Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (917)

Search Parameters:
Keywords = volcanic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4712 KB  
Article
Experimental Identification of the Pyrolysis Stages of Carya illioinensis Woody Pruning Waste in a Batch Reactor Heated by a Solar Simulator
by Arturo Aspiazu Méndez, Heidi Isabel Villafán Vidales, Nidia Aracely Cisneros Cárdenas, Ernesto Anguera Romero, Aurora Margarita Pat Espadas, Fabio Manzini Poli and Claudio Alejandro Estrada Gasca
Processes 2026, 14(1), 67; https://doi.org/10.3390/pr14010067 - 24 Dec 2025
Viewed by 214
Abstract
This study examines the influence of physical biomass pretreatment on the pyrolysis behavior of woody pruning residues of Carya illinoinensis (pecan tree) processed in a stainless-steel batch reactor heated by concentrated radiative energy. Experiments were conducted with 25.5 g of biomass using a [...] Read more.
This study examines the influence of physical biomass pretreatment on the pyrolysis behavior of woody pruning residues of Carya illinoinensis (pecan tree) processed in a stainless-steel batch reactor heated by concentrated radiative energy. Experiments were conducted with 25.5 g of biomass using a solar simulator equipped with a mirror concentrator, operating at three constant thermal power levels (234, 482, and 725 W). As a pretreatment strategy, the woody residues were deliberately processed without drying, while mechanical size reduction and sieving were applied to obtain a controlled particle size range of 1–4 mm. This approach enabled the isolated assessment of the effects of physical pretreatment, particularly particle size and bulk density, on heat transfer, thermal response, and pyrolysis behavior. The pyrolysis performance of the pretreated woody biomass was systematically compared with that of walnut shell biomass and inert volcanic stones subjected to the same particle size control. Two consecutive experimental cases were implemented: Case A (CA), comprising heating, pyrolysis of fresh biomass, and cooling; and Case B (CB), involving reheating of the resulting biochar under identical operating conditions. An improved analytical methodology integrating temperature–time profiles, their derivatives, and gas composition analysis was employed. The results demonstrated the apparently inert thermal behavior of biochar during reheating and enabled clear temporal identification of the main biomass conversion stages, including drying, active pyrolysis of hemicellulose and cellulose, and passive lignin degradation. However, relative to walnut shell biomass of equivalent volume, the woody pruning residues exhibited attenuated thermal and reaction signals, primarily attributed to their lower bulk density resulting from the selected pretreatment conditions. This reduced bulk density led to less distinct pyrolysis stages and a 4.66% underestimation of the maximum reaction temperature compared with thermogravimetric analysis, highlighting the critical role of physical pretreatment in governing heat transfer efficiency and temperature measurement accuracy during biomass pyrolysis. Full article
(This article belongs to the Special Issue Biomass Pretreatment for Thermochemical Conversion)
Show Figures

Figure 1

24 pages, 23121 KB  
Article
Detection and Monitoring of Volcanic Islands in Tonga from Sentinel-2 Data
by Riccardo Percacci, Felice Andrea Pellegrino and Carla Braitenberg
Remote Sens. 2026, 18(1), 42; https://doi.org/10.3390/rs18010042 - 23 Dec 2025
Viewed by 169
Abstract
This work presents an automated method for detecting and monitoring volcanic islands in the Tonga archipelago using Sentinel-2 satellite imagery. The method is able to detect newly created islands, as well as an increase in island size, a possible precursor to an explosion [...] Read more.
This work presents an automated method for detecting and monitoring volcanic islands in the Tonga archipelago using Sentinel-2 satellite imagery. The method is able to detect newly created islands, as well as an increase in island size, a possible precursor to an explosion due to magma chamber inflation. At its core, the method combines a U-Net-type convolutional neural network (CNN) for semantic segmentation with a custom change detection algorithm, enabling the identification of land–water boundaries and the tracking of volcanic island dynamics. The algorithm analyzes morphological changes through image comparison and Intersection over Union (IoU), capturing the emergence, disappearance, and evolution of volcanic islands. The segmentation model, trained on a custom dataset of Pacific Ocean imagery, achieved an IoU score of 97.36% on the primary test dataset and 83.54% on a subset of challenging cases involving small, recently formed volcanic islands. Generalization capability was validated using the SNOWED dataset, where the segmentation model attained an IoU of 81.02%. Applied to recent volcanic events, the workflow successfully detected changes in island morphology and provided time-series analyses. Practical feasibility of the methodology was assessed by testing it on a large region in Tonga, using an HPC cluster. This system offers potential applications for geophysical studies and navigation safety in volcanically active regions. Full article
Show Figures

Figure 1

18 pages, 3577 KB  
Article
Environmental Investigation of Natural Radioactivity and Health Risk Assessment in Basaltic Volcanic Building Materials
by Turki Kh. Faraj, Ahmed E. Abdel Gawad, Mayeen Uddin Khandaker and Mohamed Y. Hanfi
Toxics 2026, 14(1), 15; https://doi.org/10.3390/toxics14010015 - 22 Dec 2025
Viewed by 352
Abstract
This study presents an integrated geological and environmental radiological analysis of basaltic volcanic rocks, which have been characterized by their suitability and potential for risk when used as construction materials. A total of thirty-five representative basaltic samples from the environment of studied area, [...] Read more.
This study presents an integrated geological and environmental radiological analysis of basaltic volcanic rocks, which have been characterized by their suitability and potential for risk when used as construction materials. A total of thirty-five representative basaltic samples from the environment of studied area, located in the Northern Eastern Desert of Egypt, were utilized for this study. The rocks were then analyzed by means of HPGe high-resolution gamma-ray spectrometry methods. The petrographic studies show that the basalt samples were composed mostly of three main minerals: plagioclase, olivine, and pyroxene. In addition, these rocks have a significant degree of secondary alteration products, including sericite, epidote, and zoethite. For uranium-238 (238U), thorium-232 (232Th), and potassium-40 (40K), the average activity concentration measured 53 ± 20 Bq kg−1, 54 ± 14 Bq kg−1, and 1178 ± 269 Bq kg−1, respectively. Using the current global reference limits, all the measured values are above acceptable levels for the radionuclides 238U, 232Th, and 40K. The radiological indices calculated for each of the basalt volcanic samples measured radium equivalent activity (Raeq = 221 Bq kg−1), external hazard index (Hex = 0.60), internal hazard index (Hin = 0.74), gamma index (Iγ = 0.84), and annual effective dose (AED = 0.52 mSv y−1) indicate that the radiological hazard values of these samples are acceptable, unlike several samples, where values are near or exceed the accepted standards for indoor hazards. The most significant finding of this study reveals that the major contributions in the environment from radiological risk can be attributed to radionuclides 238U and 40K based on correlation analysis, hierarchical clustering, and PCA analyses, and this study establishes the first multivariate perspective of how radiogenic materials controlled by the environment can affect basaltic rocks. Therefore, this study creates an important baseline for future environmental monitoring and states that caution is warranted when using basalt as a finished material for constructed environments, and for using basaltic products as raw materials in indoor environments. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

27 pages, 9039 KB  
Article
Source(s) of the Smooth Caloris Exterior Plains on Mercury: Mapping, Remote Analyses, and Scenarios for Future Testing with BepiColombo Data
by Keenan B. Golder, Bradley J. Thomson, Lillian R. Ostrach, Devon M. Burr, Joshua P. Emery and Harald Hiesinger
Remote Sens. 2026, 18(1), 19; https://doi.org/10.3390/rs18010019 - 20 Dec 2025
Viewed by 243
Abstract
Mercury hosts widespread smooth plains that are concentrated in the Caloris impact basin, in an annulus surrounding the Caloris basin, and in the adjacent northern smooth plains. The origins of these smooth plains are uncertain, although prior work suggests these plains in the [...] Read more.
Mercury hosts widespread smooth plains that are concentrated in the Caloris impact basin, in an annulus surrounding the Caloris basin, and in the adjacent northern smooth plains. The origins of these smooth plains are uncertain, although prior work suggests these plains in the northwestern Caloris annulus might reflect volcanic activity, impact ejecta, or a combination of the two. Deciphering the timing and mode of emplacement of these plains would provide a critical constraint on regional late-stage volcanism or impact effects. In this work, the region northwest of Caloris was investigated using geomorphological and color-based mapping, crater counting techniques, and spectral analyses with the goal of placing constraints on the source of the observed units and identifying the primary emplacement mechanism. Mapping and spectral analyses confirm previous findings of two distinct, yet intermingled, units within these plains, each with similar crater count model ages that postdate the formation of the Caloris impact basin. Mapping, spectra analysis, ages, and the identification of potential flow pathways are more consistent with a predominantly volcanic origin for the smooth plains materials, although these data do not rule out contributions from impact ejecta or impact melt. We propose several hypothetical scenarios, including post-emplacement modification by near-surface volatiles, to explain these observations and clarify the emplacement mechanism for these specific smooth plains regions. Further observations from the BepiColombo mission should provide data to potentially address the outstanding questions from this work. Full article
Show Figures

Figure 1

22 pages, 14987 KB  
Article
The Characteristics and Mechanism of the Inter-Centennial Variations in Indian Summer Monsoon Precipitation
by Guangxun Shi, Shushuang Liu and Mingli Zhang
Water 2026, 18(1), 17; https://doi.org/10.3390/w18010017 - 20 Dec 2025
Viewed by 304
Abstract
Both the CESM-simulated NNU-2K dataset and proxy reconstructions of Indian Summer Monsoon (ISM) precipitation over the past two millennia reveal a significant centennial-scale period, including periodicities of 105, 150, and 200 years. The 105- and 200-year cycles identified in the NNU-2K all-forcing (AF) [...] Read more.
Both the CESM-simulated NNU-2K dataset and proxy reconstructions of Indian Summer Monsoon (ISM) precipitation over the past two millennia reveal a significant centennial-scale period, including periodicities of 105, 150, and 200 years. The 105- and 200-year cycles identified in the NNU-2K all-forcing (AF) experiment closely match those found in the volcanic single-forcing (Vol) experiment, suggesting that volcanic activity is a major driver of these variations. Volcanic forcing induces global cooling, which reduces the land–sea thermal contrast and weakens the monsoon circulation. Furthermore, stronger cooling in the Northern Hemisphere decreases the interhemispheric temperature gradient and weakens the trans-equatorial pressure gradient. This, in turn, suppresses cross-equatorial low-level flow from the Southern Hemisphere, further reducing ISM precipitation. The 105- and 150-year periodicities are also consistent with those in the total solar irradiance (TSI) single-forcing experiment, indicating a substantial response to solar variability. Increased solar irradiance enhances Northern Hemisphere warming, strengthening both the interhemispheric temperature gradient and the cross-equatorial pressure gradient. These changes facilitate stronger northward cross-equatorial flow in the lower troposphere, intensifying the ISM and increasing precipitation. Concurrently, solar forcing amplifies the thermal contrast between the Eurasian continent and the Indian Ocean, further reinforcing monsoon circulation. The 150-year cycle is also evident in the control (Ctrl) experiment, implicating internal climate variability as an additional mechanism. Analysis reveals a quasi-decadal Pacific Decadal Oscillation (PDO)-like sea surface temperature anomaly in the North Pacific. Its negative phase is linked to reduced sea-level pressure over the ISM region, enhanced low-level convergence, and increased precipitation. It also strengthens the Mascarene High over the Indian Ocean, intensifying the Somali Jet and southwesterly monsoon winds, which promote greater moisture transport into the ISM domain. Full article
(This article belongs to the Special Issue Monsoon Environmental Changes and Fluvial Sedimentation Processes)
Show Figures

Figure 1

14 pages, 7949 KB  
Article
Regulation Mechanism of Alkanolamines on Hydration and Microstructural Evolution of Thermally Treated Volcanic Rock Powder–Cement System
by Jingbin Yang, Shaojiang Wang, Fanyuan Mu and Zhenping Sun
Processes 2026, 14(1), 22; https://doi.org/10.3390/pr14010022 - 20 Dec 2025
Cited by 1 | Viewed by 222
Abstract
Utilizing abundant volcanic rock resources as supplementary cementitious materials is a critical pathway for regional low-carbon construction. However, the high crystallinity of natural volcanic rocks limits their reactivity. This study systematically investigates the regulation mechanisms of Triethanolamine (TEA) and Triisopropanolamine (TIPA) on the [...] Read more.
Utilizing abundant volcanic rock resources as supplementary cementitious materials is a critical pathway for regional low-carbon construction. However, the high crystallinity of natural volcanic rocks limits their reactivity. This study systematically investigates the regulation mechanisms of Triethanolamine (TEA) and Triisopropanolamine (TIPA) on the hydration kinetics and microstructure of a cement system containing Volcanic Rock Powder (VRP) thermally treated at 700 °C. Dissolution kinetics reveal that both TEA and TIPA inhibit Si release but exhibit distinct structural selectivity in promoting metal ion dissolution: TEA demonstrates superior efficiency in promoting the release of Al and Ca ions due to lower steric hindrance, whereas TIPA exhibits a stronger specific activation capacity for insoluble Fe, which is likely attributed to the electron-donating inductive effect. Macroscopic tests show that TEA at 0.05% dosage significantly improved the 28-day compressive strength by 20.4%, attributed to the synergistic effect of efficient chemical activation and pore structure refinement. In contrast, the stronger surface activity of TIPA introduced substantial detrimental macropores; this deterioration in physical structure severely offset its chemical contributions, leading to slow late-age strength development. The study highlights the critical trade-off between chemical activation and microstructural evolution, confirming that TEA is a more suitable activator than TIPA for the Al/Fe-rich thermally treated VRP. Full article
(This article belongs to the Special Issue Synthesis, Performance and Applications of Cementitious Materials)
Show Figures

Figure 1

25 pages, 6604 KB  
Article
From MSG-SEVIRI to MTG-FCI: Advancing Volcanic Thermal Monitoring from Geostationary Satellites
by Federica Torrisi, Giovanni Salvatore Di Bella, Claudia Corradino, Simona Cariello, Arianna Beatrice Malaguti and Ciro Del Negro
Remote Sens. 2026, 18(1), 6; https://doi.org/10.3390/rs18010006 - 19 Dec 2025
Viewed by 316
Abstract
Continuous global monitoring of volcanic activity from space requires balancing spatial and temporal resolution, a long-standing trade-off between polar-orbiting and geostationary satellites. Polar sensors such as MODIS, VIIRS, and SLSTR provide high spatial resolution (375 m–1 km) but with limited temporal coverage. In [...] Read more.
Continuous global monitoring of volcanic activity from space requires balancing spatial and temporal resolution, a long-standing trade-off between polar-orbiting and geostationary satellites. Polar sensors such as MODIS, VIIRS, and SLSTR provide high spatial resolution (375 m–1 km) but with limited temporal coverage. In contrast, geostationary sensors like SEVIRI offer high temporal resolution (5–15 min) but with coarser spatial detail (~3 km), often missing lower-intensity thermal events. The recently launched Flexible Combined Imager (FCI) aboard the geostationary Meteosat Third Generation (MTG-I) satellite represents a major improvement, providing images every 10 min with a spatial resolution of 1–2 km, comparable to that of polar orbiters. Here, we adapted the established Remote Sensing Data Fusion (RSDF) algorithm to exploit the enhanced capabilities of FCI for detecting volcanic thermal anomalies and estimating Volcanic Radiative Power (VRP). The algorithm was applied to Mount Etna during three different eruptive phases that occurred in 2025. The VRP derived from FCI data was compared with that obtained from the geostationary SEVIRI and the polar-orbiting MODIS, SLSTR, and VIIRS sensors. The results show that FCI provides a more detailed and continuous characterization of volcanic thermal output than SEVIRI, while maintaining close agreement with polar sensors. These findings confirm the capability of FCI to deliver high-frequency, high-resolution thermal monitoring, representing a major step toward operational, near-real-time volcanic surveillance from space. Full article
Show Figures

Figure 1

28 pages, 10229 KB  
Article
Mechanical Properties of Copper Tailings Cemented Paste Backfill Incorporating Thermally and Mechanically Treated Saudi Natural Pozzolan
by Ardhymanto Am Tanjung, Haitham M. Ahmed and Hussin A. M. Ahmed
Appl. Sci. 2025, 15(24), 13205; https://doi.org/10.3390/app152413205 - 17 Dec 2025
Viewed by 214
Abstract
Cemented Paste Backfill (CPB) is a technique that utilizes mine tailings, mining-process water, and a binder, typically Ordinary Portland Cement (OPC), to backfill the opening created in underground mining. However, the use of cement in CPB increases operational costs and has adverse environmental [...] Read more.
Cemented Paste Backfill (CPB) is a technique that utilizes mine tailings, mining-process water, and a binder, typically Ordinary Portland Cement (OPC), to backfill the opening created in underground mining. However, the use of cement in CPB increases operational costs and has adverse environmental effects. To mitigate these effects, eco-friendly natural pozzolan can be used as a partial replacement for OPC, thereby reducing its consumption and environmental impact. The volcanic region of western Saudi Arabia contains extensive deposits of Saudi natural pozzolan (SNP), which is a promising candidate for this purpose. This study evaluates the mechanical performance of CPB under four scenarios: a control mixture (CTRL), a mixture with untreated SNP (UT), and mixtures with activated SNP, specifically heat-treated (HT) and mechanically treated (MT). Each scenario was tested at replacement levels of 5%, 10%, 15%, and 20% of OPC. The performance was assessed using Uniaxial Compressive Strength (UCS) with Elastic Modulus (E), Ultrasonic Pulse Velocity (UPV), and Indirect Tensile Strength (ITS/Brazilian) tests. The results indicate that the HT scenario at a 5% replacement level delivered the highest performance, slightly outperforming the MT scenario. Both activated scenarios (HT and MT) significantly surpassed the untreated mixture (UT). Overall, the HT scenario proved to be the most effective among all CPB mixtures tested. XRD diffractogram analysis supported HT as the material with the highest strength performance due to the occurrence of more strength phases than other CPB materials, including Alite, Quartz, and Calcite. While UCS and UPV showed a positive correlation across all CPB materials, the relationship between UPV and the modulus of elasticity (E) demonstrated a low correlation. The findings suggest that using activated SNP materials can enhance CPB sustainability by lowering cement demand, stabilizing operating costs, and reducing environmental impacts. Full article
(This article belongs to the Special Issue Mining Engineering: Present and Future Prospectives)
Show Figures

Figure 1

19 pages, 2627 KB  
Article
Human Exposure to Metals and Potential Human Health Risk in a Volcanic Environment in Italy
by Giovanni Forte, Venerando Rapisarda, Flavia Ruggieri, Beatrice Battistini, Lisa Bauleo, Veronica Filetti, Elena Grignani, Piero Lovreglio, Serena Matera, Paola Senia, Francesca Vella, Ermanno Vitale, Beatrice Bocca and Ivo Iavicoli
Toxics 2025, 13(12), 1080; https://doi.org/10.3390/toxics13121080 - 15 Dec 2025
Viewed by 338
Abstract
Mt. Etna is the highest and most active stratovolcano in Europe, located in Catania (Sicily, Italy). Its persistent degassing, frequent explosions, and lava flows release large amounts of ash and gases into the atmosphere. This study aimed to assess whether chronic exposure to [...] Read more.
Mt. Etna is the highest and most active stratovolcano in Europe, located in Catania (Sicily, Italy). Its persistent degassing, frequent explosions, and lava flows release large amounts of ash and gases into the atmosphere. This study aimed to assess whether chronic exposure to local volcanic emissions leads to an increased internal dose of trace elements (As, Ba, Be, Bi, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, W, Zn) in Catania adult residents. To this end, urine samples were collected from 167 individuals residing in Catania and compared with 193 residents of other Sicilian areas located farther from the volcano. Results revealed significantly higher urinary concentrations of As, Hg, Mn, Pb, and Tl in the exposed group, suggesting volcanic activity as a relevant source of exposure. The levels of the other elements were instead affected by other factors such as lifestyle habits and the consumption of specific foods and beverages. The urinary concentrations of trace elements were consistent with reference values reported in other European studies, and the levels remained well within the health-based guidance values. There is evidence of an increased internal dose of a few elements in the Sicilian population exposed to volcano activity, but the observed increases are unlikely to pose a significant health risk. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

14 pages, 3622 KB  
Article
Exploratory Statistical Analysis of Precursors to Moderate Earthquakes in Japan
by Tomokazu Konishi
GeoHazards 2025, 6(4), 82; https://doi.org/10.3390/geohazards6040082 - 15 Dec 2025
Viewed by 362
Abstract
Modern statistical techniques enable quantitative characterisation of seismic activity. Analysis of the 2011 Tohoku megathrust earthquake revealed clear precursory signals: shortened inter-event intervals, increased magnitude scale (σ), and a pronounced precursory swarm immediately before the mainshock. While unique to this magnitude 9 event, [...] Read more.
Modern statistical techniques enable quantitative characterisation of seismic activity. Analysis of the 2011 Tohoku megathrust earthquake revealed clear precursory signals: shortened inter-event intervals, increased magnitude scale (σ), and a pronounced precursory swarm immediately before the mainshock. While unique to this magnitude 9 event, here I present subtler anomalies that may precede magnitude 7-class events, particularly when swarms occur. In such cases, magnitude distributions often differ from background seismicity, frequently showing elevated location (μ) and scale (σ). Conversely, σ is sometimes reduced, particularly in volcanic regions, where large earthquakes may occur without discernible swarms. Detection of swarm activity and analysis of magnitude parameters thus remain central to seismic risk assessment. If swarm characteristics resemble background levels, the likelihood of a major event is presumably low. However, the distinct, immediate precursory swarm observed before the Tohoku earthquake has not been replicated elsewhere. These findings indicate that statistical anomalies may signal elevated risk but are unlikely to enable precise temporal prediction of seismic events. Full article
Show Figures

Figure 1

25 pages, 7433 KB  
Article
Spatial and Magnitude Distribution of Seismic Events in Santorini Island, January–February 2025: Tectonic or Volcanic Earthquakes?
by Alexandra Moshou
GeoHazards 2025, 6(4), 81; https://doi.org/10.3390/geohazards6040081 - 12 Dec 2025
Viewed by 886
Abstract
During January–February 2025, the Santorini volcanic complex experienced intense seismic activity, increasing interest and concern regarding the possible reactivation of the magmatic system. This study investigates the spatial and magnitude distribution of seismic events with the aim of distinguishing between tectonic and volcanic [...] Read more.
During January–February 2025, the Santorini volcanic complex experienced intense seismic activity, increasing interest and concern regarding the possible reactivation of the magmatic system. This study investigates the spatial and magnitude distribution of seismic events with the aim of distinguishing between tectonic and volcanic earthquakes and understanding the underlying processes governing seismicity in the region. The analysis is based on data from the national and local seismic network, including epicenter and focus determination, local magnitude (ML) calculation, depth analysis, statistical processing, and the application of machine learning methods for event classification. The results show that tectonic earthquakes are mainly located at depths, D > 8 km along active faults, while volcanic earthquakes are concentrated at shallower levels (D < 5 km) below the volcanic center. The analysis of b values suggests the differentiation of the focal mechanism, with higher values for volcanic events, which is related to fluid and magmatic pressure processes. The spatiotemporal evolution of seismicity demonstrates seismic swarm characteristics, without a main earthquake, which are attributed to processes within the subvolcanic system. The study contributes to improving the understanding of the current seismovolcanic crisis of Santorini and enhances the ability to identify magmatic instability processes in a timely manner, critical for hazard assessment and monitoring of the South Aegean volcanic arc. Full article
(This article belongs to the Special Issue Active Faulting and Seismicity—2nd Edition)
Show Figures

Figure 1

32 pages, 9737 KB  
Article
Experimental Study on Marly Clay Stabilization Under Short-Term Conditions Using Volcanic Ash and Reactivity-Controlled Lime as Activator
by Roberto Ponce, Svetlana Melentijević, Natalia Montero and Sol López-Andrés
Infrastructures 2025, 10(12), 340; https://doi.org/10.3390/infrastructures10120340 - 10 Dec 2025
Viewed by 256
Abstract
Expansive soils undergo significant volume changes with moisture fluctuations, posing persistent challenges for infrastructure due to heave, settlement, and loss of bearing capacity. Stabilization is a common mitigation strategy, though traditional binders, such as cement and lime, are associated with high energy consumption [...] Read more.
Expansive soils undergo significant volume changes with moisture fluctuations, posing persistent challenges for infrastructure due to heave, settlement, and loss of bearing capacity. Stabilization is a common mitigation strategy, though traditional binders, such as cement and lime, are associated with high energy consumption and considerable CO2 emissions. In this context, identifying low-carbon alternatives is essential. This study evaluates the short-term behavior of expansive marly clays from southern Spain stabilized with volcanic ash generated during the 2021 Tajogaite eruption (La Palma, Canary Islands, Spain). Volcanic ash was incorporated in different proportions to assess its performance as a natural pozzolan, while natural hydrated lime was used both as a direct stabilizer and as an activator to enhance ash reactivity. A key methodological contribution of this research is the monitoring of lime reactivity throughout storage, using XRD and TGA to quantify portlandite loss and partial carbonation before mixing—an aspect seldom addressed in stabilization studies. The experimental program included chemical and mineralogical characterization, compaction, Atterberg limits, free swelling, unconfined compressive strength, and direct shear tests on natural and stabilized mixtures. The results show that volcanic ash, particularly when lime-activated, substantially improves volumetric stability. Free swelling decreased from 11.9% in the natural soil to values as low as 1.7%, while dry density increased and plasticity decreased. Strength gains were modest under short-term conditions, consistent with the limited time for pozzolanic reactions to develop. The combined use of volcanic ash and lime reduced the lime demand required to achieve equivalent volumetric control, offering an eco-efficient and technically viable alternative for stabilizing expansive marly clays. Full article
Show Figures

Figure 1

15 pages, 11792 KB  
Article
A Nanosatellite-Sized Detector for Sub-MeV Charged Cosmic Ray Fluxes in Low Earth Orbit: The Low-Energy Module (LEM) Onboard the NUSES Space Mission
by Riccardo Nicolaidis, Andrea Abba, Domenico Borrelli, Adriano Di Giovanni, Luigi Ferrentino, Giovanni Franchi, Francesco Nozzoli, Giancarlo Pepponi, Lorenzo Perillo, David Schledewitz and Enrico Verroi
Particles 2025, 8(4), 97; https://doi.org/10.3390/particles8040097 - 4 Dec 2025
Viewed by 243
Abstract
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina [...] Read more.
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina will be an optical telescope readout by SiPM arrays for the detection and study of Cerenkov light emitted by Extensive Air Showers (EASs) generated by high-energy cosmic rays and neutrinos in the atmosphere. Zirè will focus on the detection of protons and electrons up to a few hundred MeV and 0.1–30 MeV photons and will include the Low-Energy Module (LEM). The LEM will be a particle spectrometer devoted to the observation of fluxes of low-energy electrons in the 0.1–7-MeV range and protons in the 3–50 MeV range in low Earth orbit (LEO) followed by the hosting platform. The detection of Particle Bursts (PBs) in this physics channel of interest could provide insights into understanding complex phenomena such as possible correlations between seismic events or volcanic activity with the collective motion of particles in the plasma populating Van Allen belts. With its compact size and limited acceptance, the LEM will allow the exploration of hostile environments such as the South Atlantic Anomaly (SAA) and the inner Van Allen belt, in which the anticipated electron fluxes are on the order of 106 to 107 electrons per square centimeter per steradian per second. Concerning the vast literature on space-based particle spectrometers, the innovative aspect of the LEM resides in its compactness, within 10×10×10 cm3, and in its “active collimation” approach to dealing with the problem of multiple scattering at these low energies. In this work, the geometry of the detector, its detection concept, its operation modes, and the hardware adopted will be presented. Some preliminary results from a Monte Carlo simulation (Geant4) will be shown. Full article
Show Figures

Figure 1

20 pages, 11239 KB  
Article
Improving Geodetic Monitoring in the Aeolian Archipelago: Performance Assessment of the Salin@net GNSS Network
by Federico Pietrolungo, Alessandra Esposito, Giuseppe Pezzo, Aladino Govoni, Letizia Anderlini, Mirko Iannarelli, Andrea Terribili, Claudio Chiarabba and Mimmo Palano
Sensors 2025, 25(23), 7362; https://doi.org/10.3390/s25237362 - 3 Dec 2025
Viewed by 393
Abstract
The Aeolian Archipelago, located in the southern margin of the Tyrrhenian Sea, is a key area to investigate the interplay between regional active fault systems and volcanic activity, making it a focal point for geodynamic studies. In particular, Salina Island lies at the [...] Read more.
The Aeolian Archipelago, located in the southern margin of the Tyrrhenian Sea, is a key area to investigate the interplay between regional active fault systems and volcanic activity, making it a focal point for geodynamic studies. In particular, Salina Island lies at the intersection of two major tectonic structures: the Sisifo–Alicudi fault system in the western sector and the Aeolian–Tindari–Letojanni fault system in the central sector both exert a significant influence on the region’s deformation patterns. Detecting these signals requires high-quality GNSS data, yet the performance of newly installed stations in tectonic environments must be rigorously assessed. Between June 2023 and February 2024, a new continuous local GNSS network, which consists of five stations, Salin@Net, was established, on Salina Island. The central scientific objective of this study is to verify whether the new GNSS network achieves the data quality necessary for reliable geodetic monitoring and to evaluate its potential to resolve strain gradients in the area. We performed an extensive performance analysis of Salin@net GNSS stations, analyzing data quality, encompassing assessments of multipath effect, signal-to-noise ratio, observation continuity, and cycle slip occurrences, alongside GNSS position time series. These metrics were compared against the ISAL-RING station and benchmarked International GNSS Service (IGS) standards. Results show that the newly installed stations consistently meet the required standards, delivering robust and reliable measurements that are comparable to those of the RING GNSS continuous network. Positioning time series, processed in the ITRF14, indicate that the precision of the derived velocity estimates is comparable to that of standard continuous stations, although longer time spans are required to better constrain linear velocity estimates. Finally, spherical wavelet analysis demonstrates that the geometry of Salin@net significantly improves the spatial resolution of the strain field across the Aeolian–Tindari–Letojanni fault system and enhances resolution along the Sisifo–Alicudi fault, underscoring the role of dense, small-aperture GNSS networks in tectonic environment. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

27 pages, 4846 KB  
Article
Petrogenesis and Geological Significance of the Late Triassic A-Type and S-Type Syn-Collisional Granites in the Baoshan Terrane, SW China
by Bokun Yang, Anlin Liu, Zhen Jia, Zhenyang Liu and Peng Wu
Minerals 2025, 15(12), 1276; https://doi.org/10.3390/min15121276 - 3 Dec 2025
Viewed by 313
Abstract
The Baoshan Terrane, as a passive continental margin during the subduction of the Paleo-Tethys Ocean and the lower plate during collision, exhibits a poorly understood magmatic history. This region is characterized by limited magmatic activity and scarce field outcrops, which has hindered a [...] Read more.
The Baoshan Terrane, as a passive continental margin during the subduction of the Paleo-Tethys Ocean and the lower plate during collision, exhibits a poorly understood magmatic history. This region is characterized by limited magmatic activity and scarce field outcrops, which has hindered a comprehensive understanding of its petrogenesis and geological evolution. This paper presents a chronological and geochemical study of two different types of syn-collisional granites identified in the Mengnuo and Muchang areas in the southern Baoshan Terrane. Our results show that the two types of granites are high-fractionated S-type granites in Bangdong pluton from Mengnuo (zircon U-Pb ages of 230.3 ± 1.4 Ma, 228.7 ± 1.6 Ma and 230.2 ± 1.1 Ma) and A-type granites in Muchang (zircon U-Pb ages of 232.3 ± 1.8 Ma), respectively. Their formation ages are close to the timing of collision, belonging to syn-collisional granites. The Mengnuo high-fractionated S-type granites have SiO2 contents ranging from 75.15 to 77.78 wt.% with A/CNK of 1.14 to 5.09, and are strongly peraluminous, high-K calc-alkaline granites. They display negative zircon εHf(t) values (−7.72 to −12.32), indicating derivation from partial melting of ancient crustal materials followed by extensive fractional crystallization. In contrast, the Muchang A-type granites contain 73.26 to 76.41 wt.% SiO2, exhibit low A/CNK ratios (0.92–1.46, average = 1.07), and high Zr + Nb + Ce + Y abundances (313.7 to 3000.3 ppm), characterizing them as weakly peraluminous A-type granites. Further classification reveals that the Muchang granites belong to A1-type granites with positive εHf(t) values (+4.01 to +8.46), indicating the involvement of mantle-derived materials in their magma sources. In this case, combined with results from relevant studies in the Changming-Menglian suture zone, we propose that the Late Triassic magmatism in the Baoshan Terrane was likely triggered by slab break-off during syn-collisional stage. Slab break-off might cause mantle upwelling, resulting in large-scale Lincang batholith and associated volcanic rocks in the upper plate as well as various magmatism activities (S-type and A-type felsic rocks and intraplate basalts) in the Baoshan Terrane. Full article
Show Figures

Figure 1

Back to TopTop