publ. 2019, 479, 35–58. [Google Scholar] [CrossRef]
- Lapenna, V.; Perrone, A. Time-lapse electrical resistivity tomography (TL-ERT) for landslide monitoring: Recent advances and future directions. Appl. Sci. 2022, 12, 1425. [Google Scholar] [CrossRef]
- Palis, E.; Lebourg, T.; Vidal, M.; Levy, C.; Tric, E.; Hernandez, M. Multiyear time-lapse ERT to study short-and long-term landslide hydrological dynamics. Landslides 2017, 14, 1333–1343. [Google Scholar] [CrossRef]
- Fäth, J.; Kunz, J.; Kneisel, C. Monitoring spatiotemporal soil moisture changes in the subsurface of forest sites using electrical resistivity tomography (ERT). J. For. Res. 2022, 33, 1649–1662. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef] [PubMed]
- Claes, N.; Paige, G.B.; Grana, D.; Parsekian, A.D. Parameterization of a hydrologic model with geophysical data to simulate observed subsurface return flow paths. Vadose Zone J. 2020, 19, e20024. [Google Scholar] [CrossRef]
- Eekhout, J.P.; Jódar-Abellán, A.; Carrillo-López, E.; Boix-Fayos, C.; de Vente, J. Assessing the hillslope-channel contributions to the catchment sediment balance under climate change. Environ. Model. Softw. 2024, 171, 105890. [Google Scholar] [CrossRef]
- Ayogu, C.N.; Maduka, R.I.; Ayogu, N.O. Investigating early warning signs of gully propagation in southeastern Nigeria using erosion prediction potential models. Stoch. Environ. Res. Risk Assess. 2023, 37, 4783–4803. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, L. Exploring the role of land restoration in the spatial patterns of deep soil water at watershed scales. Catena 2019, 172, 387–396. [Google Scholar] [CrossRef]
- Jiang, R.; Zhang, M.; Feng, L.; Sun, P. Failure mechanisms and risk mitigation of check dams on the Chinese Loess Plateau: A case study at the Gutun Gully. J. Mt. Sci. 2022, 19, 1509–1524. [Google Scholar] [CrossRef]
- Vu, M.D.; Xayavong, V.; Do, C.A.; Pham, L.T.; Gómez-Ortiz, D.; Eldosouky, A.M. Application of the improved multi-electrode electrical exploration methods for groundwater investigation in Vientiane Province, Laos. J. Asian Earth Sci. X 2021, 5, 100056. [Google Scholar]
- Griffiths, D.H.; Turnbull, J.; Olayinka, A.I. Two-dimensional resistivity maping with a computer-controlled array. First Break 1990, 8, 1–9. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; Zhao, Y.; Zhang, P.; Song, Y.; He, M.; Zhang, C.; Tong, Y.; Zhou, J.; Qi, L. Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau. J. Hydrol. 2020, 589, 125132. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.; Constable, S. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 1990, 55, 1613–1624. [Google Scholar] [CrossRef]
- Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. J. Hydrol. 2012, 454, 101–112. [Google Scholar] [CrossRef]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Eng. 1942, 146, 54–61. [Google Scholar] [CrossRef]
- Uhlemann, S.; Kuras, O.; Richards, L.A.; Naden, E.; Polya, D.A. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia. J. Asian Earth Sci. 2017, 147, 402–414. [Google Scholar] [CrossRef]
- Michot, D.; Benderitter, Y.; Dorigny, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 2003, 39, 1138. [Google Scholar] [CrossRef]
- Alamry, A.S.; van der Meijde, M.; Noomen, M.; Addink, E.A.; van Benthem, R.; de Jong, S.M. Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils. Catena 2017, 157, 388–396. [Google Scholar] [CrossRef]
- Celano, G.; Palese, A.M.; Ciucci, A.; Martorella, E. Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma 2011, 163, 163–170. [Google Scholar] [CrossRef]
- Redhaounia, B.; Ilondo, B.O.; Gabtni, H.; Sami, K.; Bédir, M. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia. Pure Appl. Geophys. 2016, 173, 1289–1303. [Google Scholar] [CrossRef]
- Ducut, J.D.; Alipio, M.; Go, P.J.; Concepcion, R., II; Vicerra, R.R.; Bandala, A.; Dadios, E. A review of electrical resistivity tomography applications in underground imaging and object detection. Displays 2022, 73, 102208. [Google Scholar] [CrossRef]
- Arjwech, R.; Ruansorn, T.; Schulmeister, M.; Everett, M.E.; Thitimakorn, T.; Pondthai, P.; Somchat, K. Protection of electricity transmission infrastructure from sinkhole hazard based on electrical resistivity tomography. Eng. Geol. 2021, 293, 106318. [Google Scholar] [CrossRef]
- Leslie, I.N.; Heinse, R. Characterizing soil-pipe networks with pseudo-three-dimensional resistivity tomography on forested hillslopes with restrictive horizons. Vadose Zone J. 2013, 12, 1–10. [Google Scholar] [CrossRef]
- Zeng, R.Q.; Meng, X.M.; Zhang, F.Y.; Wang, S.Y.; Cui, Z.J.; Zhang, M.S.; Zhang, Y.; Chen, G. Characterizing hydrological processes on loess slopes using electrical resistivity tomography—A case study of the Heifangtai Terrace, Northwest China. J. Hydrol. 2016, 541, 742–753. [Google Scholar] [CrossRef]
- Liu, G.; Hu, F.; Abd Elbasit, M.A.; Zheng, F.; Liu, P.; Xiao, H.; Zhang, Q.; Zhang, J. Holocene erosion triggered by climate change in the central Loess Plateau of China. Catena 2018, 160, 103–111. [Google Scholar] [CrossRef]
- Whalley, W.R.; Binley, A.; Watts, C.W.; Shanahan, P.; Dodd, I.C.; Ober, E.S.; Ashton, R.W.; Webster, C.P.; White, R.P.; Hawkesford, M.J. Methods to estimate changes in soil water for phenotyping root activity in the field. Plant Soil 2017, 415, 407–422. [Google Scholar] [CrossRef]
- Beff, L.; Gunther, T.; Vandoorne, B.; Couvreur, V.; Javaux, M. Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography. Hydrol. Earth Syst. Sci. 2013, 17, 595–609. [Google Scholar] [CrossRef]
- Song, X.; Wang, S.; Xiao, G.; Wang, Z.; Liu, X.; Wang, P. A study of soil water movement combining soil water potential with stable isotopes at two sites of shallow groundwater areas in the North China Plain. Hydrol. Process. 2009, 23, 1376–1388. [Google Scholar] [CrossRef]
- Vanella, D.; Peddinti, S.R.; Kisekka, I. Unravelling soil water dynamics in almond orchards characterized by soil-heterogeneity using electrical resistivity tomography. Agric. Water Manag. 2022, 269, 107652. [Google Scholar] [CrossRef]
- Ju, X.; Gao, L.; She, D.; Jia, Y.; Pang, Z.; Wang, Y. Impacts of the soil pore structure on infiltration characteristics at the profile scale in the red soil region. Soil Tillage Res. 2024, 236, 105922. [Google Scholar] [CrossRef]
- Yue, F.; Ren, X.; Wang, X.; Tian, W. Experimental study on the influence of soil structure index on loess permeability. Adv. Mater. Sci. Eng. 2022, 2022, 9618732. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, R.; Lv, J.; Yu, B.; Pang, J.; Li, R.; Xiang, W.; Tao, W. Subsidence monitoring of fill area in Yan’an new district based on Sentinel-1A time series imagery. Remote Sens. 2021, 13, 3044. [Google Scholar] [CrossRef]
- de Souza, P.R.; de Lima, H.V.; da Silva, G.B.; dos Santos Moura, A. Limiting water content for compaction induced by mechanized operations in the soil with oil palm in the Eastern Amazon. J. Soil Sci. Plant Nutr. 2023, 23, 6167–6182. [Google Scholar] [CrossRef]
- Alaoui, A.; Lipiec, J.; Gerke, H.H. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Tillage Res. 2011, 115, 1–15. [Google Scholar] [CrossRef]
- Lipiec, J.; Hatano, R. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 2003, 116, 107–136. [Google Scholar] [CrossRef]
- Qi, Z.H.; Shi, M.L. From micro to macro. Analysis of the effects of dynamic compaction to natural sedimentary clay in low mountain valley area. In Proceedings of the International Symposium on Geomechanics and Geotechnics, Shanghai, China, 10–12 October 2010. [Google Scholar]
- Li, K.P.; Chen, Y.G.; Ye, W.M.; Wang, Q. Modelling the evolution of dual-pore structure for compacted clays along hydro-mechanical paths. Comput. Geotech. 2023, 157, 105308. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrie, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N. The soil pore system as an indicator of soil quality. In Proceedings of the International Conference on Sustainable Soil Management for Environmental Protection, Florence, Italy, 2–7 July 2001; Catena Verlag: Stuttgart, Germany, 2001; pp. 71–82. [Google Scholar]
- Chen, H.; Zhang, W.; Wang, K.; Fu, W. Soil moisture dynamics under different land uses on karst hillslope in northwest Guangxi, China. Environ. Earth Sci. 2010, 61, 1105–1111. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Spatial-temporal variability pattern of multi-depth soil moisture jointly driven by climatic and human factors in China. J. Hydrol. 2023, 619, 129313. [Google Scholar] [CrossRef]
- Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial-temporal variability and monitoring. J. Hydrol. 2014, 516, 193–199. [Google Scholar] [CrossRef]
- de Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; Jardim, A.M.D.R.F.; de Souza, C.A.A.; Júnior, G.D.N.A.; de Morais, J.E.F.; de Souza, L.S.B. Spatial and temporal dynamics of soil moisture for surfaces with a change in land use in the semi-arid region of Brazil. Catena 2020, 188, 104457. [Google Scholar] [CrossRef]
- Panwar, S.; Chakrapani, G.J. Climate change and its influence on groundwater resources. Curr. Sci. 2013, 105, 37–46. [Google Scholar]
- Zhang, E.; Liu, Y.; Pan, T.; Tan, Q.; Ma, Z. Evaluating the Effects of Climate Change and Human Activities on the Seasonal Trends and Spatial Heterogeneity of Soil Moisture. Remote Sens. 2022, 14, 4862. [Google Scholar] [CrossRef]
- Shi, D.; Tan, H.; Rao, W.; Liu, Z.; Elenga, H.I. Variations in water content of soil in apricot orchards in the western hilly regions of the Chinese Loess Plateau. Vadose Zone J. 2020, 19, e20034. [Google Scholar] [CrossRef]
- Abaci, O.; Papanicolaou, A.N.T. Long-term effects of management practices on water-driven soil erosion in an intense agricultural sub-watershed: Monitoring and modelling. Hydrol. Process. Int. J. 2009, 23, 2818–2837. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; Brandolini, P. The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull. Eng. Geol. Environ. 2014, 73, 859–875. [Google Scholar] [CrossRef]
- Preti, F.; Guastini, E.; Penna, D.; Dani, A.; Cassiani, G.; Boaga, J.; Deiana, R.; Romano, N.; Nasta, P.; Palladino, M.; et al. Conceptualization of water flow pathways in agricultural terraced landscapes. Land Degrad. Dev. 2018, 29, 651–662. [Google Scholar] [CrossRef]
- Wilson, E.O.; MacArthur, R.H. The Theory of Island Biogeography, 2nd ed.; Princeton University Press: Princeton City, NJ, USA, 2016. [Google Scholar]
- Levin, S.A. Dispersion and population interactions. Am. Nat. 1974, 108, 207–228. [Google Scholar] [CrossRef]
- Fahrig, L.; Merriam, G. Habitat patch connectivity and population survival: Ecological archives e066-008. Ecology 1985, 66, 1762–1768. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahring, L. On the usage and measurement of landscape connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef]
- Turnbull, L.; Wainwright, J.; Brazier, R.E. A conceptual framework for understanding semi-arid land degradation: Ecohydrological interactions across multiple-space and time scales. Ecohydrology 2008, 1, 23–34. [Google Scholar] [CrossRef]
- Gao, C.; Gao, X.; Jia, P. Summary comments on hydrologic connectivity. Chin. J. Appl. Environ. Biol. 2017, 23, 586–594. [Google Scholar]
- Jiao, H.; Wu, Y.; Wang, H.; Chen, X.; Li, Z.; Wang, Y.; Zhang, B.; Liu, J. Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener. Miner. Eng. 2021, 173, 107043. [Google Scholar] [CrossRef]
- Hornberger, G.M.; Germann, P.F.; Beven, K.J. Throughflow and solute transport in an isolated sloping soil block in a forested catchment. J. Hydrol. 1991, 124, 81–99. [Google Scholar] [CrossRef]
- Zhang, B.; Horn, R.; Hallett, P.D. Mechanical resilience of degraded soil amended with organic matter. Soil Sci. Soc. Am. J. 2005, 69, 864–871. [Google Scholar] [CrossRef]
- Schaffer, B.; Stauber, M.; Muller, R.; Schulin, R. Changes in the macro-pore structure of restored soil caused by compaction beneath heavy agricultural machinery: A morphometric study. Eur. J. Soil Sci. 2007, 58, 1062–1073. [Google Scholar] [CrossRef]
- Shan, W.; Chen, H.; Yuan, X.; Ma, W.; Li, H. Mechanism of pore water seepage in soil reinforced by step vacuum preloading. Bull. Eng. Geol. Environ. 2021, 80, 2777–2787. [Google Scholar] [CrossRef]
- Zhou, G.G.D.; Cui, P.; Chen, H.Y.; Zhu, X.H.; Tang, J.B.; Sun, Q.C. Experimental study on cascading landslide dam failures by upstream flows. Landslides 2013, 10, 633–643. [Google Scholar] [CrossRef]
- Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, G.; Gorelick, S.M. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths. Water Resour. Res. 2011, 47, 1–18. [Google Scholar] [CrossRef]
- Rapti-Caputo, D.; Martinelli, G. The geochemical and isotopic composition of aquifer systems in the deltaic region of the Po River plain (northern Italy). Hydrogeol. J. 2009, 17, 467–480. [Google Scholar] [CrossRef]
- Aubertin, G.M. Nature and Extent of Macropores in Forest Soils and Their Influence on Subsurface Water Movement; Northeastern Forest Experiment Station: Durham, NH, USA, 1971. [Google Scholar]
- Wang, S.; Song, X.; Wang, Q.; Xiao, G.; Liu, C.; Liu, J. Shallow groundwater dynamics in North China Plain. J. Geogr. Sci. 2009, 19, 175–188. [Google Scholar] [CrossRef]
- Vanelsas, J.D.; Trevors, J.T.; Vanoverbeek, L.S. Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms. Biol. Fertil. Soils 1991, 10, 249–255. [Google Scholar] [CrossRef]
Sampling Date | Backfilled Plots | Profile | Length/m | Type |
---|---|---|---|---|
November 2021, April 2022 | Fa1 | C1 | 225.60 | Wenner |
C2 | 235.00 | |||
C3 | 235.00 | |||
R1 | 159.80 | |||
R2 | 164.50 | |||
R3 | 141.00 | |||
November 2021, April 2022 | Fa2 | C1 | 94.00 | |
C2 | 112.80 | |||
C3 | 117.50 | |||
R1 | 126.90 | |||
R2 | 94.00 | |||
R3 | 79.90 | |||
November 2021, April 2022 | Fa3 | R1 | 79.90 | |
R2 | 47.00 | |||
November 2021, April 2022 | Fa4 | C1 | 235.00 | |
C2 | 235.00 | |||
C3 | 235.00 | |||
R1 | 70.50 | |||
R2 | 84.60 | |||
R3 | 89.30 |
Sub-Regions | Profile | The Length of Profile (m) | Rainy Season | Dry Season | ||||||
---|---|---|---|---|---|---|---|---|---|---|
The HP Range (m) | The Number of Samples | Class | Sampling Date | The HP Range (m) | The Number of Samples | Class | Sampling Date | |||
Fa1 | R1 | 159.80 | 5.00~52.70 | 114 | 1/3 | 30 November 2021~8 December 2021 | 28.90~66.00 | 98 | 1/5 | 9 April 2022–15 April 2022 |
56.00~93.50 | 108 | 1/3 | 69.70~93.50 | 72 | 1/5 | |||||
96.90~154.70 | 148 | 1/3 | 96.90~130.90 | 96 | 1/5 | |||||
R2 | 164.50 | 127.75~159.25 | 48 | 2/4 | 124.00~159.00 | 57 | 2/4 | |||
R3 | 141.00 | 109.50~136.50 | 31 | 4/4 | 106.50~136.50 | 24 | 4/4 | |||
Fa2 | R1 | 126.90 | 63.45~120.15 | 64 | 3/4 | 60.75~120.15 | 80 | 3/4 | ||
R2 | 94 | 5.00~85.00 | 122 | 2/4 | 37.00~87.00 | 80 | 3/4 | |||
R3 | 79.9 | 33.15~73.95 | 24 | 4/5 | 16.15~75.65 | 232 | 3/5 | |||
Fa3 | R1 | 79.9 | 16.15~36.56 | 264 | 2/4 | 29.75~73.95 | 89 | 2/6 | ||
R2 | 47 | 6.50~43.50 | 105 | 3/6 | 3.50~43.50 | 31 | 4/5 | |||
Fa4 | R1 | 70.5 | 5.25~56.25 | 367 | 2/3 | 2.25~50.25 | 317 | 2/4 | ||
R2 | 84.6 | 31.50~74.70 | 117 | 3/3 | 31.50~81.90 | 122 | 2/4 | |||
R3 | 89.3 | 27.55~82.65 | 55 | 2/4 | 27.55~86.45 | 117 | 2/4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Zhang, J.; Cao, G.; Han, H.; Jin, Z.; Luo, D.; Zeng, G. Responses of Soil Moisture to Gully Land Consolidation in Asian Areas with Monsoon Climate. Water 2024, 16, 2001. https://doi.org/10.3390/w16142001
Lin M, Zhang J, Cao G, Han H, Jin Z, Luo D, Zeng G. Responses of Soil Moisture to Gully Land Consolidation in Asian Areas with Monsoon Climate. Water. 2024; 16(14):2001. https://doi.org/10.3390/w16142001
Chicago/Turabian StyleLin, Mingyi, Jing Zhang, Guofan Cao, Hao Han, Zhao Jin, Da Luo, and Guang Zeng. 2024. "Responses of Soil Moisture to Gully Land Consolidation in Asian Areas with Monsoon Climate" Water 16, no. 14: 2001. https://doi.org/10.3390/w16142001
APA StyleLin, M., Zhang, J., Cao, G., Han, H., Jin, Z., Luo, D., & Zeng, G. (2024). Responses of Soil Moisture to Gully Land Consolidation in Asian Areas with Monsoon Climate. Water, 16(14), 2001. https://doi.org/10.3390/w16142001