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Abstract: This study investigates the optimal and safe operation of pumping stations in water distri-
bution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance
processes. We introduced the nonlinear chaotic honey badger algorithm (NCHBA), a novel and
robust optimization method. The proposed method utilizes chaotic maps to enhance exploration
and convergence speed, incorporating a nonlinear control parameter to effectively balance local
and global search dynamics. Single-objective optimization results on a WDS show that NCHBA
outperforms other algorithms in solution accuracy and convergence speed. The application of the
proposed approach on a water network with two variable-speed pumps demonstrated a significant
27% reduction in energy consumption. Expanding our focus to the multi-objective optimization of
pump scheduling programs in large-scale water distribution systems (WDSs), we employ the non-
dominated sorting nonlinear chaotic honey badger algorithm (MONCHBA). The findings reveal that
the use of variable-speed pumps not only enhances energy efficiency but also bolsters WDS reliability
compared to the use of single-speed pumps. The results showcase the potential and robustness of
the proposed multi-objective NCHBA in achieving an optimal Pareto front that effectively balances
energy consumption, pressure levels, and water quality risk, facilitating carbon footprint reduction
and sustainable management of WDSs.

Keywords: water distribution systems; water–energy nexus; multi-objective optimization; honey
badger algorithm; metaheuristic algorithms; NCHBA

1. Introduction

One of the main essential infrastructures of every urban area is the water distribution
system (WDS), which delivers water of sufficient quality and quantity to consumers [1].
Pumping stations (PSs) are one of the most expensive parts of a WDS and have the most
crucial role in supplying water with the proper pressure in the network, so their proper
design and use are critical. Pumping an excess amount of water into the network increases
energy consumption by raising the nodal pressure beyond the necessary pressure in the
nodes, causing leaks, broken pipes, and, as a result, increasing the maintenance costs of the
water distribution system [2]. On the other hand, if the pumping stations do not supply
enough water to the consumers during the peak hours of the day and night, the network’s
reliability will decrease [3]. One of the ways to increase the reliability and flexibility of
the water supply network is by using more than one pump in the pumping stations. The
number of pumps can be determined by a simple economic analysis. Based on the financial
reports of England and Wales between 1998 and 1999, the cost of electricity used by pump-
ing stations was estimated to be more than GBP 120 million [4]. Therefore, in addition to
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adequately designing pumping stations, it is necessary to use them properly. The prob-
lem of optimal operation of pumping stations is an important issue influenced by several
factors, such as the following: B. the performance of the pump and the time of pumping.
In the last decades, much research has been conducted on optimizing the performance of
pumps, using various optimization approaches such as linear programming (LP), nonlinear
programming (NLP), and dynamic programming (DP) [5–9]. The above computational
approaches are time-consuming and unsuitable for estimating the optimal operation of
pumping stations due to many decision variables impacting the optimization of pumping
stations [10]. Therefore, in recent years, researchers have focused on meta-heuristics ap-
proaches to optimize these systems [11–19]. Among the existing studies, ref. [20] introduced
a new simulation–optimization model for optimizing the pump scheduling program by
using an Ant Colony Optimization (ACO). In this study, an explicit method is presented
to reduce the decision variables and to satisfy the constraint of pump switching. More
recently, ref. [21] developed a new simulation–optimization model based on an improved
Dragonfly Algorithm (DA) to optimize the scheduling of pumping stations and minimize
energy consumption in WDSs. Comparing the performance of the proposed model with
previous models in a famous case study, the result illustrated that the DA-based model was
more efficient and more reliable than others.

In recent years, the problem of optimizing the operation of pumping stations has
been extensively studied to simulate it as a multi-purpose problem because it involves
various conflicting objectives [22–24]. The most noteworthy studies in the last few years
include ref. [25], who proposed a self-adaptive multi-objective optimization algorithm
based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimizing the
pump scheduling program with the objective functions of 1—energy consumption cost
and 2—the maintenance cost. Ref. [26] introduced a new framework using the NSGA-II
for determining the best program of pumping in order to reduce the energy and leakage
in WDSs. As such, in operating pumping stations, many objectives, such as minimizing
leakage, energy costs, and water age, are to be considered. This is performed through
multi-objective optimization models [27–30] and is the main motivation for this study.

The multi-objective optimization problem of the operation of pumping stations in
WDSs is one of the most challenging problems in the field of water engineering. Typically,
this problem includes nonlinear objective functions with a large number of decision vari-
ables and constraints. Water managers and planners explore to find proper optimization
techniques for the optimal operation of pumping stations. Therefore, finding robust and
efficient optimization methods is essential. Meta-heuristic algorithms are proposed as
the most frequently implemented methods for optimizing pump scheduling programs in
WDSs regarding their proven powerful ability to find non-dominated optimal solution sets
and convergence speed [25]. Simple design and implementation, high performance, and
robustness are the superior characteristics of these techniques [30–33].

Therefore, this study aims to develop an effective and new optimization algorithm for
the operation of pumping stations, taking into consideration multiple objectives. To achieve
this, we enhanced the performance of a meta-heuristic optimization algorithm known as
the honey badger algorithm (HBA) [34] by improving its search capabilities in the solution
space and facilitating suitable convergence. The proposed algorithm’s performance is
evaluated on both small-scale WDSs with variable-speed pumps and large-scale WDSs.
Two scenarios, including variable-speed and fixed-speed pumps, are considered, with the
overall objective of ensuring optimal and safe operation of pumping stations. The key
novel contributions of this study are summarized as follows:

• A nonlinear chaotic honey badger algorithm, i.e., NCHBA, incorporating a nonlinear
control parameter and a chaotic map to strike a balance between exploration and
exploitation, is proposed. The efficiency of NCHBA is validated by solving a high-
dimensional pump scheduling problem.

• A new multi-objective variant of NCHBA is proposed, and its performance is assessed
using four ZDT benchmark functions.
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• The proposed multi-objective algorithm is utilized to optimize the pump scheduling
program of a large WDS to minimize the energy consumption and footprint of pump-
ing stations, quality risk, and nodal pressure. The optimal compromise solution is
determined through the TOPSIS method.

The structure of the rest of this paper is as follows: Section 2 provides a detailed
description of the model development. Section 3 showcases the results of the proposed
algorithm for optimizing the pump scheduling program. Section 4 discusses the key
conclusions of the study and directions for future research.

2. Materials and Methods

This section provides an overview of the necessary materials and methods for develop-
ing the proposed multi-objective framework aimed at achieving sustainable and optimized
operation of WDSs. It includes a description of the fundamental HBA and its framework,
as well as an explanation of the key concepts related to the caostica map and nonlinear
approach. Additionally, the information on the case studies and objective functions utilized
in this study are presented in this section.

To find the best operating program for pumps in WDSs, a simulation optimization
model was developed. To this end, the EPANET hydraulic simulation model [35] was
coupled with the new proposed multi-objective optimization algorithm, i.e., MONCHBA,
to achieve an enhanced and optimized operational model. Figure 1 illustrates the step-wise
simulation–optimization processes of the proposed framework.
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Figure 1. The proposed simulation–optimization framework.

As depicted in Figure 1, the optimizer generates a vector of decision variables such
as a scheduling program or operating cycle of pumps. Subsequently, the EPANET simu-
lator model is executed, and the network’s response, including objective functions and
constraints, is determined based on the input vector. This iterative process continues until
the termination condition is met.
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2.1. Optimization Process and Problem Formulation

This paper presents a new approach for optimized operation of pumps in water
distribution systems. The proposed approach involves an explicit control optimiza-
tion problem that considers the pumps’ operating times and relative speed as decision
variables. This research explores pump energy efficiency across two scenarios with
fixed and variable-speed pumps. Therefore, a multi-objective optimization approach is
considered, where the purpose is to reduce the energy costs, pressure level, and water
quality risk associated with the network operation. In this section, the formulation of
the optimization problem is presented.

2.1.1. Objective Functions

The first objective function is the pumping energy cost (CE), which includes two parts:
demand charge (CD) and consumption charge (Cc). Cc is the cost of electrical energy
consumed during a time period. CD denotes the demand charge, which is the total cost
associated with the maximum amount of power consumed (i.e., peak energy). Therefore,
the total pumping energy cost is computed by Equation (1) as follows [36]:

f1 = CE =

Cc︷ ︸︸ ︷
γw

NP

∑
n=1

T

∑
t=1

(
Q(n,t).H(n,t)

η(n,t)
× ∆tt × b(n,t) × EC(n,t)

)
+

CD︷ ︸︸ ︷
NP

∑
n=1

(DCn × αn) (1)

where NP is the number of pumps, T is the number of time periods, γw is the specific
weight of water, Q(n,t) and H(n,t) are the flow through the pump and the total dynamic
head during each time step t in pump n, EC(n, t) is the price per energy unit defined for
each pump n according to the tariff value for the time step t, bn,t is the status of pump n
as being off or on at time t, ∆tt is the length of a time interval t, and η(n,t) is the efficiency
of pump n during each time step t. To calculate the CD, the model first finds the highest
power required for each pump (Pmax) throughout the simulation and counts how often it
happens. Then, it multiplies this number by a user-defined demand charge (DCn) for each
pump. Therefore, αn is the product of the maximum power for a pump n, Pmax, and the
frequency of this power, nPmax , i.e.,

αn = Pmax × nPmax (2)

The goal of minimizing energy consumption is to increase an approximate efficiency
value. This is due to the fact that energy consumption depends on the scheduling program,
the operating point, and the pump speed.

Operating a WDS with high pressure may lead to more leakages, pipe damage, and
excessive consumption. In fact, a WDS is designed for a peak demand state; therefore, for
long periods, it may tolerate excessive pressure, especially when the water consumption
is low. Therefore, pressure management is an efficient way to improve the reliability of
WDSs. Thus, we will consider the minimization of total excessive pressure of all nodes
as our second objective function for optimal operation of the WDSs. The mathematical
formulation of the second objective function can be defined as:

f2 =
N

∑
i=1

T

∑
t=1

(
Pi,t − Pmin

i

)2
(3)

where Pi,t is the pressure at node i in time t, and Pmin
i is the minimum required pressure at

node i.
The third objective function of the problem is to minimize the water quality risk in

WDSs. It is clear that water quality deteriorates with increasing the water age. Applying
some actions to increase the water quality in a network may lead to an increase in opera-
tional costs. Therefore, it is necessary for a sustainable WDS to acquire a reliable level of
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water age at which the water quality reliability is satisfied at the minimum operational costs.
The mathematical formulation of water quality risk based on water age can be defined as
Equation (4) [37]:

f3 = Riskq = 1− Req (4)

In Equation (5), Req denotes the total water quality reliability of WDSs based on water
age, determined as follows:

Req =
∑N

i=1 ∑T
t=1 bi,tQavl

i,t

∑N
i=1 ∑T

t=1 Qreq
i,t

(5)

where bi,t is a coefficient for node i at time t based on water age and is calculated from
Equation (6), and Qreq

i,t and Qavl
i,t are the required demand and the available discharge for

node i at time t, respectively.

b =


1 i f water age ≤ 6
−0.125× (WA− 6) + 1 i f 6 h < water age < 10 h
0 i f 10 h ≤ water age

(6)

where WA is the water age (hour), and b is the performance index. According to Equation (6),
if the water age is less than 6 h, the performance of the network is good. If the water age is
higher than 10 h, the performance of the network is poor.

It is worth noting that the available discharge at nodes is calculated here through the
pressure-driven simulation method (PDSM). In this method, the discharge at each node
depends on the nodal pressure. Many studies have suggested equations to simulate the
relationship between the pressure and available discharge at the node [2]. The equation
suggested by Wanger et al. (1988) for simulating the PDSM approach is used here [38]:

Qavl
i,t (Pi,t) =


Qreq

i,t Pi,t ≥ Pre f
i

Qreq
i,t ×

(
Pi,t−Pmin

i

Pre f
i −Pmin

i

)0.5
Pmin

i < Pi,t < Pre f
i

0 Pi,t ≤ Pmin
i

(7)

where Pre f
i is the service pressure necessary for supplying the demand at nod i, Qreq

i,t is the
demand required at node i, and Pmin

i is the minimum pressure (which indicates no water is
available at the node).

2.1.2. Constraints

Typically, several important constraints are applied to the operation optimization
problem of WDSs to maintain the performance of the system. A constraint is implemented
to maintain the balance between the water level of each tank at the beginning and at the
end of the simulation duration, as demonstrated in Equation (8) [36]:

g1,i = Li, f inal − Li, initial ≤ 0, i = 1, . . . , ntanks (8)

where Li, initial and Li, f inal are the initial and final water levels of tank i, and ntanks is the
number of existing tanks in a WDS. There are also two constraints that should be satisfied
to control the water level variation in tanks between minimum and maximum allowable
limits. These constraints are given as follows:

g2,i = Li − Li, max ≤ 0, i = 1, . . . , ntanks (9)

g3,i = Li, min − Li ≤ 0, i = 1, . . . , ntanks (10)

where Li is the water level in tank i, and Li, max and Li, min are the maximum and minimum
limits in tank i, respectively.



Water 2024, 16, 874 6 of 28

To supply the required discharge at nodes, it is necessary that the pressure at the
demand nodes should be higher than the minimum required pressure. Thus, another
constraint is applied to the problem as follows:

g4,i = Pre f
i − Pi ≤ 0, i = 1, . . . , nnodes (11)

The fifth constraint relates to the deliverable flow by pumps that is a function of the
pump characteristics, as shown in Equation (12):

g5,i = Q(i,t) −Qmax
i ≤ 0, i = 1, . . . , npumps (12)

where Qmax
i is the maximum flowrate from the performance curve of pump i.

The last type of constraint includes the hydraulic compatibility equations of continuity
and energy conservation, which are automatically satisfied in the EPANET hydraulic
simulation model. More information on the compatibility restrictions is provided in
Appendix A.

In brief, the multi-objective optimization model developed in this work can be mathe-
matically expressed by Equation (13):

Min F1 = CE(X) =

Cc︷ ︸︸ ︷
γw

NP

∑
n=1

T

∑
t=1

(
Q(n,t)(X).H(n,t)(X)

η(n,t)(X)
× ∆tt × b(n,t) × EC(n,t)

)
+

CD︷ ︸︸ ︷
NP

∑
n=1

(DCn × αn(X))

Min F2 =
N
∑

i=1

T
∑

t=1

(
Pi,t(X)− Pre f

i

)2

Min F3 = Riskq = 1− ∑N
i=1 ∑T

t=1 bi,t(X).Qavl
i,t (X)

∑N
i=1 ∑T

t=1 Qreq
i,t

Subjected to : g1,i(X) = Li,final(X)− Li, initial(X) ≤ 0, i = 1, . . . , ntanks
g2,i(X) = Li(X)− Li, max ≤ 0, i = 1, . . . , ntanks
g3,i(X) = Li, min − Li(X) ≤ 0, i = 1, . . . , ntanks

g4,i(X) = Pre f
i − Pi(X) ≤ 0, i = 1, . . . , nnodes

g5,i(X) = Q(i,t)(X)−Qmax
i ≤ 0, i = 1, . . . , npumps

(13)

where X =


xPump 1

t
...

xPump n
t

. . .
...

. . .

xPump 1
T

...
xPump n

T

 represents a vector of decision variables. The relative

pump speed or the pump on/off status during the simulation period can be considered as
the decision variables of the problem.

As previously mentioned, a new multi-objective optimization algorithm is proposed
based on the nonlinearity and complexity of the problem. Honey badger algorithm (HBA)
was improved and applied to optimize the objective functions. In the following subsections,
a summary description of the proposed algorithm in this study is provided.

2.2. Optimization Model
2.2.1. Honey Badger Algorithm

The honey badger algorithm (HBA) is a newly nature-inspired algorithm proposed
by Hashim et al. [34]. The HBA was mimicked from the honey badgers’ social behavior in
exploring the food. The honey badger uses two ways to find food sources: smelling and
digging or pursuing the honeyguide bird. Therefore, the basis of the HBA algorithm is
these two modes. This algorithm consists of five main steps as follows:

Step 1: Initialization phase: Generate the randomly initial solutions (honey badgers’
positions) as follows:

xi = LBi + rand× (UBi − LBi) (14)
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where xi explains the position of honey badger i, rand is a random number in [0, 1], and
LBi and UBi are the lower and upper boundaries of the search space, respectively.

The initial random population of solutions is represented as:

X =

 x1
1,1 · · · x1

1,D
...

. . .
...

x1
N,1 · · · x1

N,D


N×D

(15)

xi =
[

x1
i , x2

i , . . . , xD
i

]
(16)

where D and N are the number of decision variables and the number of honey badgers,
respectively.

Step 2: Specifying intensity (I): To simulate the concentration strength of the prey and
spacing between it and the ith hunter (honey badger), the intensity parameter (I) is defined.
In fact, Iit explains the intensity of the smell of the prey; if the smell is heavy, the action
will be quick and contrariwise. Iit is calculated by Equation (17) based on Inverse Square
Law [34].

Iit = rand× S
4πd2

i

S = (xi − xi+1)
2

xi = xprey − xi

(17)

where S indicates the position of prey and di is the spacing between the honey badger i and
the prey.

Step 3: Update density factor: The HBA algorithm uses a linear parameter (density
factor) to create a smooth transition from the exploration step to the exploitation step. This
parameter is a decreasing factor that reduces with each iteration to reduce randomization
with time.

α = C× exp
(
−t

tmax

)
(18)

where C is a constant number, and t and tmax and are the current and maximum iteration,
respectively.

Step 4: Escaping from local optimum: The HBD algorithm uses a flag F to escape from
local optimum domains, changing search direction to benefit good opportunities for honey
badgers to scan the search domain robustly.

Step 5: Updating the honey badgers’ positions: The position updating process of the
HBA algorithm is divided into two phases, which are the digging and honey phases. In the
digging phase, the search agent’s behavior can be simulated by Equation (19):

xnew = xprey + F× β× I × xprey + F× rand× α× di × |cos(2π × rand)× [1− cos(2π × rand)]| (19)

where xprey indicates the best position found so far, β is a constant parameter to increase
the ability of the search agent (β ≥ 1), and di explains the distance between food and the
ith search agent. HBA uses the flag F to change the search direction (see Equation (20)).

F =

{
1 i f rand ≤ 0.5
−1 else

(20)

In the second phase, the search agents (honey badgers) follow the honeyguide bird to
find the food source; this phase is simulated by Equation (21):

xnew = xprey + F× rand× α× di (21)

In the honey phase, the performance of obtained solutions depends on the parameter α.
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2.2.2. Improved Honey Badger Algorithm

The search process in metaheuristic algorithms is divided into two phases, including
exploration and exploitation. The exploration phase refers to the algorithm’s attempt
to find the best candidate solutions in the search space. In fact, in this phase, the first
candidate solutions are randomly generated and improved over time until a stopping
condition is met. However, in the exploitation phase, the algorithm concentrates on
searching nearby areas of superior-quality answers within the problem search space. A
robust algorithm should consider creating a good balance between these two phases,
considering the complexity structure of the algorithms [34]. HBA has been shown to have a
significant superiority in solving mathematical optimization problems compared with other
well-known metaheuristic algorithms. However, HBA has a simple operator that traps
local optima and an immature balance between the exploitation and exploration phases
in solving real-world complex engineering problems. In this study, the HBA is further
developed, and its performance is enhanced by incorporating the following strategies:

• Utilizing the chaotic maps instead of random numbers.
• Utilizing a nonlinear parameter to create a good balance between the exploitation and

exploration phases.

Nine chaotic maps were examined to identify the most efficient one for enhancing
the exploration behavior of the HBA. More details about the chaotic maps utilized (i.e.,
equations and behaviors) are available in [39].

Chaotic mapping has unique features such as being ergodic (i.e., no two similar
values), pseudo-random, sensitive to initial conditions, and deterministic. These at-
tributes make it an efficient method for maintaining population dispersion in optimiza-
tion algorithms. Accordingly, the new position of the honey badgers is updated based
on Equations (19) and (21). The primary objective of incorporating chaos theory into HBA
is to replace random numbers in Equations (22) and (23) with chaotic values. This mod-
ification enhances the algorithm’s speed and accuracy compared to its original version.
Therefore, Equations (23) and (24) can be rewritten as follows:

xnew = w× xprey + F× β× I × xprey

+ F× cm1 × α× di× | cos(2π × cm2)× [1

− cos(2π × cm3)] |
(22)

xnew = w× xprey + F× cm4 × α× di (23)

where cm is a chaotic number based on the selected chaotic map produced in each iteration.
To enhance the convergence speed and facilitate escape from optimal local traps, chaos

theory is employed to establish a nonlinear relationship that ensures a balanced trade-off
between exploitation and exploration steps in the algorithm.

w = 2e−(
8×iter

MaxIter )
2

(24)

where iter is the current iteration, and MaxIter is the maximum number of iterations.
Equation (28) was first introduced in reference [40] and then used in many studies in

the same form or modified to optimize the performance of meta-heuristic algorithms. The
optimization process algorithm developed for the NCHBA is shown in Appendix B.

2.2.3. Multi-Objective NCHBA

We converted the NCHBA to solve the multi-objective operation of the WDSs problem.
The main idea of MO-NCHBA is based on NSGA-II, which uses the elitist non-dominated
sorting (NDS) and the crowding distance (CD) operator in the optimization process. In this
algorithm, the NDS technique is used to find non-dominated solutions. Then, the selected
solutions are stored in an “archive”, and those are updated at each iteration by comparing
the newly obtained solutions with previous non-dominated solutions. Overall, in the first
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step, the MO-NCHBA creates random solutions and evaluates the fitness of each solution.
In the second step, the NDS technique is applied to sort the non-dominate solutions based
on elitism non-domination. Then, MO-NCHBA applies a mutate strategy to diversify the
dominated Pareto front and avoid falling into local minimum domains. The implemented
mutate strategy can be explained as Equation (25) [41]:

C(m) = Cr1 + rd(Cr2 − Cr3) (25)

where C(m) is the mutated solution; Cr1, Cr2 and Cr3 are three solutions randomly chosen
among the first three ranked Pareto front solutions; and rd is a constant number ∈ [0, 1].

Cnw =

{
C(m) i f (cr ≥ rand or j = jrand)

Ceq(i,j) otherwise
(26)

where Cnw is the updated solution, Ceq(i,j) indicates the ith portion jth solution to be muted,
cr is the crossover operator, and jrand is a random discrete value between 1 and N.

The mentioned process is repeated until the maximum iteration is terminated.

3. Results and Implementation
3.1. Model Validation

In order to evaluate the performance of the proposed algorithm in solving the energy,
pressure, and water quality management problem in WDSs, the effect of different types of
chaotic maps [39] on the performance of HBA is investigated. Therefore, the nine mappings
introduced in Ref. [39] and the nonlinear Equation (24) are coupled with HBA, and each
mapping’s impact on the benchmark functions is evaluated. We selected these benchmark
functions because they encompass a variety of types, including unimodal, multimodal,
hybrid, and composition functions. The characteristics of these functions are available
in [39].

The most appropriate selection mapping and NCHBA performance in solving the
problem of energy management in WDSs are evaluated as a single objective optimiza-
tion problem and compared with Slim Mould Algorithm (SMA) [42], Aquila Optimizer
(AO) [43], Hunger Games search (HGA) [44], Runge Kutta Optimizer (RUN) [45], and the
original version of HBA. Then, according to the explanations provided in Section 2.2.3,
NCHBA is converted into a multi-objective optimization algorithm. Its performance is
first evaluated by solving five benchmark problems and then by solving the energy multi-
objective problem in WDSs on a large-scale water network.

Table 1 provides the best values obtained for HBA according to the types of maps. To
achieve a stable result in solving the problem of each of the mappings, thirty HBAs were
performed. The mean of the solutions was reported as the final value. The table shows that
HBA using sinusoidal mapping provided the best result with five optimal performances. It
was selected as the best mapping for HBA and used for comparison with other algorithms.
Notably, the initial value of CM was considered equal to 0.7 in all mappings, based on
previous studies [39,40].

The performance evaluation of NCHBA in solving the optimization problem of the
optimal setting of variable-speed pumps in WDSs is explained subsequently. The suitable
schedule of utilization includes determining the optimal configuration of the pumps during
the day and night. In this case, the limitation of the number of switching pumps to the
objective function was not performed, and the optimizer itself was favorable to choose
an optimal speed or on/off the pump in a different period. In such a way, in addition to
minimizing the cost of energy consumption of pumping stations, the network water needs
and the problem’s constraints are satisfied.
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Table 1. The influence of different types of chaotic maps on the NCHBA.

Chebyshev Circle Gauss-
Mouse Iterative Logistic Sine Singer Sinusoidal Tent HBA

F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F2 4.02 ×
10−298

9.50 ×
10−271

1.48 ×
10−322

4.70 ×
10−290

1.20 ×
10−291

1.62 ×
10−300

1.40 ×
10275

1.17 ×
10−247

3.70 ×
10−273

4.18 ×
10−169

F3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.30 ×
10−250

F4 4.55 ×
10−295

2.12 ×
10−271

2.09 ×
10−320

3.49 ×
10−291

3.35 ×
10−296

1.50 ×
10−299

3.80 ×
10−276

2.89 ×
10−244

7.26 ×
10−265

5.32 ×
10−143

F5 −3.10 −3.32 −3.17 −3.20 −3.32 −3.32 −3.20 −3.32 −2.91 −3.13
F6 −1.02 × 10 −1.02 × 10 −4.82 × 10 −1.02 × 10 −1.02 × 10 −1.01 × 10 −1.02 × 10 −1.02 × 10 −8.75 −1.02 × 10
F7 8.75 × 10−5 1.04 × 10−5 6.12 × 10−6 1.48 × 10−4 3.63 × 10−5 8.62 × 10−5 7.72 × 10−5 3.07 × 10−5 1.44 × 10−5 6.47 × 10−5

F8 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1

F9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F10 8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

8.88 ×
10−16

F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F12 −1.04 × 10 −1.04 × 10 −1.73 −1.04 × 10 −1.04 × 10 −1.04 × 10 −1.04 × 10 −1.04 × 10 −1.02 × 10 −1.04 × 10
F13 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10
Best 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

As mentioned before, the above problem was solved using AO, SMA, HGA, RUN,
and the original version of HBA, showing the capability of the novel chaotic honey badger
algorithm (NCHBA). The values of the adjustment parameters of the algorithms were also
chosen according to the findings of reference papers (Table 2).

Table 2. Input parameters of the algorithms used in this study.

Algorithm Parameter

AO α = 0.1, δ = 0.1

HGA l = 0.08, LH = 100

Run a = 20, b = 12

SMA vb and vc = [2 0]

HBA β = 6, C = 2

NCHBA C (Nonlinear control parameter)
w = [2 0], β = 6, C = 2

3.2. Single Objective NCHBA for Energy Optimization

The proposed NCHBA-EPANET model was first applied to a benchmark WDS already
used in the literature by ref. [4]. This WDS consists of three pumps, two tanks, one reservoir
with a constant water level equal to 56 m, two demand nodes, and 19 pipes, and is solved
hourly over a day (Figure 2). Pumps 1A and 2B are working in parallel to convey water
from the reservoir to the network. Pump 3B transfers water from tank A to tank B. The
pumps’ scheduling period is 24 h with different time tariffs, and the demands during the
operating period vary according to a typical residential demand pattern with a peak factor
of 1.7 at 7:00 and a secondary peak factor of 1.5 at 18:00. The more details of this case study
are available in ref. [4].

For a fair comparison between algorithms, each algorithm was executed ten times,
with a population of 50 and a maximum repetition of 1000. The results of the algorithms’
implementations to find the optimal pump speed are shown in Table 3, highlighting that
the NCHBA was profoundly more efficient than the other tested algorithms in solving the
complex optimization problem of WDS pumps. The average value of the objective function
(energy consumption) for ten times of execution was 260.68$, and the lowest solution was
249.79$. According to the mentioned findings in Table 3, the NCHBA was more stable than
other algorithms, and the proposed approach to improve the algorithm was practical. The
bold values in Table 3 represent the lowest results obtained by the algorithms.
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Table 3. Results and comparison of metaheuristic algorithms for the case study I.

No. Run AO HGA Run SMA HBA NCHBA

1 360.627 310.873 299.894 300.080 281.745 261.891
2 361.164 303.752 300.279 300.087 301.290 249.798
3 360.191 301.465 301.207 299.416 284.834 266.977
5 350.543 306.884 291.234 297.725 300.661 259.558
6 359.868 298.520 295.697 299.458 316.968 260.232
7 359.938 302.123 290.906 284.270 295.006 259.945
8 380.171 308.970 304.920 299.252 308.427 263.015
9 358.250 299.807 290.167 299.743 300.812 260.346

10 361.700 310.898 308.929 300.279 324.785 264.362
Average 361.384 304.810 298.137 297.812 301.614 260.680

Min 350.543 298.52 290.167 284.27 281.745 249.798
Max 380.171 310.898 308.929 300.279 324.785 266.977
Std 7.801 4.737 6.605 5.134 13.878 4.752

Figure 3 shows that the convergence of SMA and AO was faster than other algorithms,
and they are trapped in the local optimum. Considering the complexity of the investigated
problem and the multiplicity of decision variables in it and, per theory, no free lunch (NFL),
most of the best algorithms effective in solving other problems may not be able to solve the
energy optimization problem in WDSs. The results highlight the enhanced performance of
NCHBA with the addition of chaotic mapping and nonlinear relationships. This improvement
is evidenced by early convergence and reduced likelihood of getting trapped in local optima.
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The details of the most favorable solution for NCHBA, including the optimal speed of the
pumps and the changes in the water level of the reservoirs during the operation period, are
listed in Figures 4 and 5. As expected, the optimal speed of the pump was balanced without
sudden rise and fall, and it had only two switching times during the operation period.
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Figure 4. Pumps operation program for case study I.

A variety of optimization algorithms have been used for modeling the Vanzyl network
in several studies. Based on Table 4, the EA-based model (evolutionary algorithm) proposed
by [46] and the optimized DA algorithm developed by [21] are compared with other
approaches to optimize the energy consumption of this network. It has worked more
effectively. In Ref. [21], to optimize the schedule of network pumps by improving BDA
performance, they presented a model that reduced the cost of energy consumption from
345 to 325 ($/day). In the present study, the energy consumption cost decreased by 27%
using variable-speed pumps instead of fixed-speed pumps and the NCHBA approach.
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Table 4. Comparison of the results of the present study with the literature.

Algorithm Variables Reference Optimal Cost ($/day)

GA Tank level controls
(on/off) [4]

344.19
Hybrid GA 344.19

EA Tank level controls [47] 337.2
ABC

Tank level controls [46]
363.85

FF 361.72
PSO 363.44

ACO
Pump on/off

[48]
388.04

Pump speed 349.43
BDA Pump on/off [21] 325.23

NCHBA Pump speed Current study 249.79

Frequent and sudden turning off/on due to premature depreciation of pumps and the
creation of transient conditions in the system are other factors that impose additional costs
due to the wrong operation of WDS pumps. For this reason, according to Table 4, using
variable-speed pumps has reduced other costs and energy costs. The highest number of
switching in pumps was less than three times a day, while limiting the number of switching
of door-to-door pumps in pumping stations is associated with a significant increase in energy
costs. Based on this analysis, it can be concluded that the utilization of variable-speed pumps
not only reduces energy costs in pumping stations but also decreases additional expenses such
as maintenance. Therefore, it is advisable to replace fixed-speed pumps. Another significant
conclusion is that the integration of chaos maps and a nonlinear parameter approach in HBA
has resulted in the development of a suitable algorithm for optimizing energy consumption
in pumping stations. This algorithm can serve as an effective tool in this regard. The bold
value in Table 4 represent the best results obtained by the studies.

3.3. Multi-Objective NCHBA for Benchmark Problems

To address the optimization challenge in energy management for water distribution
stations, the performance of MONCHBA was evaluated against two algorithms, MOSMA
and NSGA-II, using five benchmark problems from the ZDT benchmark series [49]. These
problems were chosen due to the highly nonlinear nature of these functions and their numer-
ous decision variables, which pose a significant challenge for multi-objective optimization
algorithms. Also, each algorithm was executed 30 times with 100 initial populations and
500 iterations to ensure the fairness of the comparison of algorithms.
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Two well-known criteria, inverted generation distance (IGD) and spacing (SP), are
used to evaluate the overall performance of the algorithm. The IGD is used to measure the
convergence and distribution performance, and the SP is used to show the uniformity of
obtained solutions by algorithms. The smallest value of the mentioned parameters shows
the superiority of the algorithm compared to other algorithms [49].

IGD =
∑n

i=1 di

n
(27)

SP =

√√√√∑n
i=1

(
d− di

)2

n− 1
(28)

where di is the Euclidian distance between the ith Pareto optimal solution obtained by the
algorithm and the nearest true Pareto optimal solution in the reference set, d is the mean
value of di, and n shows the total number of achieved Pareto optimal solutions.

Table 5 displays the amounts of IGD and SP statistical indices for algorithms in solving
ZDT functions. As it is clear, MONCHBA has solved ZDT problems well. Based on IGD, a
criterion of convergence of algorithms, it is clear that MONCHBA had better convergence
compared to the other two algorithms for solving ZDT functions. Also, considering that
the SP criterion shows the uniformity of the solutions obtained, MONCHBA can produce
solutions with a suitable and uniform distribution.

Table 5. The SP and IGD statistics on ZDT benchmark problems.

IGD SP

Average St.d Best Worst Average St.d Best Worst

Z
D

T1

MONCHBA 4.63 × 10−3 1.95 × 10−4 4.43 × 10−3 4.93 × 10−3 5.85 × 10−3 3.51 × 10−3 5.50 × 10−3 6.39 × 10−3

NSGA-II 6.23 × 10−2 7.39 × 10−2 2.97 × 10−1 1.97 × 10 6.23 × 10−2 4.51 × 10−2 9.47 × 10−3 1.09 × 10−1

MOSMA 1.21 × 10−2 7.52 × 10−2 1.48 × 10−2 3.33 × 10−2 1.21 × 10−2 4.75 × 10−2 8.96 × 10−3 1.62 × 10−2

Z
D

T2

MONCHBA 4.54 × 10−3 2.58 × 10−4 4.32 × 10−3 4.96 × 10−3 5.23 × 10−3 3.95 × 10−4 4.92 × 10−3 5.98 × 10−3

NSGA-II 1.05 6.33 × 10−1 8.45 × 10−3 1.61 2.46 × 10−2 1.49 × 10−2 4.65 × 10−2 1.23 × 10−2

MOSMA 2.98 × 10−1 2.90 × 10−1 2.46 × 10−2 7.72 × 10−1 1.21 × 10−2 4.75 × 10−2 8.96 × 10−3 1.62 × 10−2

Z
D

T3

MONCHBA 6.12 × 10−3 1.24 × 10−3 4.68 × 10−3 7.11 × 10−3 6.28 × 10−3 8.63 × 10−4 5.60 × 10−3 7.31 × 10−3

NSGA-II 7.68 × 10−2 1.18 × 10−1 8.72 × 10−3 2.86 × 10−1 1.21 × 10−1 1.75 × 10−1 2.34 × 10−2 4.32 × 10−1

MOSMA 6.05 × 10−2 1.72 × 10−2 8.76 × 10−2 4.13 × 10−2 3.35 × 10−2 4.25 × 10−2 1.91 × 10−2 4.65 × 10−2

Z
D

T4

MONCHBA 4.80 × 10−3 2.70 × 10−4 4.47 × 10−3 5.22 × 10−3 5.87 × 10−3 5.49 × 10−3 5.18 × 10−3 6.36 × 10−3

NSGA-II 3.71 2.33 7.77 × 10−1 6.45 6.50 × 10−1 3.73 × 10−1 1.90 × 10−1 1.08
MOSMA 4.75 × 10 2.43 × 10 1.94 × 10 7.45 × 10 2.64 1.12 × 10−2 1.23 × 10−1 5.15

Z
D

T6

MONCHBA 3.33 × 10−3 4.37 × 10−4 2.69 × 10−3 3.82 × 10−3 5.05 × 10−3 4.34 × 10−4 4.60 × 10−3 5.73 × 10−3

NSGA-II 5.69 × 10−2 2.02 × 10−2 3.55 × 10−2 8.47 × 10−2 5.99 × 10−2 4.75 × 10−2 1.34 × 10−1 2.28 × 10−2

MOSMA 5.16 × 10−1 1.14 3.89 × 10−3 2.55 8.72 × 10−2 3.33 × 10−1 1.86 × 10−2 2.22 × 10−1

Figure 6 represents the optimal Pareto fronts obtained by three algorithms, MONCHBA,
MOSMA, and NSGA-II, for problems of ZDT1 to ZDT4 and ZDT6. The optimal solution
set of all three algorithms is uniformly converged to the actual Pareto front. By enlarging a
part of the Pareto front, the uniformity of the solutions of the MONCHBA algorithm was
much higher than the other two algorithms. At the same time, MOSMA has not been able
to adapt effectively to the actual Pareto. The convergence of three algorithms for the ZDT2
problem in Figure 6 shows the reasonable accuracy of MONCHBA compared to the other
two algorithms. Hence, the solutions found by NSGA-II were far better than those found by
MOSMA. However, the number of solutions obtained is less than the other two algorithms.
This figure shows that the convergence of the proposed algorithm in solving the ZDT3 function
is also acceptable. The set of solutions provided by it is uniformly converged to the true Pareto
front in the interaction diagram of the ZDT4 and ZDT6 examples presented in Figure 6, and
it is the same as the algorithm MONCGWO has good accuracy and convergence. However,
the noteworthy point is the poor performance of the MOSMA algorithm compared to the



Water 2024, 16, 874 15 of 28

other two algorithms, which failed to converge accurately with the true solution. The optimal
solutions were placed far from the true Pareto in almost all examples, meaning the weakness
of this algorithm in escaping local optima and premature convergence.
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Examining the results of modeling the benchmark functions using the proposed multi-
objective algorithm reveals that the performance of the initial version of the HBA algorithm
has been improved through the utilization of the chaotic approach. This improvement
is evident in the algorithm’s ability to produce accurate answers in accordance with the
real answers when solving the benchmark problems. This success can be attributed to the
proper interaction between the search and exploration phases.
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3.4. Multi-Objective NCHBA for Energy Optimization

The problem of exploiting WDSs was examined as a multi-objective optimization
problem in this section. The first, second, and third objectives were to minimize the cost of
energy consumption, the network pressure level, and the quality risk of the network, respec-
tively. For this purpose, the objective functions and constraints introduced in Section 2.2
were used in the optimization process. The WDS used in this section is the C-Town network
(Figure 7), a large-scale WDS with 399 consumption nodes, 443 pipes, seven storage tanks,
11 pumps, five valves, and the main water supply reservoir. The C-Town network was
divided into five district metered areas (DMAs) for easy management and operation, each
with a different hourly consumption pattern. The C-Town network distributed water from
the main reservoir to the two storage tanks, T1 and T2, by pumping station S1. Notably, the
transfer flow to tank T2 was controlled by valve V2 based on the water level in the tank.
Pumping stations S2 and S3 transferred water from the T2 tank to the tanks located at a
higher altitude. Pumping stations S4 and S5 were responsible for transferring water from
tank T1 to tanks T5, T6, and T7. Figure 7 shows the schematic of this network.
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The operation details of C-Town are available at: https://www.exeter.ac.uk/media/
universityofexeter/emps/research/cws/downloads/d-town.inpl, accessed on 13 March
2024 (Expansion|Engineering|University of Exeter).

Two scenarios were proposed and evaluated according to the study’s objectives to
determine an operation plan for the WSD pumps. Firstly, the pumps in the network were
considered variable-speed pumps, and the multi-purpose operation of the pumping
stations was discussed. Then, the modeling was conducted by considering the constant-
speed pump in the stations. Notably, the number of decision variables in the simulation–
optimization model developed using the MONCHBA multi-objective algorithm and the
EPANET simulator was equal to 264. For the first scenario, it was required to obtain
the optimal speed of the pumps. In addition to complying with the constraints of the

https://www.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/d-town.inpl
https://www.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/d-town.inpl
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problem, including the permissible range of changes in the water level of the storage
tanks and the minimum operating pressure, it provided a satisfying interaction between
the goals of minimizing pumping energy costs, the network pressure level, and reducing
water age-based risk. The first modeling results were presented as a three-dimensional
Pareto diagram in Figure 8. As it is known, the model has provided various solutions
with different kinds of quality-based risk levels, pressure levels, and the cost of energy
consumed in the network.
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A favorable distribution of the points found on the Pareto front indicates the precision
of MONCHBA. Accordingly, the lowest and highest value of network quality risk ranged
between 14.5% and 19%. With the increase in the second objective function, the value
of quality risks declined, and vice versa, which can be due to the increase in leakage,
consumption, and, as a result, the decline of water age in the network. It can also be said
that the water quality risk also decreased with the increase in energy costs and increased
network consumption. Based on this, the conflict between quality risk, pumping costs, and
network pressure level was apparent. According to the graph of the interaction between



Water 2024, 16, 874 18 of 28

two energy and pressure functions, with the increase in pumping costs, the pressure level
in the network increased, which was an obvious issue.

In multi-objective optimization problems, none of the solutions on the Pareto front
is preferable to the other, and the employer can choose any of the solutions based on the
available budget. The fuzzy decision-making method was used to comment more on the
impact of variable-speed pumps on water quality and network pressure. An optimal answer
establishes a suitable interaction between all three objectives. The fuzzy decision-making
method is implemented as follows [50]:

µ
j
i =


1, i f f j

i < f j
min

f j
max− f j

i

f j
max− f j

min ,
i f f j

min ≤ f j
i ≤ f j

max

0, i f f j
i > f j

max

(29)

After calculating µ
j
i for each point obtained on the Pareto front, the fuzzy member-

ship function (µi) is computed using Equation (30). The value of µi ranges between 0 and
1 and is estimated as a vector for each series of answers (i.e., f 1, f 2, and f 3). The answer
series with the highest µi value is chosen as the final answer, indicating a consensus
among all objectives.

µi(Normalized) =
∑

Nobj
j=1 µij

∑M
i=1 ∑

Nobj
j=1 µij

(30)

where M is the number of solutions, Nobj indicates the number of objective functions, and

f j
min and f j

max are the minimum and maximum values of the objective function, respectively.
µi is the membership function.

Based on the solution presented in the above approach, indicated by a different color
in the Pareto front, the values of the objective functions of energy, pressure level, and
quality risk of the network were obtained as 1189.14$, 415,958 m, and 16%, respectively.

In the second model, by using the transfer function approach, the MONCHBA search
space was converted into a binary space, and the simulation–optimization model was
implemented assuming constant-speed pumps. The results of running the developed
model with binary space on the C-Town water distribution network are presented in
Figure 9, similar to the previous scenario.

The Pareto model (1) has a more appropriate distribution than the Pareto model (2),
which can be caused by the complexity of the problem space in binary mode and the high
number of decision variables. According to the researcher’s experience, achieving better
results by using variable-speed pumps was not unexpected. The continuous and slow rotation
speed change in variable-speed pumps compared to the sudden turning off/on of fixed-speed
pumps makes it difficult to achieve proper interaction in the large-scale problem.

According to the Pareto front, the lowest and highest values of quality-based risk
in the network were 17.5% and 22.5%, respectively, meaning an increase compared to
scenario number (1). The energy consumption costs in the ranges of USD 1180–1280 and
USD 1100–1500 for the fixed and variable-speed pumps, respectively, were considerable.
The flexibility of the network resulted from using variable-speed pumps, which give
the employer multiple options. To achieve a better comparison, one of the responses on
the Pareto front in Figures 8 and 9 was selected and analyzed using the fuzzy decision-
making method.
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The values of the objective functions of the problem in the case of fixed-speed pumps
for the optimal response obtained for the first, second, and third objective functions were
1215.24$ and 415,131.2 m, 19%, respectively. Hence, using variable-speed pumps instead
of fixed-speed pumps is also effective and highly efficient in multi-purpose operating
conditions. To better compare responses, pressure level, and network quality in 24:00 h,
10:00, and 18:00, a day of operation is presented in Figures 10–12.
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Accordingly, by using a multi-criteria optimization approach in the operation of
pumping stations and reducing energy costs, a WDS with high reliability from a qualitative
and hydraulic point of view can be achieved. In general, the use of variable-speed pumps
compared to fixed-speed pumps reduces the quality risk of the network and increases its
reliability during operation.

It should be noted that the pressure level in the network in the presence of variable-
speed pumps is higher than fixed-speed pumps in most cases, which can increase the rate
of pipe failure and leakage. Therefore, it is possible to prevent the occurrence of higher
pressures in different water networks based on the final tolerable pressure of the pipes by
defining the maximum pressure range. In case study number (2), the maximum pressure
requirement is not taken into account, and only compliance with the minimum desired
pressure requirement of 20 m is considered. The schedule of C-Town water distribution
network pumps is presented in Figure 13 for two scenarios. As can be seen in this figure,
variable-speed pumps operate at an appropriate speed ratio for most of the day. For this
reason, reducing the number of additional switching operations resulted in a full supply of
node pressure and reduced operating costs.
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As can be seen, using an efficient optimizer to find the optimal scheduling program of
pumping stations can significantly reduce the cost of energy consumption in WDSs. The
cost reductions due to using variable-speed pumps instead of single-speed pumps in the
first and second case studies are caused by the proper scheduling obtained by NCHBA,
which resulted in less use of the power electricity.
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Figure 13. The pump scheduling program of C-Town for scenarios 1 and 2.
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4. Discussion

The results presented in this study demonstrated that the proposed NCHBA out-
performed other search methods, including AO, HGA, SMA, GA, EA, ABC, FA, BDA,
ACO, Run, NSGA-II, and MOSMA, as well as the original version of HBA, in two phases:
(1) mathematical benchmark functions and* (2) pump scheduling program optimization.
The key factor behind these improvements lies in the modification of the HBA operators,
notably the inclusion of a chaotic map and a nonlinear mechanism, along with the addition
of a crossover operator to the multi-objective version of the algorithm. These additional
mechanisms effectively enhanced the algorithm’s ability to perform both global and local
searches. The crossover operator plays a vital role in diversifying the population, thereby
aiding the proposed algorithm in discovering more promising solutions. The implemen-
tation of the NCHBA further improves the search for the optimal solutions, enabling
the identification of a greater number of favorable solutions. The results demonstrate
the efficiency of the proposed algorithm in effectively solving intricate mathematical test
functions. Furthermore, the outcomes of both single and multi-objective pump schedul-
ing programs validate the remarkable capability of NCHBA in optimizing pump speeds,
thereby effectively reducing the water conveyance footprint.

It is important to acknowledge and address the potential limitations of this study.
Despite the fact that incorporating new mechanisms into any optimization algorithm
enhances both the convergence speed and accuracy, this improvement comes at the expense
of increased computational costs, particularly for complex water distribution systems
(WDSs) with numerous variables, such as pressure-reducing valves and pump statuses.
To overcome this drawback, the implementation of parallel computing technology can be
effective. Furthermore, it is important to note that despite the excellent performance of
the proposed algorithm, it is essential to acknowledge the limitations outlined in the “no
free lunch (NFL)” theorem. This theorem emphasizes that there is no universal optimizer
capable of efficiently solving all complex problems related to WDSs.

5. Conclusions

Sustainable operation and management of water distribution systems (WDSs) is a
complex, multi-faceted, and challenging optimization problem characterized by numerous
decision variables, complicated constraints, and multiple objective functions. This study
focuses on addressing the optimization problem of pump scheduling in WDSs. To tackle this
challenge, a novel and enhanced optimization algorithm, namely NCHBA, was introduced.
The NCHBA incorporates a chaotic map and a nonlinear mechanism to further improve its
performance. The proposed algorithm was coupled with the EPANET model to estimate
the response of the WDSs according to the optimal schedule. The proposed model was
utilized to optimize the energy consumption in variable-speed pumps in a benchmark
network. The performance of the proposed NCHBA is compared with five meta-heuristic
algorithms (i.e., AO, HGA, RUN, SMA, and HBA). The results confirm that the proposed
NCHB outperforms the original HBA for the single objective pump scheduling problem
and also reduces energy consumption more than any other algorithm. The implementation
of the proposed NCHB resulted in significant energy cost savings, reaching up to 27% for
the case study pumping station. Hence, the proposed approach can facilitate a significant
reduction in a WDS footprint.

The proposed algorithm was converted into a multi-objective algorithm using the
crossover approach, and it was utilized to reduce the water conveyance footprint in WDSs.
ZDT series test functions were used to evaluate the performance of the algorithm. The
efficiency of the proposed method for a large-scale water network was successfully in-
vestigated by considering the minimization of energy consumption, water quality risk,
and pressure deficit as objective functions. The optimization-simulation model developed
based on the new algorithm was implemented to assess two scenarios with variable-speed
and fixed-speed network pumps. The results showed that the variable-speed pumps have
a high potential to reduce water conveyance footprint in WDSs. The appropriateness and
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robustness of the proposed NCHBS approach should be further validated for different
objectives of WDS management. For example, future studies can assess the performance of
NCHBA to optimize the location of pumps as turbines or PRVs in WDSs. Further research
is needed to investigate the accuracy and reliability of EPANET for estimating the energy
consumption of variable-speed pumps.
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Notation and List of Acronyms

Qij Flow rate between nodes i and j DMA District mater area
NP(j) Number of pipes meeting at node j FSP Fixed-speed pump
qj Nodal demand at node j VSP Variable-speed pump

GA Genetic Algorithm
HPij Head added by pumps in pipe j LP Linear programming
np(i) Number of pipes included in loop i NLP Nonlinear programming
hij Head loss between node i and j DP Dynamic programming
L Pipe length ACO Ant Colony Optimization
D Pipe diameter DA Dragonfly Algorithm

C Hazen–Williams coefficient
NSGA-
II

Non-Dominated Sorting Genetic Algorithm

Q(n,t)
Flow through pump during each time step t in
pump n

HBA Honey badger algorithm

H(n,t)
Total dynamic head during each time step t in
pump n

WDS Water distribution system

ECt Electricity tariff at time t (USD/kWh) PDSM Pressure-driven simulation method
bnt Status of pump n as being off or on at time t RUN Runge–Kutta Optimization Algorithm
∆tt Length of a time interval t NDS Non-dominated sorting
η(n,t) Efficiency of pump n during each time step t CD Crowding distance
QMax
(n) Peak discharge through the pump n SMA Slim Mould Algorithm

ED Demand charge (USD/kW) AO Aquila Optimizer
Pi,t Pressure at node i in time t HGA Hunger Games search
Pmin

i Minimum required pressure at node i EA Evolutionary algorithm

Qreq
i,t Required demand for node i at time t

IGD
NCHBA

Inverted generation distance
Nonlinear chaotic honey badger algorithm

Qavl
i,t Available discharge node i at time t

FA Firefly algorithm

Appendix A

Appendix A.1. EPANET Hydraulic Simulation Model

The hydraulic and quality behavior of WDS was simulated using EPANET2.2 software.
The EPANET software takes the information from the WDS elements (e.g., pipes, nodes,
tanks, valves, and pumps) and calculates the pipe flows and heads using energy and
continuity conservation equations [35,36]. The conservation equations for a WDS are
expressed as follows:

https://github.com/Jafariasl/water-2791968-NCHBA
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• Continuity at node j (j = 1 to N – 1)

NP (j)

∑
i=1

Qij − qj = 0 (A1)

• Conservation of energy for loop i (i = 1 to NL)

np(i)

∑
j=1

hij −
np(i)

∑
j=1

HPij = 0 (A2)

where Qij is the flow rate between nodes I and j, NP(j) is the number of pipes meeting at
node j, qj represents the nodal demand at node j, N is the number of nodes in the WDS,
HPij is the head added by pumps in pipe j, np(i) indicates the number of pipes included in
loop i, and hij is the head loss between node i and j. These equations are related to each
other using a proper formula for estimating the friction losses in pipes. According to the
Hazen–Williams equation, the head loss between two nodes is estimated as (SI units):

hij =
10.67LijQ1.85

ij

C1.85
ij D4.87

ij
(A3)

where Lij is pipe length, Dij is the pipe diameter, Cij is the Hazen–Williams coefficient, and
Qij is the flow rate in pipe ij linking node i to j.

The EPANET software uses a dynamic implicit method for quality analysis. The
derived flow from the hydraulic simulation process is used to solve a mass conservation
equation for the substance within each pipe linking nodes i and j as follows:

∂cij

∂t
= −

(
Qij

Aij

)(
∂cij

∂Lij

)
+ θ
(
cij
)

(A4)

where cij is the concentration of substance in pipe linking nodes i, j
(

mass
m3

)
; Aij is the

cross-sectional area of pipe linking nodes i, j (m2); and θ is the rate of a constituent within
pipe linking nodes i, j

(
mass

m3/day

)
.

Equation (A4) must be solved considering two conditions at node i, including a known
initial condition at t = 0, and assuming Equation (A5) as the boundary condition at Lij = 0:

cij =
∑k qki cki(Lk,i, t) + Mi

∑k qki + Qsi
(A5)

where Lk,i is the length of pipe K connecting node i, and Mi and Qsi are the substance mass
injected by the external source at node i and the source flow rate, respectively. It is worth
noting that the boundary conditions in the pipe linking node i to j depend on the end node
concentrations of all pipes k, i that deliver flow to pipe i, j.

To estimate the water age in WDSs, the variable c in Equation (A5) is interpreted as
the age of water and is replaced by the term θ

(
cij
)

to a constant value of 1.0.

Appendix A.2. Modeling Variable-Speed Pumps

To model the variable-speed pumps, Equation (A6) needs to be adjusted based on the
affinity laws for flow and head, shown in Equations (A7). By changing the pump speed
from N1 to N2, the new characteristic curve can be derived by substituting H1 and Q1
(head and flow at speed N1) with the formulas from the affinity laws, resulting in [36]:

H = h0 − rQn (A6)
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In Equation (A6), the pump shut-off head is denoted by h0, while r and n are the
coefficients of the curve.

(a)
Q1

Q2
=

N1

N2
, and (b)

H1

H2
=

(
N1

N2

)2
, (A7)

N1 and N2 are two different pump speeds (N is the rotational speed in rpm, calculated
by N = (ω/2π) × 60). The laws assume that the pump efficiency at the best efficiency point
(BEP) does not change with the speed variation. The efficiency curve shifts to the left when
the pump speed decreases or to the right when it increases.

H2 = h0

(
N1

N2

)2
− r
(

N1

N2

)2
 Q2(

N1
N2

)
n

, (A8)

which is equivalent to the equation used by EPANET for the headloss and flow relationship
for the pump.

Appendix B

Developed Algorithm

Algorithm A1. The pseudo code of NCHBA

Step 1: Initialize parameters (i.e., N, tmax , β, C)
Step 2: Generate random solutions
Step 3: Evaluate the fitness of each search agent using objective function and save best solution

(
xprey & fprey)

while t ≤ tmax do
Update the decreasing factor α using (18).
Generate Chaotic number.
Calculate w using Equation (24).
for i = 1 to Ndo
Calculate the intensity Ii using Equation (17).
if rand < 0.5 then
Update the position xnew using Equation (22).
Else
Update the position xnew using Equation (23).
end if
Evaluate new position and assign to fnew.
if fnew ≤ fi then
Set xi = xnew and fi = fnew.
end if
if fnew = fprey then
Set xprey = xnew and fprey = fnew.
end if
end for
end while
Stop criteria satisfied.
Return xprey.

Source codes of the proposed hybrid NCHBA are publicly available at: https://github.
com/Jafariasl/water-2791968-NCHBA, accessed on 13 March 2024.
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