Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (250)

Search Parameters:
Keywords = waste heat distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3039 KiB  
Article
Heat Transfer Performance and Influencing Factors of Waste Tires During Pyrolysis in a Horizontal Rotary Furnace
by Hongting Ma, Yang Bai, Shuo Ma and Zhipeng Zhou
Energies 2025, 18(15), 4028; https://doi.org/10.3390/en18154028 - 29 Jul 2025
Viewed by 227
Abstract
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the [...] Read more.
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the effect laws of tire particle size, rotary furnace rotation speed, enhanced heat transfer materials, and adding spiral fins on heat transfer performance and pyrolysis product distribution were studied, respectively. The innovation lies in two aspects: first, aiming at the problems of slow heat transfer and low pyrolysis efficiency in horizontal rotary furnaces, we identified technical measures through experiments to enhance heat transfer, thereby accelerating pyrolysis and reducing energy consumption; second, with the goal of increasing high-value pyrolysis oil yield, we determined optimal operating parameters to improve economic and sustainability outcomes. The results showed that powdered particles of waste tires were heated more evenly during the pyrolysis process, which increased the overall heat transfer coefficient and the proportion of liquid products. When the rotational speed of the rotary pyrolysis furnace exceeded 2 rpm, there was sufficient contact between the material and the furnace wall, which was beneficial to the improvement of heat transfer performance. Adding heat transfer enhancement materials such as carborundum and white alundum could improve the heat transfer performance between the pyrolysis furnace and the material. Notably, a rotational speed of 3 rpm and carborundum were used as a heat transfer enhancement material with powdered waste tire particles during the pyrolysis process; the overall heat transfer coefficient was the highest, which was 16.89 W/(m2·K), and the proportion of pyrolysis oil products was 46.1%. When spiral fins were installed, the comprehensive heat transfer coefficient was increased from 12.78 W/(m2·K) to 16.32 W/(m2·K). The experimental results show that by increasing the speed of the pyrolysis furnace, adding heat transfer enhancing materials with high thermal conductivity to waste tires, and appropriate particle size, the heat transfer performance and pyrolysis rate can be improved, and energy consumption can be reduced. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
Show Figures

Figure 1

30 pages, 8885 KiB  
Article
Seasonally Adaptive VMD-SSA-LSTM: A Hybrid Deep Learning Framework for High-Accuracy District Heating Load Forecasting
by Yu Zhang, Keyong Hu, Lei Lu, Qingqing Yang and Min Fang
Mathematics 2025, 13(15), 2406; https://doi.org/10.3390/math13152406 - 26 Jul 2025
Viewed by 233
Abstract
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through [...] Read more.
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through synergistic integration of the Sparrow Search Algorithm (SSA), Variational Mode Decomposition (VMD), and Long Short-Term Memory (LSTM) network. Specifically, VMD is first employed to decompose the historical heating load data from Arizona State University’s Tempe campus into multiple stationary modal components, aiming to reduce data complexity and suppress noise interference. Subsequently, the SSA is utilized to optimize the hyperparameters of the LSTM network, with targeted adjustments made according to the seasonal characteristics of the heating load, enabling the identification of optimal configurations for each season. Comprehensive experimental evaluations demonstrate that the proposed model achieves the lowest values across three key performance metrics—Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)—under various seasonal conditions. Notably, the MAPE values are reduced to 1.3824%, 0.9549%, 6.4018%, and 1.3272%, with average error reductions of 9.4873%, 3.8451%, 6.6545%, and 6.5712% compared to alternative models. These results strongly confirm the superior predictive accuracy and fitting capability of the proposed model, highlighting its potential to support energy allocation optimization in district heating systems. Full article
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Viewed by 348
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

18 pages, 3737 KiB  
Article
Simulation-Based RF-ICP Torch Optimization for Efficient and Environmentally Sustainable Radioactive Waste Management
by Roman Stetsiuk, Mustafa A. Aldeeb and Hossam A. Gabbar
Recycling 2025, 10(4), 139; https://doi.org/10.3390/recycling10040139 - 15 Jul 2025
Viewed by 290
Abstract
This study examines methods to improve the energy efficiency of radiofrequency inductively coupled plasma (RF-ICP) torches for radioactive waste treatment, with a focus on surpassing the typical energy efficiency limit of approximately 70%. To improve energy efficiency and plasma performance, this research investigates [...] Read more.
This study examines methods to improve the energy efficiency of radiofrequency inductively coupled plasma (RF-ICP) torches for radioactive waste treatment, with a focus on surpassing the typical energy efficiency limit of approximately 70%. To improve energy efficiency and plasma performance, this research investigates the transition from axial gas flow to vortex gas flow patterns using COMSOL Multiphysics software v6.2. Key plasma parameters, including energy efficiency, number of gas vortices, heat transfer, and temperature distribution, were analyzed to evaluate the improvements. The results indicate that adopting a vortex flow pattern increases energy conversion efficiency, increases heat flux, and reduces charge losses. Furthermore, optimizing the torch body design, particularly the nozzle, chamber volume, and gas entry angle, significantly improves plasma properties and energy efficiency by up to 90%. Improvements to RF-ICP torches positively impact waste decomposition by creating better thermal conditions that support resource recovery and potential material recycling. In addition, these improvements contribute to reducing secondary waste, mitigating environmental risks, and fostering long-term public support for nuclear technology, thereby promoting a more sustainable approach to waste management. Simulation results demonstrate the potential of RF-ICP flares as a cost-effective and sustainable solution for the thermal treatment of low- to intermediate-level radioactive waste. Full article
Show Figures

Figure 1

23 pages, 2711 KiB  
Systematic Review
Electro-Composting: An Emerging Technology
by Ahmad Shabir Hozad and Christian Abendroth
Fermentation 2025, 11(7), 401; https://doi.org/10.3390/fermentation11070401 - 14 Jul 2025
Viewed by 438
Abstract
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), [...] Read more.
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), and thermoelectric generators (TEGs). Apart from the main systems highlighted above, bioelectrochemically assisted anaerobic composting (AnCBE, III) is discussed as an underexplored system with the potential to improve the efficiency of anaerobic degradation. Each system is described in terms of key materials, composter design, operating conditions, temperature evolution, compost maturity, microbial community, and environmental outcomes. EAAC and EOAC systems accelerate organic matter decomposition by improving oxygen distribution and microbial activity, whereas MFC and TEG systems have dual functioning due to the energy generated alongside waste degradation. These innovative systems not only significantly improve composting efficiency by speeding up organic matter breakdown and increasing oxygen supply but also support sustainable waste management by reducing greenhouse gas emissions and generating bioelectricity or heat. Together, these systems overcome the drawbacks of conventional composting systems and promote future environmental sustainability solutions. Full article
Show Figures

Figure 1

16 pages, 9789 KiB  
Article
CO2 Sequestration Potential Competitive with H2O and N2 in Abandoned Coal Mines Based on Molecular Modeling
by Tianyang Liu, Yun Li, Yaxuan Hu, Hezhao Li, Binghe Chen, Qixu Zhang, Qiufeng Xu and Yong Li
Processes 2025, 13(7), 2123; https://doi.org/10.3390/pr13072123 - 3 Jul 2025
Viewed by 357
Abstract
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of [...] Read more.
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of coal mine waste gas components (CO2, H2O, N2) under varying pressure levels and gas molar ratios at 353.15 K. We evaluated the adsorption capacity and selectivity for both single-component and multi-component gases, quantifying adsorption interactions through adsorption heat, interaction energy, and energy distribution. The simulation results revealed that the contribution of the three gases to the total adsorption amount followed the order: H2O > CO2 > N2. The selective adsorption coefficient of a gas exhibits an inverse correlation with its molar volume ratio. Isothermal heat adsorption of gases in coal was positive, decreasing sharply with increasing pressure before leveling off. Electrostatic interactions dominated CO2 and H2O adsorption, while van der Waals forces governed N2 adsorption. As the gas mixture complexity increased, the overlap of energy distribution curves pronounced, highlighting competitive adsorption behavior. These findings offer a theoretical foundation for optimizing coal mine waste gas treatment and CO2 sequestration technologies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

18 pages, 3223 KiB  
Article
Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust
by Tomoya Ezawa, Shan Miao, Koki Harano, Masami Sumita, Noboru Katayama and Kiyoshi Dowaki
Energies 2025, 18(13), 3399; https://doi.org/10.3390/en18133399 - 27 Jun 2025
Viewed by 404
Abstract
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and [...] Read more.
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and safe hydrogen storage for small-scale fuel cell (FC) applications due to its high energy density and low-pressure operation. However, because hydrogen desorption from MH is an endothermic reaction, an external heat supply is required for stable performance. To enhance both the heat transfer efficiency and cartridge usability, we propose a heat supply method that utilizes waste heat from an air-cooled proton-exchange membrane fuel cell (PEMFC). The proposed cartridge incorporates four cylindrical MH tanks that require uniform heat transfer. Therefore, we proposed the tank arrangements within the cartridge to minimize the non-uniformity of heat transfer distribution on the surface. The flow of exhaust air from the PEMFC into the cartridge was analyzed using computational fluid dynamics (CFD) simulations. In addition, an empirical correlation for the Nusselt number was developed to estimate the heat transfer coefficient. As a result, it was concluded that the heat utilization rate of the exhaust heat flowing into the cartridge was 13.2%. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

22 pages, 2868 KiB  
Review
Review of Research Progress on Dry Granulation Technology for Blast Furnace Slag
by Hecheng Hu, Tuo Zhou, Ye Li, Bing Xia, Man Zhang, Nan Hu and Hairui Yang
Materials 2025, 18(12), 2802; https://doi.org/10.3390/ma18122802 - 14 Jun 2025
Viewed by 733
Abstract
Blast furnace slag, a high-temperature molten by-product generated during the ironmaking process in the metallurgical industry, has garnered significant attention for its resource utilization technologies. Compared to the traditional water-quenching method, dry granulation offers notable advantages. This paper systematically compares and analyzes the [...] Read more.
Blast furnace slag, a high-temperature molten by-product generated during the ironmaking process in the metallurgical industry, has garnered significant attention for its resource utilization technologies. Compared to the traditional water-quenching method, dry granulation offers notable advantages. This paper systematically compares and analyzes the performance parameters of three typical dry treatment processes: mechanical crushing, air-quenching granulation, and centrifugal granulation. It reveals that the centrifugal granulation process demonstrates substantial technical superiority in key metrics, such as particle size distribution uniformity, particle morphology optimization, and heat recovery efficiency. Building on this, this study provides a comprehensive review of the current state of centrifugal granulation technology, from both experimental and simulation perspectives. Additionally, the combined processes of centrifugal granulation and air quenching can fully exploit the synergistic benefits of each technology, thereby enhancing overall efficiency. However, the wind’s cooling effect can lead to the premature solidification of molten slag when it splits into liquid filaments, resulting in slag wool. To address this, this paper proposes a centrifugal granulation device equipped with a windbreak board, which facilitates temperature zoning. This approach prevents premature solidification in the liquid filament region while ensuring the timely cooling and solidification of slag particles, offering a novel technical solution for optimizing centrifugal granulation in metallurgical solid waste resource utilization. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

26 pages, 10537 KiB  
Article
Development of a Low-Cost Traffic and Air Quality Monitoring Internet of Things (IoT) System for Sustainable Urban and Environmental Management
by Lorand Bogdanffy, Csaba Romuald Lorinț and Aurelian Nicola
Sustainability 2025, 17(11), 5003; https://doi.org/10.3390/su17115003 - 29 May 2025
Cited by 1 | Viewed by 736
Abstract
In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the [...] Read more.
In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the system comprises three IoT units that integrate image processing and environmental sensing for sustainable urban and environmental management. Each unit uses an embedded camera and sensors to process live data locally, which are then transmitted to a central database. The image processing algorithm counts vehicles by type with over 95% daylight accuracy, while air quality sensors measure pollutants including particulate matter (PM), equivalent carbon dioxide (eCO2), and total volatile organic compounds (TVOCs). Data analysis revealed fluctuations in pollutant concentrations across monitored areas, correlating with traffic variations and enabling the identification of pollution sources and their relative impacts. Recorded PM10 daily average levels even reached eight times above the safe 24 h limits in winter, when traffic values were low, indicating a strong link to household heating. This work provides a scalable, cost-effective approach to traffic and air quality monitoring, offering actionable insights for urban planning and sustainable development. Full article
Show Figures

Figure 1

19 pages, 2371 KiB  
Article
Experimental and Simulation-Based Development of Heat-Transfer Correlations for Cyclopentane PCHE
by Xiaogang Qin, Haibo Xu, Hongfei Zhang, Ming Zhang, Lin Sun and Xuan Wang
Energies 2025, 18(11), 2744; https://doi.org/10.3390/en18112744 - 26 May 2025
Viewed by 649
Abstract
Within the energy sector, the potential to effectively harness the considerable energy present in gas turbine waste heat via an organic Rankine cycle (ORC) could markedly improve overall energy efficiency. This investigation centers on a printed-circuit heat exchanger (PCHE) utilizing cyclopentane as the [...] Read more.
Within the energy sector, the potential to effectively harness the considerable energy present in gas turbine waste heat via an organic Rankine cycle (ORC) could markedly improve overall energy efficiency. This investigation centers on a printed-circuit heat exchanger (PCHE) utilizing cyclopentane as the working fluid. The study employs a combination of experimental techniques and computational fluid dynamics (CFD) simulations to conduct an in-depth analysis of the PCHE’s performance, leading to the successful development of a highly accurate heat-transfer correlation. A thorough comparison of experimental and simulation data is carried out to examine the temperature and pressure distributions within the heat exchanger. The maximum deviation between experimental and correlation-estimated data is within 20% (hot fluid: 15%; cold fluid: 18%). These findings offer essential theoretical insights and practical guidance for optimizing and ensuring the stable operation of waste-heat recovery systems. Full article
(This article belongs to the Topic Heat and Mass Transfer in Engineering)
Show Figures

Figure 1

22 pages, 5036 KiB  
Article
Particle Motion and Gas–Solid Heat Exchange Enhancement in Rotary Drums with Aligned/Separated Flight
by Yewei He, Dianyu E and Zeyi Jiang
Processes 2025, 13(5), 1594; https://doi.org/10.3390/pr13051594 - 20 May 2025
Viewed by 418
Abstract
In a waste heat recovery rotary drum with flights (RDF), particle lifting enhances gas–solid contact but also increases the complexity of particle motion in both radial and axial directions. In this study, a long rotary drum model applicable to both aligned and separated [...] Read more.
In a waste heat recovery rotary drum with flights (RDF), particle lifting enhances gas–solid contact but also increases the complexity of particle motion in both radial and axial directions. In this study, a long rotary drum model applicable to both aligned and separated flights was developed. The discrete element method was employed to investigate the effects of the inclination angle, feed rate, and rotation speed on particle dynamics and heat exchange performance. Additionally, a gas–solid heat exchange model was formulated to quantitatively assess the system’s heat recovery efficiency, power recovery, and power consumption. The results indicated that particle motion exhibited greater randomness along the axial direction, and the proposed long-drum model effectively captured the key parameters influencing particle dynamics. The heat exchange capacity of the RDF was closely related to the filling degree, which was found to be most sensitive to the inclination angle. Although the separated flight formed a spiral-shaped particle curtain and significantly enhanced the uniformity of the particle distribution, its heat exchange capacity was lower than that of the aligned flight, and it increased the construction cost by more than 30%. Under all operating conditions, the total system power consumption remained below 20% of the recovered power output. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Graphical abstract

33 pages, 5594 KiB  
Review
Research Progress of Ternary Cathode Materials: Failure Mechanism and Heat Treatment for Repair and Regeneration
by Tingting Wu, Chengxu Zhang and Jue Hu
Metals 2025, 15(5), 552; https://doi.org/10.3390/met15050552 - 16 May 2025
Viewed by 864
Abstract
With the large-scale application of lithium-ion batteries in the field of new energy, many retired lithium batteries not only cause environmental pollution problems but also lead to serious waste of resources. Repairing failed lithium batteries and regenerating new materials has become a crucial [...] Read more.
With the large-scale application of lithium-ion batteries in the field of new energy, many retired lithium batteries not only cause environmental pollution problems but also lead to serious waste of resources. Repairing failed lithium batteries and regenerating new materials has become a crucial path to break through this dilemma. Based on the research on the failure mechanism of ternary cathode materials, this paper systematically combs through the multiple factors leading to their failure, extensively summarizes the influence of heat treatment process parameters on the performance of recycled materials, and explores the synergistic effect between heat treatment technology and other processes. Studies have shown that the failure of ternary cathode materials is mainly attributed to factors such as cation mixing disorder, the generation of microcracks, phase structure transformation, and the accumulation of by-products. Among them, cation mixing disorder damages the crystal structure of the material, microcracks accelerate the pulverization of the active substance, phase structure transformation leads to lattice distortion, and the generation of by-products will hinder ion transport. The revelation of these failure mechanisms lays a theoretical foundation for the efficient recycling of waste materials. In terms of recycling technology, this paper focuses on the application of heat treatment technology. On the one hand, through synergy with element doping and surface coating technologies, heat treatment can effectively improve the crystal structure and surface properties of the material. On the other hand, when combined with processes such as the molten salt method, coprecipitation method, and hydrothermal method, heat treatment can further optimize the microstructure and electrochemical properties of the material. Specifically, heat treatment plays multiple key roles in the recycling process of ternary cathode materials: repairing crystal structure defects, enhancing the electrochemical performance of the material, removing impurities, and promoting the uniform distribution of elements. It is a core link to achieving the efficient reuse of waste ternary cathode materials. Full article
Show Figures

Figure 1

26 pages, 2575 KiB  
Article
Bi-Level Resilience-Oriented Sitting and Sizing of Energy Hubs in Electrical, Thermal and Gas Networks Considering Energy Management System
by Dhafer M. Dahis, Seyed Saeedallah Mortazavi, Mahmood Joorabian and Alireza Saffarian
Energies 2025, 18(10), 2569; https://doi.org/10.3390/en18102569 - 15 May 2025
Cited by 1 | Viewed by 339
Abstract
In this article, the planning and energy administration of energy hubs in electric, thermal and gas networks are presented, considering the resilience of the system against natural phenomena like floods and earthquakes. Each hub consists of bio-waste, wind and solar renewable units. These [...] Read more.
In this article, the planning and energy administration of energy hubs in electric, thermal and gas networks are presented, considering the resilience of the system against natural phenomena like floods and earthquakes. Each hub consists of bio-waste, wind and solar renewable units. These include non-renewable units such as boilers and combined heat and power (CHP) units. Compressed air and thermal energy storage are used in each hub. The design is formed as a bi-level optimization framework. In the upper level of the scheme, the energy management of networks bound to system resiliency is provided. This considers the minimization of annual operating and resilience costs based on optimal power flow equations in networks. In the lower-level model, the planning (placement and sizing) of hubs is considered. This minimizes the total building and operation costs of hubs based on the operation-planning equations for power supplies and storages. Scenario-based stochastic optimization models are used to determine the uncertainties of demand, the power of renewable systems, energy price and the accessibility of distribution networks’ elements against natural disasters. In this study, the Karush–Kuhn–Tucker technique is used to extract the single-level formulation. A numerical report for case studies verifies the potential of the plan to enhance the economic, operation and resilience status of networks with energy administration and the optimal planning of hubs in the mentioned networks. By determining the optimal capacity for resources and storage in the hubs located in the optimal places and the optimal energy administration of the hubs, the economic, exploitation and resilience situation of the networks are improved by about 27.1%, 97.7% and 23–50%, respectively, compared to load flow studies. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid)
Show Figures

Figure 1

18 pages, 2479 KiB  
Article
Material Properties Changes Caused by High Temperature Drying—Corn Cobs Case Study
by Marek Wróbel, Marcin Jewiarz, Jozef Krilek and Luiza Dmochowska-Kuc
Materials 2025, 18(10), 2302; https://doi.org/10.3390/ma18102302 - 15 May 2025
Cited by 1 | Viewed by 551
Abstract
Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it [...] Read more.
Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it is important to keep the lignin intact. It is responsible for particle adhesion. This paper presents a study focused on high-temperature drying of maize cobs. The process temperatures were selected from a range between 60 and 220 °C. The upper temperature limit prevents significant lignin breakdown. We also do not exceed the self-ignition temperature of the raw material. The study analyzed changes in basic technical parameters. These include moisture content, ash content, volatile matter, and HHV. We tested the grinding and densification process. We measured the raw material’s particle size distribution (PSD), specific density, and the mechanical durability (DU) of the agglomerates. The study showed a positive effect of high-temperature drying on the technical parameters. We found that the drying of corn cobs at a temperature of 180 °C gives the best results. Both PSD and DU values indicate that it is possible to create quality compacted biofuels from this material. Full article
(This article belongs to the Special Issue Innovative Utilization of Biomass for Sustainable Energy Production)
Show Figures

Graphical abstract

30 pages, 9593 KiB  
Article
Experimental and Aspen Simulation Study of the Co-Pyrolysis of Refuse-Derived Fuel and Oil Shale: Product Yields and Char Characterization
by Hasan J. Al-Abedi, Joseph D. Smith, Haider Al-Rubaye, Paul C. Ani, Caleb Moellenhoff, Tyler McLeland and Katarina Zagorac
Fuels 2025, 6(2), 38; https://doi.org/10.3390/fuels6020038 - 15 May 2025
Viewed by 885
Abstract
This research delves into the co-pyrolysis of refuse-derived fuel (RDF) and oil shale (OS), utilizing a 50% weight ratio for each component. The study employs a fixed-bed reactor, augmented by electrical kiln heating, to conduct the co-pyrolysis process. A significant aspect of this [...] Read more.
This research delves into the co-pyrolysis of refuse-derived fuel (RDF) and oil shale (OS), utilizing a 50% weight ratio for each component. The study employs a fixed-bed reactor, augmented by electrical kiln heating, to conduct the co-pyrolysis process. A significant aspect of this research is the use of Aspen Plus software for process simulation, with the simulated results undergoing validation through experimental data. A commendable correlation was observed between the experimental outcomes and the model predictions, underscoring the reliability of the simulation approach. The investigation reveals distinct product yields from the pyrolysis of 100% RDF and 100% OS. Specifically, the pyrolysis of pure RDF yielded 45.26% gas, 20.67% oil, and 34.07% char by weight. In contrast, the pyrolysis of pure OS resulted in 14.51% gas, 8.32% liquid, and a significant 77.61% char by weight. The co-pyrolysis of RDF and OS in a 50% blend altered the product distribution to 31.98% gas, 12.58% liquid, and 55.09% char by weight. Furthermore, the Aspen Plus simulation model aligned closely with these findings, predicting yields of 31.40% gas, 11.9% oil, and 56.6% char by weight for the RDF-OS blend. This study not only elucidates the co-pyrolysis behavior of RDF and OS but also contributes valuable insights into the potential of these materials to address the pressing issue of plastic waste management and energy resource utilization. The findings underscore the efficacy of RDF and OS co-pyrolysis as a viable strategy for enhancing the value extraction from waste and underutilized energy resources, presenting a promising avenue for environmental and energy sustainability. Full article
Show Figures

Figure 1

Back to TopTop