Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,794)

Search Parameters:
Keywords = waste heat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3500 KB  
Proceeding Paper
Modelling Heat Recovery System for Efficiency Enhancement in Alkaline Electrolyser
by Mohamed Amin, Edward Antwi, Taimoor Khan, Romy Sommer, Qahtan Thabit and Johannes Gulden
Eng. Proc. 2026, 121(1), 19; https://doi.org/10.3390/engproc2025121019 - 16 Jan 2026
Abstract
The global energy landscape is transitioning towards cleaner solutions, with hydrogen emerging as a key energy source. To unlock hydrogen’s potential, it is crucial to prioritize the development of a more efficient, cost-effective, and environmentally friendly production process. Enhancing the efficiency and scalability [...] Read more.
The global energy landscape is transitioning towards cleaner solutions, with hydrogen emerging as a key energy source. To unlock hydrogen’s potential, it is crucial to prioritize the development of a more efficient, cost-effective, and environmentally friendly production process. Enhancing the efficiency and scalability of these technologies will not only reduce their environmental impact but also accelerate the adoption of hydrogen as a viable alternative energy solution, fostering a cleaner and more sustainable future. This paper presents a study on simulating a heat recovery system in an alkaline electrolyser consisting of 30 cells, which integrates a plate heat exchanger to preheat the water entering the system, and assessing how it affects efficiency. The study uses a thermal model, employing the concept of lumped thermal capacitance, to analyze the impact of the heat recovery system utilization on the overall performance of the electrolyser. MATLAB/Simulink was used to simulate and provide a detailed visualization of how recovery systems affect the electrolyser’s efficiency. The results of the simulations confirmed that incorporating a heat recovery system significantly improves the efficiency of alkaline electrolysers up to 8%. The study provides a promising outlook for the future of hydrogen production, emphasizing the potential of waste heat recovery systems to make green hydrogen production more viable and sustainable. Full article
Show Figures

Figure 1

28 pages, 5111 KB  
Article
A Novel Parallel-Preheating Supercritical CO2 Brayton Cycle for Waste Heat Recovery from Offshore Gas Turbines: Energy, Exergy, and Economic Analysis Under Variable Loads
by Dianli Qu, Jia Yan, Xiang Xu and Zhan Liu
Entropy 2026, 28(1), 106; https://doi.org/10.3390/e28010106 - 16 Jan 2026
Abstract
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for [...] Read more.
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for waste heat recovery on offshore gas turbines. An integrated energy, exergy, and economic (3E) model was developed and showed good predictive accuracy (deviations < 3%). The comparative analysis indicates that the PBC significantly outperforms the simple recuperated Brayton cycle (SBC). Under 100% load conditions, the PBC achieves a net power output of 4.55 MW, while the SBC reaches 3.28 MW, representing a power output increase of approximately 27.9%. In terms of thermal efficiency, the PBC reaches 36.7%, compared to 21.5% for the SBC, marking an improvement of about 41.4%. Additionally, the electricity generation cost of the PBC is 0.391 CNY/kWh, whereas that of the SBC is 0.43 CNY/kWh, corresponding to a cost reduction of approximately 21.23%. Even at 30% gas turbine load, the PBC maintains high thermoelectric and exergy efficiencies of 30.54% and 35.43%, respectively, despite a 50.8% reduction in net power from full load. The results demonstrate that the integrated preheater effectively recovers residual flue gas heat, enhancing overall performance. To meet the spatial constraints of offshore platforms, we maintained a pinch-point temperature difference of approximately 20 K in both the preheater and heater by adjusting the flow split ratio. This approach ensures a compact system layout while balancing cycle thermal efficiency with economic viability. This study offers valuable insights into the PBC’s variable-load performance and provides theoretical guidance for its practical optimization in engineering applications. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

22 pages, 1803 KB  
Article
Optimizing Al2O3 Ceramic Membrane Heat Exchangers for Enhanced Waste Heat Recovery in MEA-Based CO2 Capture
by Qiufang Cui, Ziyan Ke, Jinman Zhu, Shuai Liu and Shuiping Yan
Membranes 2026, 16(1), 43; https://doi.org/10.3390/membranes16010043 - 16 Jan 2026
Abstract
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm [...] Read more.
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm that heat and mass transfer within the CMHE follow a coupled mechanism in which capillary condensation governs trans-membrane water transport, while heat conduction through the ceramic membrane dominates heat transfer, which accounts for more than 80%. Guided by this mechanism, systematic structural optimization was conducted. Alumina was identified as the optimal heat exchanger material due to its combined porosity, thermal conductivity, and corrosion resistance. Among the tested pore sizes, CMHE-4 produces the strongest capillary-condensation enhancement, yielding a heat recovery flux (q value) of up to 38.8 MJ/(m2 h), which is 4.3% and 304% higher than those of the stainless steel heat exchanger and plastic heat exchanger, respectively. In addition, Length-dependent analyses reveal an inherent trade-off: shorter modules achieved higher q (e.g., 14–42% greater for 200-mm vs. 300-mm CMHE-4), whereas longer modules provide greater total recovered heat (Q). Scale-up experiments demonstrated pronounced non-linear performance amplification, with a 4 times area increase boosting q by only 1.26 times under constant pressure. The techno-economic assessment indicates a simple payback period of ~2.5 months and a significant reduction in net capture cost. Overall, this work establishes key design parameters, validates the governing transport mechanism, and provides a practical, economically grounded framework for implementing high-efficiency CMHEs in MEA-based CO2 capture. Full article
Show Figures

Graphical abstract

36 pages, 23738 KB  
Article
Development of a Numerically Inexpensive 3D CFD Model of Slag Reduction in a Submerged Arc Furnace for Phosphorus Recovery from Sewage Sludge
by Daniel Wieser, Benjamin Ortner, René Prieler, Valentin Mally and Christoph Hochenauer
Processes 2026, 14(2), 289; https://doi.org/10.3390/pr14020289 - 14 Jan 2026
Viewed by 31
Abstract
Phosphorus is an essential resource for numerous industrial applications. However, its uneven global distribution makes Europe heavily dependent on imports. Recovering phosphorus from waste streams is therefore crucial for improving resource security. The FlashPhos project addresses this challenge by developing a process to [...] Read more.
Phosphorus is an essential resource for numerous industrial applications. However, its uneven global distribution makes Europe heavily dependent on imports. Recovering phosphorus from waste streams is therefore crucial for improving resource security. The FlashPhos project addresses this challenge by developing a process to recover phosphorus from sewage sludge, in which phosphorus-rich slag is produced in a flash reactor and subsequently reduced in a Submerged Arc Furnace (SAF). In this process, approximately 250 kg/h of sewage sludge is converted into slag, which is further processed in the SAF to recover about 8 kg/h of white phosphorus. This work focuses on the development of a computational model of the SAF, with particular emphasis on slag behaviour. Due to the extreme operating conditions, which severely limit experimental access, a numerically efficient three-dimensional CFD model was developed to investigate the internal flow of the three-phase, AC-powered SAF. The model accounts for multiphase interactions, dynamic bubble generation and energy sinks associated with the reduction reaction, and Joule heating. A temperature control loop adjusts electrode currents to reach and maintain a prescribed target temperature. To further reduce computational cost, a novel simulation approach is introduced, achieving a reduction in simulation time of up to 300%. This approach replaces the solution of the electric potential equation with time-averaged Joule-heating values obtained from a preceding simulation. The system requires transient simulation and reaches a pseudo-steady state after approximately 337 s. The results demonstrate effective slag mixing, with gas bubbles significantly enhancing flow velocities compared to natural convection alone, leading to maximum slag velocities of 0.9–1.0 m/s. The temperature field is largely uniform and closely matches the target temperature within ±2 K, indicating efficient mixing and control. A parameter study reveals a strong sensitivity of the flow behaviour to the slag viscosity, while electrode spacing shows no clear influence. Overall, the model provides a robust basis for further development and future coupling with the gas phase. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 4299 KB  
Article
Experimental Study on Variable Operating Characteristics of Two-Stage Absorption Lithium Bromide Refrigeration Chiller
by Bingbing Chen, Chaohe Fang, Bo Xiong, Zhenneng Lu and Yuan Yao
Energies 2026, 19(2), 401; https://doi.org/10.3390/en19020401 - 14 Jan 2026
Viewed by 42
Abstract
Two-stage absorption lithium bromide (Li-Br) refrigeration technology can utilize low-temperature heat sources to achieve refrigeration, thus it holds promising application prospects in the utilization of low-temperature waste heat. However, the performance of two-stage lithium bromide absorption chillers during variable operating conditions is difficult [...] Read more.
Two-stage absorption lithium bromide (Li-Br) refrigeration technology can utilize low-temperature heat sources to achieve refrigeration, thus it holds promising application prospects in the utilization of low-temperature waste heat. However, the performance of two-stage lithium bromide absorption chillers during variable operating conditions is difficult to accurately predict, necessitating further research. Unlike existing simulation-based studies, this paper employs an experimental approach for the first time to investigate the variable-condition performance of a two-stage lithium bromide absorption chiller. A 10 kW two-stage absorption Li-Br chiller was tested under variable operating conditions, including variations in chilled water outlet temperature, cooling water inlet temperature, hot water inlet temperature, and hot water flow rate. The experimental results indicate that each 1 °C increase in the chilled water outlet temperature leads to an additional 0.282 kW in cooling capacity and a 0.0071 increase in coefficient of performance (COP). Similarly, a 1 °C decrease in the cooling water inlet temperature results in a 0.366 kW increase in cooling capacity and a 0.0055 improvement in COP. When the hot water inlet temperature rises by 1 °C, the cooling capacity increases by 0.324 kW, while the COP remains nearly unchanged. Furthermore, a 10% increase in the hot water mass flow rate enhances the cooling capacity by approximately 5% and improves the COP by about 1%. Full article
(This article belongs to the Special Issue Advanced Heating and Cooling Technologies for Sustainable Buildings)
Show Figures

Figure 1

24 pages, 3021 KB  
Article
Simulation-Based Fault Detection and Diagnosis for AHU Systems Using a Deep Belief Network
by Mooyoung Yoo
Buildings 2026, 16(2), 342; https://doi.org/10.3390/buildings16020342 - 14 Jan 2026
Viewed by 41
Abstract
Heating, ventilation, and air conditioning (HVAC) systems account for a significant portion of building energy consumption and play a crucial role in maintaining indoor comfort. However, hidden faults in air-handling units (AHUs) often lead to energy waste and degraded performance, highlighting the importance [...] Read more.
Heating, ventilation, and air conditioning (HVAC) systems account for a significant portion of building energy consumption and play a crucial role in maintaining indoor comfort. However, hidden faults in air-handling units (AHUs) often lead to energy waste and degraded performance, highlighting the importance of reliable fault detection and diagnosis (FDD). This study proposes a simulation-driven FDD framework that integrates a standardized prototype dataset and an independent evaluation dataset generated from a calibrated EnergyPlus model representing a target facility, enabling controlled experimentation and transfer evaluation within simulation environments. Training data were generated from the DOE EnergyPlus Medium Office prototype model, while evaluation data were obtained from a calibrated building-specific EnergyPlus model of a research facility operated by Company H in Korea. Three representative fault scenarios—outdoor air damper stuck closed, cooling coil fouling (65% capacity), and air filter fouling (30% pressure drop)—were systematically implemented. A Deep Belief Network (DBN) classifier was developed and optimized through a two-stage hyperparameter tuning strategy, resulting in a three-layer architecture (256–128–64 nodes) with dropout and regularization for robustness. The optimized DBN achieved diagnostic accuracies of 92.4% for the damper fault, 98.7% for coil fouling, and 95.9% for filter fouling. These results confirm the effectiveness of combining simulation-based dataset generation with advanced deep learning methods for HVAC fault diagnosis. The results indicate that a DBN trained on a standardized EnergyPlus prototype can transfer to a second, independently calibrated EnergyPlus building model when AHU topology, control logic, and monitored variables are aligned. This study should be interpreted as a simulation-based proof-of-concept, motivating future validation with field BMS data and more diverse fault scenarios. Full article
(This article belongs to the Special Issue Built Environment and Building Energy for Decarbonization)
Show Figures

Figure 1

16 pages, 9276 KB  
Article
Study of Co-Combustion of Pellets and Briquettes from Lignin in a Mixture with Sewage Sludge
by Andrey Zhuikov, Tatyana Pyanykh, Mikhail Kolosov, Irina Grishina, Olga Fetisova, Petr Kuznetsov and Stanislav Chicherin
Energies 2026, 19(2), 397; https://doi.org/10.3390/en19020397 - 14 Jan 2026
Viewed by 110
Abstract
Improving the thermal utilisation of organic production waste to generate energy is integral to solving one of the most pressing issues of our time: transitioning away from fossil fuels. In this context, the thermal utilisation of organic waste, particularly sewage sludge (SS) and [...] Read more.
Improving the thermal utilisation of organic production waste to generate energy is integral to solving one of the most pressing issues of our time: transitioning away from fossil fuels. In this context, the thermal utilisation of organic waste, particularly sewage sludge (SS) and lignin-containing by-products from the biochemical industry, is of considerable scientific and practical interest. This study provides a thorough analysis of the co-combustion processes involving SS, lignin-based pellets and briquettes, and their mixtures with various component ratios. The aim of the work is to evaluate the fuel properties, thermokinetic characteristics, and potential for synergistic interactions during joint fuel combustion, considering the mechanical impact on lignin during granulation. The aim is to optimise conditions for the thermal utilisation of industrial waste. The study employed standard analytical methods: the thermophysical properties of the fuels were determined; morphological analysis of the particle surface was conducted using scanning electron microscopy; and X-ray fluorescence analysis was performed to identify the inorganic oxide phase. It has been established that lignin briquettes have the highest lower heating value, exceeding that of lignin pellets and sewage sludge by 7% and 27%, respectively. Thermogravimetric analysis (TGA) in an oxidising atmosphere (air, heating rate of 10 °C/min) made it possible to determine the following key combustion parameters: the ignition temperature of the coke residue (Ti); the temperature at which oxidation is complete (Tb); the maximum combustion rate (Rmax); and the combustion efficiency index (Q). The ignition temperature of the coke residue was 262.1 °C for SS, 291.8 °C for lignin pellets, and 290.0 °C for lignin briquettes. Analysis of co-combustion revealed non-linear behaviour in the thermograms, indicating synergistic effects, which are manifested by a decrease in the maximum combustion rate compared to the additive prediction, particularly in mixtures with a moderate lignin content (25–50%). It was established that the main synergistic interactions between the mixture components occurred during moisture evaporation and the combustion of coke residue. These results are valuable for designing and operating power plants that focus on co-combusting industrial organic waste, and they contribute to the development of thermal utilisation technologies within closed production cycles. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

15 pages, 3233 KB  
Article
Investigation of the Hydration and Solidification Effect of Peanut Ash Cement-Based Stabilizer in Soft Clay Treatment
by Yongqin Qiu, Qichang Fan and Kun Zhang
Materials 2026, 19(2), 318; https://doi.org/10.3390/ma19020318 - 13 Jan 2026
Viewed by 90
Abstract
To promote the sustainable utilization of agricultural solid waste, this study proposes a novel approach for reinforcing soft clay using a peanut ash (PA)–cement composite stabilizer. The unconfined compressive strength (UCS) of pure cement and PA–cement composite systems was tested at curing ages [...] Read more.
To promote the sustainable utilization of agricultural solid waste, this study proposes a novel approach for reinforcing soft clay using a peanut ash (PA)–cement composite stabilizer. The unconfined compressive strength (UCS) of pure cement and PA–cement composite systems was tested at curing ages of 3, 7, and 28 days, while the durability of the stabilized clay was evaluated through dry–wet cycling. Given that PA is rich in pozzolanic components, its addition may influence the hydration process of cement. Therefore, hydration heat analysis was conducted to examine the early hydration behavior, and XRD and TG analyses were employed to identify the composition and quantity of hydration products. SEM observations were further used to characterize the microstructural evolution of the stabilized matrix. By integrating mechanical and microstructural analyses, the solidification mechanism of the PA–cement stabilizer was elucidated. Mechanical test results indicate that the reinforcing effect increases with the stabilizer dosage. Pure cement exhibited superior strength at 3 days; however, after 7 days, specimens incorporating 5% PA showed higher strength than those stabilized solely with cement. At 28 days, the UCS of the 15% cement + 5% PA specimen reached 3.12 MPa, 11.03% higher than that of the 20% cement specimen and comparable to the 25% cement specimen (3.15 MPa). After five dry–wet cycles, the strength reduction of the 15% cement + 5% PA specimen was 22.76%, compared to 31.31% for the 20% cement specimen, indicating improved durability. Microscopic analyses reveal that PA reduces hydration heat and does not participate in early hydration, leading to lower early strength. However, its pozzolanic reactivity contributes to secondary hydration at later stages, promoting the formation of additional C-S-H gel and ettringite. These hydration products fill the inter-lamellar pores of the clay and increase matrix density. Conversely, excessive PA content (≥10%) exerts a dilution effect, reducing the amount of hydration products and weakening the mechanical performance. Overall, the use of an appropriate PA dosage in combination with cement enhances both strength and durability while reducing cement consumption, providing an effective pathway for the high-value utilization of agricultural solid waste resources. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

36 pages, 4040 KB  
Review
Advances in 3D-Printed Microreactors for Biodiesel Production: Performance Evaluation, Challenges, and Sustainable Design Perspectives
by Oyetola Ogunkunle, Michael Olusoji Olusanya, Paul O. Fadojutimi and Reinout Meijboom
Processes 2026, 14(2), 266; https://doi.org/10.3390/pr14020266 - 12 Jan 2026
Viewed by 285
Abstract
The growing demand for renewable fuels has renewed interest in biodiesel production, prompting exploration beyond conventional reactors. This review assesses three-dimensional (3D) printed microreactors for biodiesel synthesis via transesterification, with a focus on their potential for enhanced process efficiency, sustainability, and modular deployment. [...] Read more.
The growing demand for renewable fuels has renewed interest in biodiesel production, prompting exploration beyond conventional reactors. This review assesses three-dimensional (3D) printed microreactors for biodiesel synthesis via transesterification, with a focus on their potential for enhanced process efficiency, sustainability, and modular deployment. Compared with conventional batch and stirred-tank reactors, 3D-printed microstructured systems often offer superior mass and heat transfer, enabling biodiesel yields up to ~99% in some studies, with critically short residence times (e.g., as low as ~5 s) and reported energy reductions of 60% to 90% under optimal conditions. Optimized configurations in recent work achieved energy requirements as low as ~0.05 to 0.12 kWh L−1, substantially lower than the typical 0.25 to 0.60 kWh L−1 for conventional setups. However, existing studies remain limited in number and scope: issues such as catalyst leaching, chemical and thermal stability of printing materials, dimensional inaccuracies, and scalability of microreactor networks remain under-investigated. Long-term durability, real-world feedstock variation (e.g., high-FFA waste oils), and comprehensive lifecycle assessments are often lacking, limiting confident extrapolation to industrial scale. Despite these challenges, the emerging evidence suggests significant promise for 3D-printed microreactors as a pathway toward modular, energy-efficient, and potentially low-carbon biodiesel production, provided that future work addresses their practical limitations and validates performance under industrially realistic conditions. Full article
(This article belongs to the Special Issue Advanced Catalytic Approaches for Sustainable Biofuel Production)
Show Figures

Figure 1

13 pages, 2824 KB  
Article
Characteristics and Kinetics of the Co-Pyrolysis of Oil Shale and Municipal Solid Waste Assessed via Thermogravimetric Analysis
by Lin Chen, Liping Zheng, Yichun Xie, Xiongwei Gao, Yuxiang Lin, Zhaosheng Yu and Lianfeng Lai
Sustainability 2026, 18(2), 753; https://doi.org/10.3390/su18020753 - 12 Jan 2026
Viewed by 89
Abstract
To address the issues of cities being overwhelmed by the waste and energy crisis, the pyrolysis of municipal solid waste (MSW), oil shale (OS) and their blends was investigated using a thermogravimetric simultaneous thermal analyzer in this study. The experimental research was conducted [...] Read more.
To address the issues of cities being overwhelmed by the waste and energy crisis, the pyrolysis of municipal solid waste (MSW), oil shale (OS) and their blends was investigated using a thermogravimetric simultaneous thermal analyzer in this study. The experimental research was conducted to investigate the thermal behavior and kinetic parameters of the different blending ratios of MSW and OS, to better utilize these intractable resources, observing whether there is a synergistic effect and trying to find the optimal process conditions. The Ozawa–Flynn–Wall method and the Kissinger–Akahira–Sunose method were used to calculate the activation energy at four different heating rates. The existence of interactions between MSW and OS was confirmed by comparing the experimental thermogravimetric and derivative thermogravimetric curves with the calculated ones. The findings of the thermogravimetric analysis, the calculation of theoretical and experimental curves, and kinetic analysis confirmed the interaction between the components and that the optimal blending ratio is 30% MSW and 70% OS. The optimality results in a relatively smaller activation energy (Eave = 115 kJ/mol), better comprehensive pyrolysis characteristics, and a more beneficial mutual effect. Full article
Show Figures

Figure 1

27 pages, 1847 KB  
Article
Title Use of Waste Heat from Generator Sets as the Low-Temperature Heat Source for Heat Pumps
by Sławomir Rabczak, Krzysztof Nowak and Karol Nowak
Energies 2026, 19(2), 361; https://doi.org/10.3390/en19020361 - 12 Jan 2026
Viewed by 162
Abstract
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator [...] Read more.
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator and an air-to-water heat pump operate within an insulated thermal chamber, enabling the recovery of waste heat to maintain a stable 15 °C inlet temperature for the heat pump. Theoretical analysis was supplemented with preliminary experimental tests performed on a small generator placed in a thermally insulated enclosure. Measurements of temperature rise and heat output allowed for verification of the real heat-recovery efficiency, which reached approximately 28%. Based on real household heating demand, this study evaluated annual heat demand, heat pump electricity consumption, and fuel requirements for several recovery scenarios (28%, 45%, and 60%). The results show that maintaining a constant 15 °C source temperature significantly improves heat-pump efficiency, reducing annual electricity demand. Increasing heat-recovery efficiency from 28% to 60% reduces fuel consumption by more than half and lowers the annual operating costs. The findings confirm the potential of generator-supported heat-pump systems to enhance energy efficiency in off-grid applications and provide a sound basis for further optimization and real-scale validation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 10558 KB  
Article
Impact of Pre-Granulated MSWI Fly Ash on Hydration, Microstructure, and Performance of Portland Cement Mortars
by Maryna Shevtsova, Jurgita Malaiškienė, Jelena Škamat, Valentin Antonovič and Rimvydas Stonys
Appl. Sci. 2026, 16(2), 725; https://doi.org/10.3390/app16020725 - 9 Jan 2026
Viewed by 135
Abstract
Portland cement (PC) is widely regarded as a cost-effective and reliable binding material for the stabilization and solidification of municipal solid waste incineration fly ash (MSWI FA). However, the soluble salts and heavy metals present in MSWI FA retard PC hydration, thereby limiting [...] Read more.
Portland cement (PC) is widely regarded as a cost-effective and reliable binding material for the stabilization and solidification of municipal solid waste incineration fly ash (MSWI FA). However, the soluble salts and heavy metals present in MSWI FA retard PC hydration, thereby limiting the amount of fly ash that can be incorporated. The present study investigates the feasibility of normalizing the hydration of PC-based mixtures containing MSWI FA by applying a fly ash pre-granulation step with 25% PC, followed by coating the resulting granules with a geopolymer layer to reduce the release of harmful ions during the early stages of hydration. Isothermal calorimetry, TG/DTA, XRD, SEM, and mechanical testing were used to investigate the hydration characteristics of composites containing such granules and to assess their properties at 7, 28, and 90 days. It was found that a 20% substitution of PC with the studied FA disrupted PC hydration within the first 48 h. In contrast, both types of granules exhibited the main exothermic peak within the first 10–12 h, with hydration heat release (about 300 J/g) comparable to that of sand-containing references. Uncoated granules exhibited more active behavior with hydration kinetics similar to pure cement paste, whereas the effect of geopolymer-coated granules was close to sand. TG/DTA revealed reduced calcite content in mixtures containing granules, whereas uncoated granules promoted greater portlandite formation than the sand-based system. Hardening the samples under wet conditions resulted in the development of a dense cement matrix, firm integration of the granules, redistribution of chlorine and sulfur ions, and mechanical properties that reached at least 93% of those of the sand-containing reference, despite a lower density of ~4.5%. Full article
Show Figures

Figure 1

25 pages, 5056 KB  
Article
Recycled Pavement Materials and Urban Microclimate: Albedo and Thermal Capacity Effects on Heat Island Mitigation
by Dimitra Tsirigoti and Konstantinos Gkyrtis
Solar 2026, 6(1), 5; https://doi.org/10.3390/solar6010005 - 9 Jan 2026
Viewed by 115
Abstract
In Mediterranean cities, high solar radiation combined with limited shading and vegetation intensifies the urban heat island (UHI) phenomenon. As the road network often covers a large portion of the cities’ surfaces and is mostly constructed using asphalt pavements, it can significantly affect [...] Read more.
In Mediterranean cities, high solar radiation combined with limited shading and vegetation intensifies the urban heat island (UHI) phenomenon. As the road network often covers a large portion of the cities’ surfaces and is mostly constructed using asphalt pavements, it can significantly affect the urban microclimate, leading to low thermal comfort and increased energy consumption. Recycled and waste materials are increasingly used in the construction of pavements in accordance with the principle of sustainability for minimizing waste and energy to produce new materials based on a circular economy. The scope of this study is to evaluate the effect of recycled or waste materials used in road pavements on the urban microclimate. The surface and ambient temperature of urban pavements constructed with conventional asphalt and recycled/waste-based mixtures are assessed through simulation. Two study areas comprising large street junctions near metro stations in the city of Thessaloniki, in Greece, are examined under three scenarios: a conventional hot mix asphalt, an asphalt mixture containing steel slag, and a high-albedo mixture. The results of the research suggest that the use of steel slag could reduce the air temperature by 0.9 °C at 15:00, east European summer time (EEST), while the high-albedo scenario could reduce the ambient temperature by 1.6 °C at 16:00. The research results are useful for promoting the use of recycled materials, not only as a means of sustainably using resources but also for the improvement of thermal comfort in urban areas, the mitigation of the UHI effect, and the reduction of heat stress for human health. Full article
(This article belongs to the Topic Sustainable Built Environment, 2nd Volume)
Show Figures

Figure 1

26 pages, 2307 KB  
Article
Ecological and Microbial Processes in Green Waste Co-Composting for Pathogen Control and Evaluation of Compost Quality Index (CQI) Toward Agricultural Biosafety
by Majda Oueld Lhaj, Rachid Moussadek, Hatim Sanad, Khadija Manhou, M’hamed Oueld Lhaj, Meriem Mdarhri Alaoui, Abdelmjid Zouahri and Latifa Mouhir
Environments 2026, 13(1), 43; https://doi.org/10.3390/environments13010043 - 9 Jan 2026
Viewed by 293
Abstract
Composting represents a sustainable and effective strategy for converting organic waste into nutrient-rich soil amendments, providing a safer alternative to raw manure, which poses significant risks of soil, crop, and water contamination through pathogenic microorganisms. This study, conducted under semi-arid Moroccan conditions, investigated [...] Read more.
Composting represents a sustainable and effective strategy for converting organic waste into nutrient-rich soil amendments, providing a safer alternative to raw manure, which poses significant risks of soil, crop, and water contamination through pathogenic microorganisms. This study, conducted under semi-arid Moroccan conditions, investigated the efficiency of co-composting green garden waste with sheep manure in an open window system, with the objective of assessing pathogen inactivation and evaluating compost quality. The process, conducted over 120 days, maintained thermophilic temperatures exceeding 55 °C, effectively reducing key pathogens including Escherichia coli, total coliforms, Staphylococcus aureus, and sulfite-reducing Clostridia (SRC), while Salmonella was not detected throughout the composting period. Pathogen reductions exceeded 3.52-log despite moderate temperature fluctuations, indicating that additional sanitization mechanisms beyond heat contributed to inactivation. Compost quality, assessed using the CQI, classified Heap 2 (fallen leaves + sheep manure) as good quality (4.06) and Heap 1 (green waste + sheep manure) as moderate quality (2.47), corresponding to differences in microbial dynamics and compost stability. These findings demonstrate that open windrow co-composting is a practical, low-cost, and effective method for safe organic waste management. It supports sustainable agriculture by improving soil health, minimizing environmental and public health risks, and providing guidance for optimizing composting protocols to meet regulatory safety standards. Full article
(This article belongs to the Special Issue Circular Economy in Waste Management: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 828 KB  
Article
Integrating Circular Economy Principles into Energy-Efficient Retrofitting of Post-1950 UK Housing Stock: A Pathway to Sustainable Decarbonisation
by Louis Gyoh, Obas John Ebohon, Juanlan Zhou and Deinsam Dan Ogan
Buildings 2026, 16(2), 262; https://doi.org/10.3390/buildings16020262 - 7 Jan 2026
Viewed by 174
Abstract
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and [...] Read more.
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and heating upgrades—while neglecting broader sustainability considerations. This research advocates systematically integrating Circular Economy (CE) principles into residential retrofit practices. CE approaches emphasise material circularity, waste minimisation, adaptive design, and a lifecycle assessment, delivering superior environmental and economic outcomes compared to conventional methods. The investigation employs mixed-methods research combining a systematic literature analysis, policy review, stakeholder engagement, and a retrofit implementation evaluation across diverse UK contexts. Key barriers identified include regulatory constraints, workforce capability gaps, and supply chain fragmentation, alongside critical transition enablers. An evidence-based decision-making framework emerges from this analysis, aligning retrofit interventions with CE principles. This framework guides policymakers, industry professionals, and researchers in the development of strategies that simultaneously improve energy-efficiency, maximise material reuse, reduce embodied emissions, and enhance environmental and economic sustainability. The findings advance a holistic, systems-oriented approach, positioning housing as a pivotal catalyst in the UK’s transition toward a circular, low-carbon built environment, moving beyond isolated technological fixes toward a comprehensive sustainability transformation. Full article
(This article belongs to the Special Issue Advancements in Net-Zero-Energy Buildings)
Show Figures

Figure 1

Back to TopTop