Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = warping deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4515 KB  
Article
Thermal Deformation Analysis of Large-Scale High-Aspect-Ratio Parts Fabricated Using Multi-Laser Powder Bed Fusion
by Riddhiman Raut and Amrita Basak
J. Exp. Theor. Anal. 2026, 4(1), 6; https://doi.org/10.3390/jeta4010006 - 29 Jan 2026
Viewed by 70
Abstract
Multi-laser powder bed fusion is an emerging additive manufacturing technology that enables the production of high-performance components with intricate geometries and large aspect ratios. These tall, slender structures are highly susceptible to steep thermal gradients and residual stress, leading to deformation that compromises [...] Read more.
Multi-laser powder bed fusion is an emerging additive manufacturing technology that enables the production of high-performance components with intricate geometries and large aspect ratios. These tall, slender structures are highly susceptible to steep thermal gradients and residual stress, leading to deformation that compromises dimensional accuracy and structural integrity. This study investigates how geometric compensation, support structure design, and part scaling influence thermal deformation in Inconel 718 components fabricated via multi-laser powder bed fusion. Using pre-compensation, iterative support refinements, and scaled experimental builds, the deformation response across multiple geometries and print strategies is evaluated. Both compensated and original designs are printed on a commercial system equipped with three simultaneously operating lasers. Results show that printing high-angle surfaces without support structures is infeasible, as thermally induced warping and delamination lead to catastrophic failures. Conical support structures spanning critical regions reduce deformation by more than 50% compared to unsupported builds. Reduced-scale parts, however, do not reliably replicate full-scale deformation behavior due to altered boundary conditions and thermal pathways. These findings highlight the need for integrated design-for-AM workflows where compensation, support design, and scale effects are addressed jointly. The study demonstrates that deformation mechanisms do not scale linearly, emphasizing the limitations of small-scale proxies and the necessity of full-scale validation when developing reliable, deformation-aware design strategies for multi-laser powder bed fusion. Full article
Show Figures

Figure 1

22 pages, 2878 KB  
Article
Warping Deformation Prediction of Smart Skin Composite Airfoil Structure with Inverse Finite Element Approach
by Hao Zhang, Junli Wang, Wenshuai Liu, Huaihuai Zhang and Wei Kong
Aerospace 2026, 13(1), 42; https://doi.org/10.3390/aerospace13010042 - 31 Dec 2025
Viewed by 249
Abstract
The design of smart skin with lightweight requirements utilizes high-performance composite materials, resulting in thin structural characteristics. When subjected to complex aerodynamic loads, the smart skin structure experiences warping deformation, which significantly impacts both flight efficiency and structural integrity. However, this deformation behavior [...] Read more.
The design of smart skin with lightweight requirements utilizes high-performance composite materials, resulting in thin structural characteristics. When subjected to complex aerodynamic loads, the smart skin structure experiences warping deformation, which significantly impacts both flight efficiency and structural integrity. However, this deformation behavior has been largely overlooked in current shape sensing methods embedded within the structural health monitoring (SHM) systems of smart skin, leading to insufficient monitoring capabilities. To address this issue, this paper proposes a novel shape sensing methodology for the real-time monitoring of warping deformation in smart skin. Initially, the structural displacement field of the smart skin and the warping function are mathematically defined, incorporating constitutive relations and considering the influence of material parameters on sectional strains. Subsequently, the inverse finite element method (iFEM) is employed to establish a shape sensing model. The interpolation function and the actual sectional strains, derived from discrete strain measurements, are calculated based on the current constitutive equations. Finally, to validate the accuracy of the proposed iFEM for monitoring warping deformation, numerical tests are conducted on curved skin structures. The results indicate that the proposed methodology enhances reconstruction capability, with a 10% improvement in accuracy compared to traditional iFEM methods. Consequently, the shape sensing algorithm can be seamlessly integrated into the SHM system of smart skin to ensure the predicted performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 4275 KB  
Article
Full-Field In-Plane Tensile Characterization of Cotton Fabrics Using 2D Digital Image Correlation
by Nenad Mitrovic, Aleksandra Mitrovic, Mirjana Reljic and Svetlana Pelemis
Textiles 2025, 5(4), 67; https://doi.org/10.3390/textiles5040067 - 11 Dec 2025
Viewed by 435
Abstract
Textile materials are widely used in diverse applications, yet their anisotropic structure and large deformations present major challenges in mechanical characterization. Conventional uniaxial tensile tests can quantify bulk properties but offer limited insight into local strain distributions. In this work, it was shown [...] Read more.
Textile materials are widely used in diverse applications, yet their anisotropic structure and large deformations present major challenges in mechanical characterization. Conventional uniaxial tensile tests can quantify bulk properties but offer limited insight into local strain distributions. In this work, it was shown that a 2D Digital Image Correlation (DIC) technique captures full-field strain data in three types of woven cotton fabrics with distinct weave patterns and densities, each tested in warp and weft orientations. In controlled tensile experiments conducted per EN ISO 13934-1, DIC revealed that strain in the loading direction (EpsY) was highly orientation-dependent (p < 0.001), whereas strain perpendicular to loading (EpsX) was unaffected by orientation (p = 0.193). These findings contrast with traditional tensile data, which indicate significant orientation effects on maximum force and elongation (both p < 0.001). Compared to point-based techniques, 2D DIC provided richer information on anisotropic deformation, including the ability to detect local strain concentrations before failure. The strong interaction between fabric type and orientation indicates that each fabric exhibits distinct strain response when loaded along warp and weft directions, underscoring the importance of evaluating both orientations when designing or selecting textiles for multidirectional loading. By combining standard tensile testing with full-field optical strain measurements, a more comprehensive understanding of textile behavior emerges, enabling improved material selection, enhanced product performance, and broader applications in engineering and textile fields. Full article
Show Figures

Figure 1

21 pages, 2716 KB  
Article
Time Series Analysis of Post-Tsunami Coastal Recovery on the Sendai Coastline Using Dynamic Time Warping and Persistent Homology
by Arnob Bormudoi, Masahiko Nagai and Muhammad Daniel Iman bin Hussain
Remote Sens. 2025, 17(24), 3972; https://doi.org/10.3390/rs17243972 - 9 Dec 2025
Viewed by 477
Abstract
This study presents a computational framework combining Dynamic Time Warping (DTW) and Persistent Homology to quantify the long-term morphological evolution of the Sendai coastline following the 2011 Tōhoku tsunami. Using multispectral satellite imagery from Landsat 5 TM, Landsat 8 OLI, and Sentinel-2 MSI [...] Read more.
This study presents a computational framework combining Dynamic Time Warping (DTW) and Persistent Homology to quantify the long-term morphological evolution of the Sendai coastline following the 2011 Tōhoku tsunami. Using multispectral satellite imagery from Landsat 5 TM, Landsat 8 OLI, and Sentinel-2 MSI (2010–2024), instantaneous shorelines were extracted via the Modified Normalized Difference Water Index (MNDWI) and reconstructed with parametric B-spline curves. DTW analysis indicated severe initial deformation, with a 90,927 m difference between pre- and post-tsunami instantaneous shorelines, followed by gradual stabilization as distances declined to 59,584 m by 2024. Persistent Homology revealed a more complex topological trajectory, with the number of 1-dimensional features (H1) rising sharply after the tsunami, consolidating by 2015, and expanding again to over 8000 by 2020–2024. The Stable Distance of Persistent Homology (SDPH) identified 2015–2020 as the key phase of transformation (38,088 m), marking a shift toward higher morphological complexity. A weak negative correlation (r = −0.362) between DTW and SDPH confirmed their complementarity in describing geometric and topological change. Overall, the results suggest that post-tsunami recovery followed a non-linear path toward a new dynamic equilibrium characterized by increased structural complexity and resilience. Full article
Show Figures

Figure 1

33 pages, 12224 KB  
Article
Unsupervised Clustering of InSAR Time-Series Deformation in Mandalay Region from 2022 to 2025 Using Dynamic Time Warping and Longest Common Subsequence
by Jingyi Qin, Zhifang Zhao, Dingyi Zhou, Mengfan Yuan, Chaohai Liu, Xiaoyan Wei and Tin Aung Myint
Remote Sens. 2025, 17(23), 3920; https://doi.org/10.3390/rs17233920 - 3 Dec 2025
Viewed by 802
Abstract
Urban land subsidence poses a significant threat in rapidly urbanizing regions, threatening infrastructure integrity and sustainable development. This study focuses on Mandalay, Myanmar, and presents a novel clustering framework—Dynamic Time Warping and Trend-based Longest Common Subsequence with Agglomerative Hierarchical Clustering (DTLCS-AHC)—to classify spatiotemporal [...] Read more.
Urban land subsidence poses a significant threat in rapidly urbanizing regions, threatening infrastructure integrity and sustainable development. This study focuses on Mandalay, Myanmar, and presents a novel clustering framework—Dynamic Time Warping and Trend-based Longest Common Subsequence with Agglomerative Hierarchical Clustering (DTLCS-AHC)—to classify spatiotemporal deformation patterns from Small Baseline Subset (SBAS) Interferometric Synthetic Aperture Radar (InSAR) time series derived from Sentinel-1A imagery covering January 2022 to March 2025. The method identifies four characteristic deformation regimes: stable uplift, stable subsidence, primary subsidence, and secondary subsidence. Time–frequency analysis employing Empirical Mode Decomposition (EMD) and Discrete Fourier Transform (DFT) reveals seasonal oscillations in stable areas. Notably, a transition from subsidence to uplift was detected in specific areas approximately seven months prior to the Mw 7.7 earthquake, but causal relationships require further validation. This study further establishes correlations between subsidence and both urban expansion and rainfall patterns. A physically informed conceptual model is developed through multi-source data integration, and cross-city validation in Yangon confirms the robustness and generalizability of the approach. This research provides a scalable technical framework for deformation monitoring and risk assessment in tropical, data-scarce urban environments. Full article
Show Figures

Graphical abstract

15 pages, 2274 KB  
Article
Dimensional Stability of Beech Wood: The Influence of Taper, Slope of Annual Ring and Sawing Pattern
by Peter Vilkovský, Tatiana Vilkovská, Ivan Klement and Martin Fúčela
Polymers 2025, 17(23), 3158; https://doi.org/10.3390/polym17233158 - 27 Nov 2025
Viewed by 392
Abstract
The dimensional stability of sawn timber is one of the key factors affecting processing and final application in various fields, such as construction, furniture making, and interior design. One of the most common problems that beech wood producers may confront is the occurrence [...] Read more.
The dimensional stability of sawn timber is one of the key factors affecting processing and final application in various fields, such as construction, furniture making, and interior design. One of the most common problems that beech wood producers may confront is the occurrence of various types of warping (deformation) during drying. These warps significantly affect the processability of sawn timber, which can lead to reduced yield and economic losses. Several factors can affect dimensional stability. These factors include the sawing pattern, the position of the timber in the log, and the slope of the annual rings. Our research investigated these factors and focused on two types of warping: cup and twist. The results showed a notable influence of the original position of the timber in the log on the degree of cup warping after drying (r = 0.5194; p = 0.0189), with timber closer to the perimeter exhibiting less curvature. The sawing pattern (parallel to the surface of the log—RsP; parallel to the axis of the log—RsO) had a less significant effect but showed a tendency towards curvature (r = 0.4242; p = 0.0623). Based on the sawing pattern, after drying, the twist warping was more pronounced in RsP logs, while RsO cuts retained better shape stability and had only minimal cup warping. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials, 4th Edition)
Show Figures

Figure 1

17 pages, 2175 KB  
Article
Numerical Simulation of Mechanical Properties of Non-Standard Rock Specimens Under Uniaxial Compression
by Fangcai Zhu, Ling Sun, Mengchang Ma, Jiang Guo and Xuebin Xie
Appl. Sci. 2025, 15(21), 11756; https://doi.org/10.3390/app152111756 - 4 Nov 2025
Viewed by 581
Abstract
Uniaxial compression testing provides essential mechanical property characterization for intact rock specimens. The accuracy of specimen preparation critically affects compression test results through end-surface geometry deviations: parallelism, perpendicularity, and diameter tolerance. Specimen end-surface parallelism is affected by surface irregularities (e.g., protrusions, warping), whereas [...] Read more.
Uniaxial compression testing provides essential mechanical property characterization for intact rock specimens. The accuracy of specimen preparation critically affects compression test results through end-surface geometry deviations: parallelism, perpendicularity, and diameter tolerance. Specimen end-surface parallelism is affected by surface irregularities (e.g., protrusions, warping), whereas perpendicularity deviations indicate angular misalignment of the specimen with the loading axis. This study develops a 3D uniaxial compression model using RFPA3D, with rigid loading plates to simulate realistic boundary conditions. Three typical end-surface defects are modeled: protrusions (central/eccentric), grooves, and unilateral warping. Specimens with varying tilt angles are generated to evaluate perpendicularity deviations. Simulation results reveal that central end-surface protrusions induce: (1) localized stress concentration, which forms a dense core, and (2) pronounced wedging failure when protrusion height exceeds critical thresholds. Eccentric protrusions trigger characteristic shear failure modes, while unilateral warping causes localized failure through stress concentration at the deformed region. Importantly, end-surface grooves substantially alter stress distributions, generating bilateral stress concentration zones when groove width exceeds critical dimensions. Full article
Show Figures

Figure 1

23 pages, 7120 KB  
Article
Automated Modeling Method and Strength Analysis of Irregular Deformation of Floating Roof Caused by Welding—Taking Double-Layer Floating Roof Storage Tanks as an Example
by Chunyang Li, Yuanyuan Jiang, Luyang Zhang, Wei Guan and Yan Zhou
Appl. Sci. 2025, 15(21), 11473; https://doi.org/10.3390/app152111473 - 27 Oct 2025
Viewed by 572
Abstract
The external floating roof of a large storage tank directly covers the liquid surface as the liquid level rises and falls, enhancing the tank’s safety and environmental performance. It is fabricated from thin SA516 Gr.70 steel plates, with a carbon equivalent of 0.37% [...] Read more.
The external floating roof of a large storage tank directly covers the liquid surface as the liquid level rises and falls, enhancing the tank’s safety and environmental performance. It is fabricated from thin SA516 Gr.70 steel plates, with a carbon equivalent of 0.37% calculated according to AWS standards, using single-sided butt welding. Such plates are susceptible to welding-induced deformations, resulting in irregular warping of the bottom plate. Current research on floating roofs for storage tanks mostly relies on idealized models that assume no deformation, thereby neglecting the actual deformation characteristics of the floating roof structure. To address this, the present study develops an automated modeling approach that reconstructs a three-dimensional floating roof model based on measured deformation data, accurately capturing the initial irregular geometry of the bottom plate. This method employs parametric numerical reconstruction and automatic finite element model generation techniques, enabling efficient creation of the irregular initial deformation caused by welding of the floating roof bottom plate and its automatic integration into the finite element analysis process. It overcomes the inefficiencies, inconsistent accuracy, and challenges associated with traditional manual modeling when conducting large-scale strength analyses under in-service conditions. Based on this research, a strength analysis of the deformed floating roof structure was conducted under in-service conditions, including normal floating, extreme rainfall, and outrigger contact scenarios. An idealized geometric model was also established for comparative analysis. The results indicate that under the normal floating condition, the initial irregular deformation increases the local stress peak of the floating roof bottom plate by 19%, while the maximum positive and negative displacements increase by 22% and 83%, respectively. Under extreme uniform rainfall conditions, it raises the stress peak of the bottom plate by 24%, with maximum positive and negative displacements increasing by 21% and 28%, respectively. Under the extreme non-uniform rainfall condition, it significantly elevates the stress peak of the bottom plate by 227%, and the maximum positive and negative displacements increase by 45% and 47%, respectively. Under the outrigger bottoming condition, it increases the local stress peak of the bottom plate by 25%, with maximum positive and negative displacements remaining similar. The initial irregular deformation not only significantly amplifies the stress and displacement responses of the floating roof bottom plate but also intensifies the deformation response of the top plate through structural stiffness weakening and deformation coupling, thereby reducing the safety margin of the floating roof structure. This study fills the knowledge gap regarding the effect of welding-induced irregular deformation on floating roof performance and provides a validated workflow for automated modeling and mechanical assessment of large-scale welded steel structures. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

11 pages, 2858 KB  
Article
Optimization Design of High-Performance Powder-Spreading Arm for Metal 3D Printers
by Guoqing Zhang, Junxin Li, Xiaoyu Zhou, Yongsheng Zhou, Juanjuan Xie and Yuchao Bai
Micromachines 2025, 16(11), 1194; https://doi.org/10.3390/mi16111194 - 22 Oct 2025
Viewed by 510
Abstract
The powder-laying arm of a metal 3D printer is heavy, which can easily cause long-term damage to the powder-laying servomotor or belt, so it is necessary to design a lightweight powder-laying arm. To this end, we first use 3D modeling Rhino software to [...] Read more.
The powder-laying arm of a metal 3D printer is heavy, which can easily cause long-term damage to the powder-laying servomotor or belt, so it is necessary to design a lightweight powder-laying arm. To this end, we first use 3D modeling Rhino software to rebuild the powder-laying arm, and then, we carry out topology optimization design on the rebuilt powder-laying arm in Altair Inspire software. Finally, we use the Aurora Elva 3D printer to complete manufacturing and assembly to verify compatibility. The results show that the maximum displacement of the original powder-spreading arm is concentrated in the lower right corner at 4.319 × 10−5 mm; the maximum stress is concentrated in the middle transition part, decreasing toward the ends; the maximum stress is 3.843 × 10−2 MPa; the stress concentration and deformation of the powder-spreading arm when spreading powder is small, which provides a large optimization space. The topology-optimized powder-spreading arm, with a 25% quality objective, maintains the integrity of the connection with the fixing hole while having a large mass reduction. The surface of the parts of the completed 3D-printed powder arm is bright, with low roughness, and there is no obvious warping and deformation or other defects; the completed 3D-printed powder-spreading arm and the assembly of the wall are closely coordinated with each other, and the location of the screw holes is appropriate, having no obvious assembly conflicts between the parts, which lays the foundation for the mass production of the powder-spreading arm of high-performance metal 3D printers. Full article
Show Figures

Figure 1

15 pages, 12325 KB  
Article
Failure Analysis of Effects of Multiple Impact Conditions on Cylindrical Lithium-Ion Batteries
by Jianying Li, Bingsen Wen, Yinghong Xie, Hao Wen, Di Cao, Chaoming Cai and Hai Wang
Eng 2025, 6(10), 266; https://doi.org/10.3390/eng6100266 - 4 Oct 2025
Viewed by 895
Abstract
This study systematically investigated the structural damage and electrochemical performance changes in 18650 cylindrical lithium-ion batteries under multiple impacts through a 10 kg drop-hammer impact test. The experimental results showed that as the state of charge (SOC) increased from 25% to 75%, the [...] Read more.
This study systematically investigated the structural damage and electrochemical performance changes in 18650 cylindrical lithium-ion batteries under multiple impacts through a 10 kg drop-hammer impact test. The experimental results showed that as the state of charge (SOC) increased from 25% to 75%, the battery’s stiffness increased and its impact resistance improved, but the electrolyte leakage intensified, with a higher risk of leakage at high SOCs. An increase in the impact force led to enhanced voltage fluctuations and a continuous increase in deformation. After an impact of 500 mm, the voltage decreased about 0.02 V, while after an impact of 1000 mm, it dropped about 0.04 V. Axial impacts caused a sudden voltage drop to 1.96 V, resulting in permanent failure; compared with planar impacts, cylindrical surface impacts are more likely to cause compression in the middle and warping at both ends, significantly increasing the risk of internal short circuits. CT scans revealed that the battery porosity can reach up to 3.09% under high impact energy, and the deformation rate can reach 28.39%. The research results provide a quantitative experimental basis for the impact-resistant design and safety assessment of power batteries. Full article
Show Figures

Figure 1

21 pages, 3880 KB  
Article
Utilizing Recycled PET and Mining Waste to Produce Non-Traditional Bricks for Sustainable Construction
by Gonzalo Díaz-García, Piero Diaz-Miranda and Christian Tineo-Villón
Sustainability 2025, 17(19), 8841; https://doi.org/10.3390/su17198841 - 2 Oct 2025
Viewed by 2796
Abstract
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included [...] Read more.
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included particle size distribution, Atterberg limits, and moisture content. Physical and mechanical tests evaluated dimensional variability, void percentage, warping, water absorption, suction, unit compressive strength (fb), and prism compressive strength (fm). Statistical analysis (Shapiro–Wilk, p < 0.05) validated the results. PET addition improved physical properties—reducing water absorption, suction, and voids—while slightly compromising mechanical strength. The 15% PET mix showed the best overall performance (fb = 24.00 kg/cm2; fm = 20.40 kg/cm2), with uniform deformation and lower absorption (18.7%). Recycled PET enhances key physical attributes of clay bricks, supporting its use in eco-friendly construction. However, reduced compressive strength limits its structural applications. Optimizing PET particle size, clay type, and firing conditions is essential to improve load-bearing capacity. Current formulations are promising for non-structural uses, contributing to circular material strategies. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

21 pages, 4655 KB  
Article
A Geometric Distortion Correction Method for UAV Projection in Non-Planar Scenarios
by Hao Yi, Sichen Li, Feifan Yu, Mao Xu and Xinmin Chen
Aerospace 2025, 12(10), 870; https://doi.org/10.3390/aerospace12100870 - 27 Sep 2025
Viewed by 712
Abstract
Conventional projection systems typically require a fixed spatial configuration relative to the projection surface, with strict control over distance and angle. In contrast, UAV-mounted projectors overcome these constraints, enabling dynamic, large-scale projections onto non-planar and complex environments. However, such flexible scenarios introduce a [...] Read more.
Conventional projection systems typically require a fixed spatial configuration relative to the projection surface, with strict control over distance and angle. In contrast, UAV-mounted projectors overcome these constraints, enabling dynamic, large-scale projections onto non-planar and complex environments. However, such flexible scenarios introduce a key challenge: severe geometric distortions caused by intricate surface geometry and continuous camera–projector motion. To address this, we propose a novel image registration method based on global dense matching, which estimates the real-time optical flow field between the input projection image and the target surface. The estimated flow is used to pre-warp the image, ensuring that the projected content appears geometrically consistent across arbitrary, deformable surfaces. The core idea of our method lies in reformulating the geometric distortion correction task as a global feature matching problem, effectively reducing 3D spatial deformation into a 2D dense correspondence learning process. To support learning and evaluation, we construct a hybrid dataset that covers a wide range of projection scenarios, including diverse lighting conditions, object geometries, and projection contents. Extensive simulation and real-world experiments show that our method achieves superior accuracy and robustness in correcting geometric distortions in dynamic UAV projection, significantly enhancing visual fidelity in complex environments. This approach provides a practical solution for real-time, high-quality projection in UAV-based augmented reality, outdoor display, and aerial information delivery systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 3598 KB  
Article
Design and Experiment of the Mold for the Production Process of Natural Arc-Shaped Bamboo Laminated Lumber
by Hu Miao, Rui Gao, Guofu Wang, Xinxin Ma, Changhua Fang and Huanrong Liu
Forests 2025, 16(9), 1452; https://doi.org/10.3390/f16091452 - 12 Sep 2025
Cited by 1 | Viewed by 638
Abstract
Natural arc-shaped bamboo laminated lumber (ABLL) is an engineering material made from recyclable and rapidly renewable bamboo. Objectives: to enhance processing mechanization by (i) establishing a fixed-arc dimensional model for bamboo splits, (ii) designing an integrated mold capable of simultaneous shaping and drying, [...] Read more.
Natural arc-shaped bamboo laminated lumber (ABLL) is an engineering material made from recyclable and rapidly renewable bamboo. Objectives: to enhance processing mechanization by (i) establishing a fixed-arc dimensional model for bamboo splits, (ii) designing an integrated mold capable of simultaneous shaping and drying, and (iii) validating its performance through simulation and experiment. Methods: numerical modeling simulated the operational process, and physical tests measured split length, thickness, inner and outer chord lengths, and moisture content. Results: after the mold completes the arc-fixing and drying of bamboo splits, parameters including the splits’ length, chord length, thickness, and moisture content are suitable for subsequent processing. Based on simulation results, the working mechanism of load application and deformation of bamboo during the equipment’s arc-fixing process was analyzed. The cylindrical arc geometry causes uneven material deformation and stress distribution during arc-fixing. Arc-fixing of bamboo splits results in irreversible edge densification. Thus, gluing should be performed promptly to prevent warping. Evaluation metrics for arc length data—including RE ≤ 8.46%, R2 ≥ 0.71, and RMSE ≤ 3.61—confirm the reliability of the dimensional model and virtual prototype simulation model. The proposed method was expected to provide a reference for the development of devices specifically designed for ABLL. Full article
(This article belongs to the Special Issue Wood Properties: Strength, Density, Hardness)
Show Figures

Figure 1

21 pages, 6303 KB  
Article
Comprehensive Analysis of the Injection Mold Process for Complex Fiberglass Reinforced Plastics with Conformal Cooling Channels Using Multiple Optimization Method Models
by Meiyun Zhao and Zhengcheng Tang
Processes 2025, 13(9), 2803; https://doi.org/10.3390/pr13092803 - 1 Sep 2025
Viewed by 2037
Abstract
During the cooling phase of injection molding, the conformal cooling channel system optimizes the uniformity of mold temperature, diminishes warping deformation, and contributes substantially to heightened product precision. The injection molding process involves complex process parameters that may result in uneven cooling between [...] Read more.
During the cooling phase of injection molding, the conformal cooling channel system optimizes the uniformity of mold temperature, diminishes warping deformation, and contributes substantially to heightened product precision. The injection molding process involves complex process parameters that may result in uneven cooling between components, leading to prolonged cycle times, increased shrinkage depth, and warping deformation of the plastic parts. These manifestations negatively impact the surface quality and structural strength of the final product. This article combined theoretical algorithms with finite element simulation (CAE) methods to optimize complex injection molding processes. Firstly, the characteristics of six different types of materials were examined. Melt temperature, mold opening time, injection time, holding time, holding pressure, and mold temperature were chosen as optimization variables. Meanwhile, the warpage deformation and shrinkage depth of the formed sample were selected as optimization objectives. Secondly, an L27 orthogonal experimental design (OED) was established, and the signal-to-noise ratio was processed. The entropy weight method (EWE) was used to calculate the weights of the total warpage deformation and shrinkage depth, thereby obtaining the grey correlation degree. The influence of process parameters on quality indicators was analyzed using grey relational analysis (GRA) to calculate the range. A second-order polynomial regression model was established using response surface methodology (RSM) to investigate the effects of six factors on the warpage deformation and shrinkage depth of injection molded parts. Finally, a comprehensive comparison was made on the impact of various optimization methods and models on the forming parameters. Analyze according to different optimization principles to obtain the corresponding optimal process parameters. The research results indicate that under the principle of prioritizing warpage deformation, the effectiveness ranking of the three optimization analyses is RSM > OED > GRA. The minimum deformation rate is 0.1592 mm, which is 27.37% lower than before optimization. Under the principle of prioritizing indentation depth, the effectiveness ranking of the three optimization analyses is OED > GRA > RSM. The minimum depth of shrinkage is 0.0312 mm, which is 47.21% lower than before optimization. This discovery provides strong support for the optimal combination of process parameters suitable for production and processing. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

25 pages, 6263 KB  
Article
Canvas-Ground Interaction: A New Approach to Quantifying Ground Mechanical Degradation
by Gema Campo-Frances, Santi Ferrer, Diana Cayuela and Enric Carrera-Gallisà
Materials 2025, 18(17), 4041; https://doi.org/10.3390/ma18174041 - 28 Aug 2025
Viewed by 760
Abstract
Canvases and preparation layers consist of diverse materials that respond differently to mechanical stress. In a canvas painting, elongations and shrinkages can cause deformations—either recoverable or permanent—as well as shear stresses and potential cracks, which may weaken the overall structure. This study aims [...] Read more.
Canvases and preparation layers consist of diverse materials that respond differently to mechanical stress. In a canvas painting, elongations and shrinkages can cause deformations—either recoverable or permanent—as well as shear stresses and potential cracks, which may weaken the overall structure. This study aims to better understand the interaction between the canvas and preparatory strata in terms of mechanical behavior. To achieve this, a set of canvases and the same types of canvases with preparation layers were selected. Two types of linen and two types of polycotton were chosen to represent contemporary materials currently available in fine-art stores. Additionally, an accelerated aging process was applied to the samples to compare their mechanical response before and after aging. By examining the mechanical behavior of both primed and unprimed canvases through dynamometric tests, a method to evaluate the mechanical degradation attributable to the ground layer has been developed and explained in detail. This method is applicable to cases with similar characteristics. Analysis of the force/elongation graphs for the ground layer allows for the calculation of how this layer evolves with increasing elongation and how the mechanical degradation worsens. The results highlight the differing mechanical behaviors among the analyzed canvas types in both the warp and weft directions, as well as the degradation values resulting from both the aging process and the dynamometric testing of the canvases and ground layers. Full article
Show Figures

Figure 1

Back to TopTop