Comprehensive Analysis of the Injection Mold Process for Complex Fiberglass Reinforced Plastics with Conformal Cooling Channels Using Multiple Optimization Method Models
Abstract
1. Introduction
2. Materials and Methodologies
2.1. Creation of Plastic Model and Conformal Cooling Channel
2.2. Experimental Method
3. Results and Discussion
3.1. Comparison of Different Cooling Channels System Designs
3.2. Orthogonal Experimental Design Results
3.3. Entropy Weight Method Grey Correlation Results
3.4. Analysis of Response Surface Experiment Results
3.5. Comparison of Different Optimization Methods
4. Conclusions
- The combination of molding parameters A1-B1-C3-D1-E3-F3, using the OED method, has the smallest warpage deformation and shrinkage depth. When A1 is the melt temperature (220 °C), B1 is the mold opening time (3 s), C3 is the injection time (2 s), D1 is the holding time (10 s), E3 is the holding pressure (100 MPa), and F3 is the mold temperature (80 °C). The minimum warpage deformation is 0.1597 mm, a decrease of 26.61% compared to the initial value. The minimum indentation depth is 0.0312 mm, a reduction of 47.21% compared to the initial value.
- The optimal solution obtained using the GRA method is A1B3C3D3E1, with a melt temperature of 220 °C, an injection time of 5 s, a mold opening time of 2 s, a holding time of 14 s, a holding pressure of 100 MPa, and a mold temperature of 60 °C. The minimum warpage deformation is 0.1594 mm, a decrease of 26.75% compared to the initial value. The minimum indentation depth is 0.0316 mm, a decrease of 46.53% compared to the initial value.
- The average errors between the predicted minimum warpage deformation and shrinkage depth of the product and the actual numerical simulation values are 3.18% and 8.6%, respectively, confirming the accuracy of the response surface model numerical simulation. The optimal combination of molding process parameters is suitable for production and processing.
- Under the principle of prioritizing warpage deformation, the effectiveness ranking of the three optimization analyses is RSM > OED > GRA. The minimum deformation rate is 0.1592 mm, which is 27.37% lower than before optimization. Under the principle of prioritizing indentation depth, the effectiveness ranking of the three optimization analyses is OED > GRA > RSM. The minimum depth of shrinkage is 0.0312 mm, which is 47.21% lower than before optimization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, H.M. A review of the design optimization of conformal cooling channels in injection molds. Int. J. Adv. Manuf. Technol. 2025, 138, 2653–2671. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Suping, S.; Duan, F. Design and optimization of conformal cooling channels for injection molding: A review. Int. J. Adv. Manuf. Technol. 2020, 106, 3253–3271. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, Z. Finite Element Simulation of Injection Mold Design Integrating Different Structures of Conformal Cooling Channels. Processes 2025, 13, 234. [Google Scholar] [CrossRef]
- Liu, F.; Pang, J.; Xu, Z. Multi-Objective Optimization of Injection Molding Process Parameters for Moderately Thick Plane Lens Based on PSO-BPNN, OMOPSO, and TOPSIS. Processes 2024, 12, 36. [Google Scholar] [CrossRef]
- Gaspar-Cunha, A.; Melo, J.; Marques, T.; Pontes, A. A Review on Injection Molding: Conformal Cooling Channels, Modelling, Surrogate Models and Multi-Objective Optimization. Polymers 2025, 17, 919. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, C. Design and Optimization of Conformal Cooling Channels for Increasing Cooling Efficiency in Injection Molding. Appl. Sci. 2023, 13, 7437. [Google Scholar] [CrossRef]
- Silva, H.M.; Noversa, J.T.; Fernandes, L.; Rodrigues, H.L.; Pontes, A.J. Design, simulation and optimization of conformal cooling channels in injection molds: A review. Int. J. Adv. Manuf. Technol. 2022, 120, 4291–4305. [Google Scholar] [CrossRef]
- Wang, J.; Xuan, J.; Ni, Y. Automatic design of conformal cooling channels of injection mold based on lotus root model. Int. J. Adv. Manuf. Technol. 2023, 125, 1879–1892. [Google Scholar] [CrossRef]
- Park, H.S.; Dang, X.P. Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int. J. Precis. Eng. Manuf. 2010, 11, 879–890. [Google Scholar] [CrossRef]
- Peixoto, C.; Valentim, P.T.; Sousa, P.C.; Dias, D.; Araújo, C.; Pereira, D.; Machado, C.F.; Pontes, A.J.; Santos, H.; Cruz, S. Injection molding of high-precision optical lenses: A review. Precis. Eng. 2022, 76, 29–51. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, H.; Wang, G.; Qian, Y. Finite Element Analysis on the Injection Molding and Productivity of Conformal Cooling Channel. J. Shanghai Jiaotong Univ. 2021, 16, 231–235. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Qiu, S.-X.; Lee, G.-Y.; Zhou, J.; He, H.-Q. Characterizations of polymer injection molding tools with conformal cooling channels fabricated by direct and indirect rapid tooling technologies. Int. J. Adv. Manuf. Technol. 2021, 117, 343–360. [Google Scholar] [CrossRef]
- Chung, C.Y. Integrated Optimum Layout of Conformal Cooling Channels and Optimal Injection Molding Process Parameters for Optical Lenses. Appl. Sci. 2019, 9, 4341. [Google Scholar] [CrossRef]
- Feng, S.C.; Kamat, A.M.; Pei, Y.T. Design and fabrication of conformal cooling channels in molds: Review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082. [Google Scholar] [CrossRef]
- Brooks, H.; Brigden, K. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling. Addit. Manuf. 2016, 11, 16–22. [Google Scholar] [CrossRef]
- Arman, S.; Lazoglu, I. A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. Int. J. Adv. Manuf. Technol. 2023, 127, 2035–2106. [Google Scholar] [CrossRef]
- Rocha, S.B.; Zhiltsova, T.; Neto, V.; Oliveira, M.S. Optimization to assist design and analysis of temperature control strategies for injection molding-a review. Materials 2022, 15, 4048. [Google Scholar] [CrossRef]
- Torres-Albe, A.; Mercado-Colmenero, J.M.; Diaz-Perete, D.; Martin-Doñate, C. A new conformal cooling design procedure for injection molding based on temperature clusters and multidimensional discrete models. Polymers 2020, 12, 154. [Google Scholar] [CrossRef]
- Saifullah, A.B.M.; Masood, S.H.; Sbarski, I. Thermal-structural analysis of bi-metallic conformal cooling for injection moulds. Int. J. Adv. Manuf. Technol. 2012, 62, 123–133. [Google Scholar] [CrossRef]
- Rahim, S.Z.A.; Sharif, S.; Zain, A.M.; Nasir, S.M.; Saad, R.M. Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process. Adv. Polym. Technol. 2016, 35, 21524. [Google Scholar] [CrossRef]
- Vojnová, E. The benefits of a conforming cooling systems the molds in injection moulding process. Procedia Eng. 2016, 149, 535–543. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, J.; Shi, N.; Li, L. Review of conformal cooling system design and additive manufacturing for injection molds. Math. Biosci. Eng. 2020, 17, 5414–5431. [Google Scholar] [CrossRef]
- Shinde, M.S.; Ashtanker, K.M. Additive manufacturing-assisted conformal cooling channels in mold manufacturing processes. Adv. Mech. Eng. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Alvarado-Iniesta, A.; Cuate, O.; Schütze, O. Multi-objective and many objective design of plastic injection molding process. Int. J. Adv. Manuf. Technol. 2019, 102, 3165–3180. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Fu, Y.; Mao, T.; Zhou, H.; Li, D. Process parameters optimization using a novel classification model for plastic injection molding. Int. J. Adv. Manuf. Technol. 2018, 94, 357–370. [Google Scholar] [CrossRef]
- Zhai, H.; Li, X.; Xiong, X.; Zhu, W.; Li, C.; Wang, Y.; Chang, Y. A method combining optimization algorithm and inverse-deformation design for improving the injection quality of box-shaped parts. Int. J. Adv. Manuf. Technol. 2024, 130, 1901–1924. [Google Scholar] [CrossRef]
- Marins, N.H.; de Mello, F.B.; Silva, R.M.E.; Ogliari, F.A. Statistical Approach to Analyze the Warpage, Shrinkage and Mechanical Strength of Injection Molded Parts. Int. Polym. Process. 2016, 31, 376–384. [Google Scholar] [CrossRef]
- Huang, M.-C.; Tai, C.-C. The effective factors in the warpage problem of an injection-molded part with a thin shell feature. J. Mater. Process. Technol. 2001, 110, 1–9. [Google Scholar] [CrossRef]
- Ozcelik, B.; Erzurumlu, T. Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J. Mater. Process. Technol. 2006, 171, 437–445. [Google Scholar] [CrossRef]
- Ryu, Y.; Sohn, J.S.; Yun, C.-S.; Cha, S.W. Shrinkage and Warpage Minimization of Glass-Fiber-Reinforced Polyamide 6 Parts by Microcellular Foam Injection Molding. Polymers 2020, 12, 889. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, B. Optimization of injection parameters for mechanical properties of specimens with weld line of polypropylene using Taguchi method. Int. Commun. Heat Mass Transf. 2011, 38, 1067–1072. [Google Scholar] [CrossRef]
- Kitayama, S.; Yokoyama, M.; Takano, M.; Aiba, S. Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time. Int. J. Adv. Manuf. Technol. 2017, 92, 3991–3999. [Google Scholar] [CrossRef]
- Kitayama, S.; Hashimoto, S.; Takano, M.; Yamazaki, Y.; Kubo, Y.; Aiba, S. Multi-objective optimization for minimizing weldline and cycle time using variable injection velocity and variable pressure profile in plastic injection molding. Int. J. Adv. Manuf. Technol. 2020, 107, 3351–3361. [Google Scholar] [CrossRef]
- Wu, W.; He, X.; Li, B.; Shan, Z. An Effective Shrinkage Control Method for Tooth Profile Accuracy Improvement of Micro-Injection-Molded Small-Module Plastic Gears. Polymers 2022, 14, 3114. [Google Scholar] [CrossRef]
- Kitayama, S.; Tsurita, S.; Takano, M.; Yamazaki, Y.; Kubo, Y.; Aiba, S. Multi-objective process parameters optimization in rapid heat cycle molding incorporating variable packing pressure profile for improving weldline, clamping force, and cycle time. Int. J. Adv. Manuf. Technol. 2020, 120, 3669–3681. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, L.; Zhou, X. Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA. Int. J. Adv. Manuf. Technol. 2020, 106, 559–575. [Google Scholar] [CrossRef]
- Hakimian, E.; Sulong, A.B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Mater. Des. 2012, 42, 62–71. [Google Scholar] [CrossRef]
- Fu, S.J. Optimization of process parameters for injection molding based on taguchi technique. Adv. Mater. Res. 2018, 538, 1170–1174. [Google Scholar] [CrossRef]
- Mohan, M.; Ansari, M.N.M.; Shanks, R.A. Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component. Polym. Plast. Technol. Eng. 2017, 56, 1–12. [Google Scholar] [CrossRef]
- Singh, G.; Verma, A. A Brief Review on injection moulding manufacturing process. Mater. Today 2017, 2, 1423–1433. [Google Scholar] [CrossRef]
- Gong, G.; Chen, J.C.; Guo, G. Enhancing tensile strength of injection molded fiber reinforced composites using the Taguchi-based six sigma approach. Int. J. Adv. Manuf. Technol. 2017, 91, 3385–3393. [Google Scholar] [CrossRef]
- Xu, G.; Yang, Z. Multiobjective optimization of process parameters for plastic injection molding via soft computing and grey correlation analysis. Int. J. Adv. Manuf. Technol. 2015, 78, 525–536. [Google Scholar] [CrossRef]
- Tian, M.; Gong, X.; Yin, L.; Li, H.; Ming, W.; Zhang, Z.; Chen, J. Multi-objective optimization of injection molding process parameters in two stages for multiple quality characteristics and energy efficiency using Taguchi method and NSGA-II. Int. J. Adv. Manuf. Technol. 2017, 89, 241–254. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, G.; Ruan, S.; Li, Z. Multi-objective optimization design of injection molding process parameters based on the improved efficient global optimization algorithm and non-dominated sorting-based genetic algorithm. Int. J. Adv. Manuf. Technol. 2015, 78, 1813–1826. [Google Scholar] [CrossRef]
- Huang, C.T.; Chen, X.-W.; Fu, W.W. Investigation on the Fiber Orientation Distributions and Their Influence on the Mechanical Property of the Co-Injection Molding Products. Polymers 2020, 12, 24. [Google Scholar] [CrossRef]
- Jong, W.-R.; Huang, Y.-M.; Lin, Y.-Z.; Chen, S.-C.; Chen, Y.-W. Integrating Taguchi method and artificial neural network to explore machine learning of computer aided engineering. J. Chin. Inst. Eng. 2020, 43, 346–356. [Google Scholar] [CrossRef]
- de Paiva, A.P.; Gomes, J.H.F.; Peruchi, R.S.; Leme, R.C.; Balestrassi, P.P. A multivariate robust parameter optimization approach based on principal component analysis with combined arrays. Comput. Ind. Eng. 2014, 74, 186–198. [Google Scholar] [CrossRef]
- Chen, W.-C.; Nguyen, M.-H.; Chiu, W.-H.; Chen, T.-N.; Tai, P.-H. Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. Int. J. Adv. Manuf. Technol. 2016, 83, 1873–1886. [Google Scholar] [CrossRef]
- Li, H.; Liu, K.; Zhao, D.; Wang, M.; Li, Q.; Hou, J. Multi-objective optimizations for microinjection molding process parameters of biodegradable polymer stent. Materials 2018, 11, 2322. [Google Scholar] [CrossRef]
- Chiang, K.T.; Chang, F.P. Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology. Int. J. Adv. Manuf. Technol. 2007, 35, 468–479. [Google Scholar] [CrossRef]
- Chen, C.-C.; Su, P.-L.; Lin, Y.-C. Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology. Int. J. Adv. Manuf. Technol. 2009, 45, 1087–1095. [Google Scholar] [CrossRef]
- Tsai, K.-M.; Tang, B.-H. Determination of injection molding process window based on form accuracy of lens using response surface methodology. Int. J. Adv. Manuf. Technol. 2014, 75, 947–958. [Google Scholar] [CrossRef]
- Tsai, K.-M.; Luo, H.-J. Comparison of injection molding process windows for plastic lens established by artificial neural network and response surface methodology. Int. J. Adv. Manuf. Technol. 2015, 77, 1599–1611. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Li, H.; Guan, Y. Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization. Expert Syst. Appl. 2011, 38, 6705–6718. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Guan, Y. Research on optimum heating system design for rapid thermal response mold with electric heating based on response surface methodology and particle swarm optimization. J. Appl. Polym. Sci. 2010, 119, 902–921. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, T.-L.; Tsao, C.-C.; Hsieh, K.-C.; Hsu, C.-Y. Analysis and optimization of injection molding process on warpage based on Taguchi design and PSO algorithm. Int. J. Adv. Manuf. Technol. 2025, 137, 981–988. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, W.; Li, J.; Gu, T.; Yuan, M. Multi-objective optimization research on the sleeve structure parameters of the autonomous refuelling arm for oil tank trucks. Eng. Optim. 2025, 1–25. [Google Scholar] [CrossRef]
Mechanical Properties | Numerical Value |
---|---|
Density (g/cm3) | 1.3717 |
Poisson’s ratio | 0.375 |
Modulus E (MPa) | 2822 |
Shear modulus (MPa) | 907 |
Control Factors | Level | ||
---|---|---|---|
1 | 2 | 3 | |
A. Melt temperature (°C) | 220 | 230 | 240 |
B. Injection time (s) | 3 | 4 | 5 |
C. Mold opening time (s) | 1.0 | 1.5 | 2.0 |
D. Holding time (s) | 10 | 12 | 14 |
E. Holding pressure (MPa) | 80 | 90 | 100 |
F. Mold Temperature (°C) | 60 | 70 | 80 |
No. | Process Parameters | Results | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Total Amount of Warping Deformation/mm | Shrinkage Depth/mm | |
1 | 220 | 3 | 1 | 10 | 80 | 60 | 0.1868 | 0.0496 |
2 | 220 | 3 | 1 | 10 | 80 | 70 | 0.1871 | 0.0498 |
3 | 220 | 3 | 1 | 10 | 80 | 80 | 0.1718 | 0.0495 |
4 | 220 | 4 | 1.5 | 12 | 90 | 60 | 0.1661 | 0.0378 |
5 | 220 | 4 | 1.5 | 12 | 90 | 70 | 0.1683 | 0.0380 |
6 | 220 | 4 | 1.5 | 12 | 90 | 80 | 0.1677 | 0.0376 |
7 | 220 | 5 | 2 | 14 | 100 | 60 | 0.1620 | 0.0313 |
8 | 220 | 5 | 2 | 14 | 100 | 70 | 0.1624 | 0.0316 |
9 | 220 | 5 | 2 | 14 | 100 | 80 | 0.1594 | 0.0316 |
10 | 230 | 3 | 1.5 | 14 | 100 | 60 | 0.1694 | 0.0446 |
11 | 230 | 3 | 1.5 | 14 | 100 | 70 | 0.1717 | 0.0456 |
12 | 230 | 3 | 1.5 | 14 | 100 | 80 | 0.1780 | 0.0451 |
13 | 230 | 4 | 2 | 10 | 80 | 60 | 0.1650 | 0.0363 |
14 | 230 | 4 | 2 | 10 | 80 | 70 | 0.1650 | 0.0363 |
15 | 230 | 4 | 2 | 10 | 80 | 80 | 0.1678 | 0.0365 |
16 | 230 | 5 | 1 | 12 | 90 | 60 | 0.2069 | 0.0545 |
17 | 230 | 5 | 1 | 12 | 90 | 70 | 0.2070 | 0.0545 |
18 | 230 | 5 | 1 | 12 | 90 | 80 | 0.2061 | 0.0544 |
19 | 240 | 3 | 2 | 12 | 100 | 60 | 0.1739 | 0.0424 |
20 | 240 | 3 | 2 | 12 | 100 | 70 | 0.1700 | 0.0420 |
21 | 240 | 3 | 2 | 12 | 100 | 80 | 0.1781 | 0.0430 |
22 | 240 | 4 | 1 | 14 | 80 | 60 | 0.2191 | 0.0588 |
23 | 240 | 4 | 1 | 14 | 80 | 70 | 0.2212 | 0.0591 |
24 | 240 | 4 | 1 | 14 | 80 | 80 | 0.2195 | 0.0587 |
25 | 240 | 5 | 1.5 | 10 | 90 | 60 | 0.1896 | 0.0514 |
26 | 240 | 5 | 1.5 | 10 | 90 | 70 | 0.1903 | 0.0512 |
27 | 240 | 5 | 1.5 | 10 | 90 | 80 | 0.1891 | 0.0511 |
No. | Total Amount of Warping Deformation/mm | Shrinkage Depth/mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S/N | yi | Entropy | Weight | S/N | yi | Entropy | Weight | ||||
1 | 14.57 | 0.48 | 0.51 | 0.99 | 0.44 | 26.09 | 0.72 | 0.41 | 0.98 | 0.56 | 0.453 |
2 | 14.56 | 0.49 | 0.51 | 26.06 | 0.73 | 0.41 | 0.450 | ||||
3 | 15.30 | 0.23 | 0.69 | 26.11 | 0.72 | 0.41 | 0.532 | ||||
4 | 15.59 | 0.13 | 0.80 | 28.45 | 0.30 | 0.63 | 0.704 | ||||
5 | 15.48 | 0.17 | 0.75 | 28.40 | 0.31 | 0.62 | 0.679 | ||||
6 | 15.51 | 0.15 | 0.76 | 28.50 | 0.29 | 0.63 | 0.691 | ||||
7 | 15.81 | 0.05 | 0.91 | 30.09 | 0.00 | 1.00 | 0.960 | ||||
8 | 15.79 | 0.06 | 0.90 | 30.01 | 0.02 | 0.97 | 0.938 | ||||
9 | 15.95 | 0.00 | 1.00 | 30.01 | 0.02 | 0.97 | 0.984 | ||||
10 | 15.42 | 0.19 | 0.73 | 27.01 | 0.56 | 0.47 | 0.587 | ||||
11 | 15.30 | 0.23 | 0.69 | 26.82 | 0.59 | 0.46 | 0.560 | ||||
12 | 14.99 | 0.34 | 0.60 | 26.92 | 0.57 | 0.47 | 0.524 | ||||
13 | 15.65 | 0.11 | 0.83 | 28.80 | 0.23 | 0.68 | 0.746 | ||||
14 | 15.65 | 0.11 | 0.83 | 28.80 | 0.23 | 0.68 | 0.746 | ||||
15 | 15.50 | 0.16 | 0.76 | 28.75 | 0.24 | 0.67 | 0.713 | ||||
16 | 13.68 | 0.80 | 0.39 | 25.27 | 0.87 | 0.36 | 0.374 | ||||
17 | 13.68 | 0.80 | 0.39 | 25.27 | 0.87 | 0.36 | 0.374 | ||||
18 | 13.72 | 0.78 | 0.39 | 25.29 | 0.87 | 0.37 | 0.376 | ||||
19 | 15.19 | 0.27 | 0.65 | 27.45 | 0.48 | 0.51 | 0.574 | ||||
20 | 15.39 | 0.20 | 0.72 | 27.54 | 0.46 | 0.52 | 0.607 | ||||
21 | 14.99 | 0.34 | 0.60 | 27.33 | 0.50 | 0.50 | 0.543 | ||||
22 | 13.19 | 0.97 | 0.34 | 24.61 | 0.99 | 0.34 | 0.337 | ||||
23 | 13.10 | 1.00 | 0.33 | 24.57 | 1.00 | 0.33 | 0.333 | ||||
24 | 13.17 | 0.98 | 0.34 | 24.63 | 0.99 | 0.34 | 0.337 | ||||
25 | 14.44 | 0.53 | 0.49 | 25.78 | 0.78 | 0.39 | 0.433 | ||||
26 | 14.41 | 0.54 | 0.48 | 25.81 | 0.77 | 0.39 | 0.431 | ||||
27 | 14.47 | 0.52 | 0.49 | 25.83 | 0.77 | 0.39 | 0.436 |
No. | Process Parameters | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
K1 | 0.2295 | 0.5367 | 0.3962 | 0.5489 | 0.5164 | 0.5741 |
K2 | 0.1718 | 0.5873 | 0.5605 | 0.5468 | 0.4997 | 0.5688 |
K3 | 0.1408 | 0.5895 | 0.7568 | 0.6178 | 0.6975 | 0.5706 |
R | 0.0887 | 0.0529 | 0.3606 | 0.0710 | 0.1978 | 0.0053 |
Control Factors | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
A. Melt temperature (°C) | 220 | 230 | 240 |
B. Injection time (s) | 3 | 4 | 5 |
C. Mold opening time (s) | 1 | 1.5 | 2 |
D. Holding time (s) | 10 | 12 | 14 |
E. Holding pressure (MPa) | 80 | 90 | 100 |
F. Mold Temperature (°C) | 60 | 70 | 80 |
No. | Control Factors | Quality Index | ||||||
---|---|---|---|---|---|---|---|---|
A-Melt Temperature (°C) | B-Injection Time(s) | C-Mold Opening Time (s) | D-Holding Time (s) | E-Holding Pressure (MPa) | F-Mold Temperature (°C) | Y1-Warping Deformation (mm) | Y2-Shrinkage Depth (mm) | |
1 | 240 | 4 | 1 | 12 | 90 | 80 | 0.2014 | 0.0542 |
2 | 230 | 3 | 1 | 12 | 80 | 70 | 0.1995 | 0.0532 |
3 | 230 | 5 | 1.5 | 12 | 100 | 60 | 0.1685 | 0.0423 |
4 | 240 | 4 | 1 | 12 | 90 | 60 | 0.2009 | 0.0544 |
5 | 240 | 5 | 1.5 | 14 | 90 | 70 | 0.1810 | 0.0490 |
6 | 220 | 5 | 1.5 | 14 | 90 | 70 | 0.1631 | 0.0368 |
7 | 230 | 4 | 2 | 10 | 90 | 80 | 0.1598 | 0.0349 |
8 | 230 | 4 | 1 | 14 | 90 | 80 | 0.1990 | 0.0531 |
9 | 230 | 4 | 1.5 | 12 | 90 | 70 | 0.1687 | 0.0428 |
10 | 240 | 4 | 2 | 12 | 90 | 80 | 0.1688 | 0.0401 |
11 | 230 | 5 | 1 | 12 | 100 | 70 | 0.1941 | 0.0522 |
12 | 240 | 4 | 1.5 | 10 | 80 | 70 | 0.1708 | 0.0484 |
13 | 230 | 3 | 1.5 | 12 | 80 | 80 | 0.1706 | 0.0437 |
14 | 230 | 5 | 1 | 12 | 80 | 70 | 0.1997 | 0.0532 |
15 | 240 | 5 | 1.5 | 10 | 90 | 70 | 0.1792 | 0.0471 |
16 | 220 | 4 | 2 | 12 | 90 | 80 | 0.1601 | 0.0306 |
17 | 230 | 5 | 1.5 | 12 | 80 | 80 | 0.1701 | 0.0440 |
18 | 230 | 4 | 1.5 | 12 | 90 | 70 | 0.1710 | 0.0430 |
19 | 220 | 4 | 1.5 | 14 | 80 | 70 | 0.1657 | 0.0370 |
20 | 240 | 3 | 1.5 | 10 | 90 | 70 | 0.1744 | 0.0481 |
21 | 220 | 3 | 1.5 | 14 | 90 | 70 | 0.1665 | 0.0367 |
22 | 230 | 3 | 1.5 | 12 | 80 | 60 | 0.1704 | 0.0440 |
23 | 220 | 4 | 1.5 | 14 | 100 | 70 | 0.1660 | 0.0363 |
24 | 240 | 4 | 2 | 12 | 90 | 60 | 0.1722 | 0.0403 |
25 | 230 | 4 | 1 | 10 | 90 | 80 | 0.1769 | 0.0520 |
26 | 230 | 4 | 1.5 | 12 | 90 | 70 | 0.1739 | 0.0429 |
27 | 220 | 4 | 1.5 | 10 | 80 | 70 | 0.1666 | 0.0369 |
28 | 230 | 4 | 1.5 | 12 | 90 | 70 | 0.1665 | 0.0424 |
29 | 230 | 5 | 1.5 | 12 | 100 | 80 | 0.1667 | 0.0420 |
30 | 230 | 3 | 1.5 | 12 | 100 | 60 | 0.1684 | 0.0424 |
31 | 220 | 4 | 1.5 | 10 | 100 | 70 | 0.1619 | 0.0362 |
32 | 230 | 4 | 1 | 10 | 90 | 60 | 0.1956 | 0.0521 |
33 | 230 | 3 | 2 | 12 | 80 | 70 | 0.1614 | 0.0352 |
34 | 230 | 5 | 1.5 | 12 | 80 | 60 | 0.1725 | 0.0439 |
35 | 230 | 4 | 1.5 | 12 | 90 | 70 | 0.1696 | 0.0430 |
36 | 230 | 4 | 2 | 14 | 90 | 60 | 0.1601 | 0.0351 |
37 | 230 | 3 | 1 | 12 | 100 | 70 | 0.1946 | 0.0524 |
38 | 220 | 4 | 1 | 12 | 90 | 80 | 0.1806 | 0.0482 |
39 | 230 | 5 | 2 | 12 | 100 | 70 | 0.1592 | 0.0336 |
40 | 240 | 4 | 1.5 | 14 | 80 | 70 | 0.1738 | 0.0490 |
41 | 220 | 3 | 1.5 | 10 | 90 | 70 | 0.1616 | 0.0363 |
42 | 230 | 4 | 1.5 | 12 | 90 | 70 | 0.1674 | 0.0422 |
43 | 240 | 4 | 1.5 | 10 | 100 | 70 | 0.1736 | 0.0456 |
44 | 230 | 3 | 2 | 12 | 100 | 70 | 0.1607 | 0.0345 |
45 | 230 | 5 | 2 | 12 | 80 | 70 | 0.1620 | 0.0349 |
46 | 220 | 4 | 2 | 12 | 90 | 60 | 0.1606 | 0.0306 |
47 | 230 | 4 | 2 | 14 | 90 | 80 | 0.1596 | 0.0350 |
48 | 220 | 4 | 1 | 12 | 90 | 60 | 0.1783 | 0.0481 |
49 | 240 | 3 | 1.5 | 14 | 90 | 70 | 0.1833 | 0.0489 |
50 | 230 | 4 | 1 | 14 | 90 | 60 | 0.1985 | 0.0532 |
51 | 230 | 3 | 1.5 | 12 | 100 | 80 | 0.1716 | 0.0425 |
52 | 220 | 5 | 1.5 | 10 | 90 | 70 | 0.1606 | 0.0363 |
53 | 240 | 4 | 1.5 | 14 | 100 | 70 | 0.1784 | 0.0479 |
54 | 230 | 4 | 2 | 10 | 90 | 60 | 0.1617 | 0.0345 |
No. | A | B | C | D | E | F | Predicted Value | Simulation Value | Prediction Error | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | |||||||
1 | 221 | 4.255 | 1.996 | 13.144 | 80.578 | 61.054 | 0.1570 | 0.030 | 0.1630 | 0.0319 | 3.82 | 6.33 |
2 | 221.162 | 3.865 | 1.945 | 10.458 | 94.614 | 78.359 | 0.1570 | 0.030 | 0.1614 | 0.0321 | 2.80 | 7.00 |
3 | 220.233 | 4.787 | 1.870 | 12.223 | 97.703 | 72.632 | 0.1570 | 0.030 | 0.1616 | 0.0330 | 2.93 | 10.0 |
4 | 221.697 | 3.844 | 1.966 | 12.209 | 97.351 | 60.128 | 0.1570 | 0.030 | 0.1633 | 0.0327 | 4.01 | 9.00 |
5 | 220.819 | 3.860 | 1.971 | 11.619 | 96.632 | 76.958 | 0.1580 | 0.029 | 0.1617 | 0.0321 | 2.34 | 10.69 |
Average | 3.18 | 8.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Tang, Z. Comprehensive Analysis of the Injection Mold Process for Complex Fiberglass Reinforced Plastics with Conformal Cooling Channels Using Multiple Optimization Method Models. Processes 2025, 13, 2803. https://doi.org/10.3390/pr13092803
Zhao M, Tang Z. Comprehensive Analysis of the Injection Mold Process for Complex Fiberglass Reinforced Plastics with Conformal Cooling Channels Using Multiple Optimization Method Models. Processes. 2025; 13(9):2803. https://doi.org/10.3390/pr13092803
Chicago/Turabian StyleZhao, Meiyun, and Zhengcheng Tang. 2025. "Comprehensive Analysis of the Injection Mold Process for Complex Fiberglass Reinforced Plastics with Conformal Cooling Channels Using Multiple Optimization Method Models" Processes 13, no. 9: 2803. https://doi.org/10.3390/pr13092803
APA StyleZhao, M., & Tang, Z. (2025). Comprehensive Analysis of the Injection Mold Process for Complex Fiberglass Reinforced Plastics with Conformal Cooling Channels Using Multiple Optimization Method Models. Processes, 13(9), 2803. https://doi.org/10.3390/pr13092803