Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (760)

Search Parameters:
Keywords = visual vertical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1377 KB  
Article
Sequential Fixation Behavior in Road Marking Recognition: Implications for Design
by Takaya Maeyama, Hiroki Okada and Daisuke Sawamura
J. Eye Mov. Res. 2025, 18(5), 59; https://doi.org/10.3390/jemr18050059 - 21 Oct 2025
Viewed by 123
Abstract
This study examined how drivers’ eye fixations change before, during, and after recognizing road markings, and how these changes relate to driving speed, visual complexity, cognitive functions, and demographics. 20 licensed drivers viewed on-board movies showing digit or character road markings while their [...] Read more.
This study examined how drivers’ eye fixations change before, during, and after recognizing road markings, and how these changes relate to driving speed, visual complexity, cognitive functions, and demographics. 20 licensed drivers viewed on-board movies showing digit or character road markings while their eye movements were tracked. Fixation positions and dispersions were analyzed. Results showed that, regardless of marking type, fixations were horizontally dispersed before and after recognition but became vertically concentrated during recognition, with fixation points shifting higher (p < 0.001) and horizontal dispersion decreasing (p = 0.01). During the recognition period, fixations moved upward and narrowed horizontally toward the final third (p = 0.034), suggesting increased focus. Longer fixations were linked to slower speeds for digits (p = 0.029) and more characters for character markings (p < 0.001). No significant correlations were found with cognitive functions or demographics. These findings suggest that drivers first scan broadly, then concentrate on markings as they approach. For optimal recognition, simple or essential information should be placed centrally or lower, while detailed content should appear higher to align with natural gaze patterns. In high-speed environments, markings should prioritize clarity and brevity in central positions to ensure safe and rapid recognition. Full article
Show Figures

Figure 1

22 pages, 1811 KB  
Article
Hierarchical Construction of Fuzzy Signature Models for Non-Destructive Assessment of Masonry Strength
by András Kaszás, Vanda O. Pomezanski and László T. Kóczy
Symmetry 2025, 17(10), 1764; https://doi.org/10.3390/sym17101764 - 19 Oct 2025
Viewed by 217
Abstract
Non-destructive testing methods are essential in civil engineering applications, such as evaluating the compressive strength of masonry. This paper presents a fuzzy signature model based on non-destructive in situ measurements and visual inspection, applying weighted geometric mean aggregation in the signature vertices determined [...] Read more.
Non-destructive testing methods are essential in civil engineering applications, such as evaluating the compressive strength of masonry. This paper presents a fuzzy signature model based on non-destructive in situ measurements and visual inspection, applying weighted geometric mean aggregation in the signature vertices determined by experts. The weights of the aggregation terms were optimized using the Monte Carlo method, genetic algorithm and particle swarm algorithm to ensure that the evaluation by the signature aligned with the results of destructive tests performed on existing masonry. The results of the methods were compared for single and multiple assembled masonry structures using the same objective function. All three methods provided relatively high confidence in finding the extreme values of the objective function on a generated dataset, which accounted for the correlations observed in actual measurements. Accordingly, validation based on real data yielded the expected results, thus demonstrating the model’s suitability for practical application. This study assessed the inherent, analyzing whether symmetric or asymmetric weight distributions affected evaluation consistency. While symmetric weighting simplified aggregation, asymmetry allowed local structural irregularities to be highlighted. In addition, the cost analysis of the optimization methods revealed a disparity in computational cost increments between the two approaches. The presented work outlines the advantages of the different methods and their applicability to structural assessment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 2060 KB  
Article
Characteristics of the Spatiotemporal Evolution and Driving Mechanisms of Soil Organic Matter in the Songnen Plain in China
by Yao Wang, Yimin Chen, Xinyuan Wang, Baiting Zhang, Yining Sun, Yuhan Zhang, Yuxuan Li, Yueyu Sui and Yingjie Dai
Agriculture 2025, 15(20), 2156; https://doi.org/10.3390/agriculture15202156 - 17 Oct 2025
Viewed by 313
Abstract
Soil organic matter (SOM) is a key component of nutrient cycling and soil fertility in terrestrial ecosystems. SOM is of great significance to the stability of terrestrial ecosystems and the improvement of soil productivity; to further exert its role, it is first necessary [...] Read more.
Soil organic matter (SOM) is a key component of nutrient cycling and soil fertility in terrestrial ecosystems. SOM is of great significance to the stability of terrestrial ecosystems and the improvement of soil productivity; to further exert its role, it is first necessary to clarify its actual distribution and occurrence status in specific regions. Under the combined impacts of intensive agriculture, unreasonable farming practices, and climate change, the SOM content in the Songnen Plain is showing a degradation trend, posing multiple stresses on its soil ecosystem functions. This study aims to systematically track the dynamic changes of SOM in the Songnen Plain, assess its spatiotemporal evolution characteristics, and reveal its driving mechanisms. A total of 113 representative soil profiles were selected in 2023; standardized excavation and sampling procedures were employed in the Songnen Plain. Soil pH, SOM, total nitrogen (TN), total phosphorus (TP), total potassium (TK), particle size (PSD), texture, and Munsell soil colors of samples were determined. Temporal variation characteristics, as well as horizontal and vertical spatial distribution patterns, in SOM content in the Songnen Plain were assayed. Structural equation modeling (SEM), together with freeze–thaw of soil and soil color mechanism analyses, was applied to reveal the spatiotemporal dynamics and driving mechanisms of SOM. The result indicated that the distribution pattern of SOM content in horizontal space shows higher levels in the northeastern region and lower levels in the southwestern region, and decreased with increasing soil depth. SEM analysis indicated that TN and PSD were the main positive factors, whereas bulk density exerted a dominant negative effect. The ranking of contribution rates is TN > TK > TP > PSD > annual average temperature > annual precipitation > bulk density. Mechanistic analysis revealed a significant negative correlation between SOM content and R, G, B values, with soil color intensity serving as a visual indicator of SOM content. Freeze–thaw thickness of soil was positively correlated with SOM content. These findings provide a scientific basis for soil fertility management and ecological conservation in cold regions. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 4197 KB  
Article
Experimental Setup for Three-Coordinate Visualization and Measurement of Micrometric Defects Using Dual-Wavelength Digital Holography on a Low-Coherence Source
by Vladimir Sementin, Mikhail Gavrish, Pavel Rozanov, Uliana Prokhorova, Anastasia Pogoda and Anatoly Boreysho
Appl. Sci. 2025, 15(20), 11054; https://doi.org/10.3390/app152011054 - 15 Oct 2025
Viewed by 209
Abstract
Non-contact, non-destructive testing of surface microgeometry plays a key role in such industries as microelectronics, additive manufacturing, and precision engineering. This paper presents the development and experimental testing of a digital holographic system based on a low-coherence laser diode operating at two close [...] Read more.
Non-contact, non-destructive testing of surface microgeometry plays a key role in such industries as microelectronics, additive manufacturing, and precision engineering. This paper presents the development and experimental testing of a digital holographic system based on a low-coherence laser diode operating at two close wavelengths, designed to measure height differences in the micrometer range. The method is based on a Michelson interferometer and reconstruction of the complex amplitude of the object wave, which allows phase measurements with subsequent phase conversion into heights. The tests were carried out on micrometer roughness standards with a trapezoidal profile with a groove depth from 24.5 μm to 100 μm and a profile width from 65 μm to 150 μm, as well as on reference strokes with a width from 25 to 200 μm. The obtained data demonstrate the possibility of three-dimensional and two-dimensional visualization of the objects under study with a relative error in height from 5.3% to 11.6% and in width up to 18.6%. It is shown that the system allows reliable measurement of defects of metal surfaces in the range from 25 to 100 μm both vertically and horizontally. Thus, the developed method can be used for high-precision, non-destructive testing in a wide range of technological tasks. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

26 pages, 7247 KB  
Article
DyslexiaNet: Examining the Viability and Efficacy of Eye Movement-Based Deep Learning for Dyslexia Detection
by Ramis İleri, Çiğdem Gülüzar Altıntop, Fatma Latifoğlu and Esra Demirci
J. Eye Mov. Res. 2025, 18(5), 56; https://doi.org/10.3390/jemr18050056 - 15 Oct 2025
Viewed by 224
Abstract
Dyslexia is a neurodevelopmental disorder that impairs reading, affecting 5–17.5% of children and representing the most common learning disability. Individuals with dyslexia experience decoding, reading fluency, and comprehension difficulties, hindering vocabulary development and learning. Early and accurate identification is essential for targeted interventions. [...] Read more.
Dyslexia is a neurodevelopmental disorder that impairs reading, affecting 5–17.5% of children and representing the most common learning disability. Individuals with dyslexia experience decoding, reading fluency, and comprehension difficulties, hindering vocabulary development and learning. Early and accurate identification is essential for targeted interventions. Traditional diagnostic methods rely on behavioral assessments and neuropsychological tests, which can be time-consuming and subjective. Recent studies suggest that physiological signals, such as electrooculography (EOG), can provide objective insights into reading-related cognitive and visual processes. Despite this potential, there is limited research on how typeface and font characteristics influence reading performance in dyslexic children using EOG measurements. To address this gap, we investigated the most suitable typefaces for Turkish-speaking children with dyslexia by analyzing EOG signals recorded during reading tasks. We developed a novel deep learning framework, DyslexiaNet, using scalogram images from horizontal and vertical EOG channels, and compared it with AlexNet, MobileNet, and ResNet. Reading performance indicators, including reading time, blink rate, regression rate, and EOG signal energy, were evaluated across multiple typefaces and font sizes. Results showed that typeface significantly affects reading efficiency in dyslexic children. The BonvenoCF font was associated with shorter reading times, fewer regressions, and lower cognitive load. DyslexiaNet achieved the highest classification accuracy (99.96% for horizontal channels) while requiring lower computational load than other networks. These findings demonstrate that EOG-based physiological measurements combined with deep learning offer a non-invasive, objective approach for dyslexia detection and personalized typeface selection. This method can provide practical guidance for designing educational materials and support clinicians in early diagnosis and individualized intervention strategies for children with dyslexia. Full article
Show Figures

Figure 1

15 pages, 2027 KB  
Article
Exosome Biomarker Profiling Using a Paper-Based Vertical Flow Assay
by Arnau Pallarès-Rusiñol, Jennifer Marfà, Rosanna Rossi, Mercè Martí and María Isabel Pividori
Biosensors 2025, 15(10), 694; https://doi.org/10.3390/bios15100694 - 14 Oct 2025
Viewed by 515
Abstract
Exosomes are nanoscale extracellular vesicles that carry valuable biomolecular information. However, their characterization still depends on complex and costly techniques such as flow cytometry. In this study, a paper-based Vertical Flow Assay (VFA) specifically designed for the detection and profiling of exosomes derived [...] Read more.
Exosomes are nanoscale extracellular vesicles that carry valuable biomolecular information. However, their characterization still depends on complex and costly techniques such as flow cytometry. In this study, a paper-based Vertical Flow Assay (VFA) specifically designed for the detection and profiling of exosomes derived from metastatic breast cancer cell lines is presented. The assay operates in an ELISA-like format, targeting exosomal surface proteins (CD9, CD63, CD81, and EGFR1) with specific antibodies and a secondary antibody conjugated to alkaline phosphatase. Upon reaction with the NBT/BCIP substrate, an insoluble indigo precipitate forms on the nitrocellulose membrane, generating a visual signal that can be further quantified by smartphone imaging. The VFA was optimized for membrane type, pore size, and blocking agents, reaching a detection limit of ~6 × 107 exosomes µL−1 in less than 20 min. Comparative studies with bead-based flow cytometry confirmed consistent biomarker expression profiles, demonstrating the reliability of the method. By enabling exosome biomarker profiling in a simplified and low-cost format, this approach provides a promising alternative to flow cytometry and other applications required for exosome characterization. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

13 pages, 455 KB  
Article
Outcomes of Strabismus Surgery in Patients with Cranial Nerve Palsy
by Laetitia Hinterhuber, Sandra Rezar-Dreindl, Ursula Schmidt-Erfurth and Eva Stifter
J. Clin. Med. 2025, 14(20), 7221; https://doi.org/10.3390/jcm14207221 - 13 Oct 2025
Viewed by 313
Abstract
Strabismus, or squint or deviating eyes, is defined as misalignment of the eyes when fixating on an object and is a common problem in ophthalmology. Palsy of the third, fourth or sixth cranial nerve is one of the leading underlying causes for paralytic [...] Read more.
Strabismus, or squint or deviating eyes, is defined as misalignment of the eyes when fixating on an object and is a common problem in ophthalmology. Palsy of the third, fourth or sixth cranial nerve is one of the leading underlying causes for paralytic strabismus, often requiring surgery. However, uncertainty regarding factors influencing surgical success remains. Background/Objectives: The purpose of this study is to review the outcome and influencing factors of strabismus surgery in patients with cranial nerve palsy. Methods: A retrospective study of 57 patients with third cranial nerve (CN3) palsy, fourth cranial nerve (CN4) palsy, sixth cranial nerve (CN6) palsy or combined nerve palsy who underwent strabismus surgery between October 2009 and December 2023 was conducted. Analyzed data included demographic details, type of surgical intervention, etiology of nerve palsy, pre- and postoperative angle of deviation (AOD), vertical deviation (VD), best-corrected visual acuity (BCVA), and refractive error. Results: Mean age was 41.29 ± 23.14 years with a mean follow-up of 10.8 ± 15.38 months. 30 patients (52.63%) had CN6 palsy, 12 patients (21.05%) had CN3 palsy, eight patients (14.04%) had CN4 palsy and seven patients (12.28%) had combined nerve palsy. Brain neoplasm was the most common cause of nerve palsy (33.33%). Mean preoperative AOD improved from 17.54° ± 10.68 to 7.13° ± 8.93 and from 17.21° ± 9.58 to 7.49° ± 9.75 for near and distance, respectively (p < 0.001). Changes in VD, refractive error, and BCVA were not statistically significant. Conclusions: Age, gender, preoperative AOD, subtype and etiology of nerve palsy had no significant influence on surgical outcomes, which are satisfactory in patients with cranial nerve palsy (80.7%). Full article
(This article belongs to the Special Issue Clinical Investigations into Diagnosing and Managing Strabismus)
Show Figures

Figure 1

44 pages, 9560 KB  
Article
Design of a Multi-Method Integrated Intelligent UAV System for Vertical Greening Maintenance
by Fangtian Ying, Bingqian Zhai and Xinglong Zhao
Appl. Sci. 2025, 15(20), 10887; https://doi.org/10.3390/app152010887 - 10 Oct 2025
Viewed by 239
Abstract
Vertical greening (VG) delivers measurable urban ecosystem benefits, yet maintenance is constrained by at-height safety risks, heterogeneous facade geometries, and low labor efficiency. Although unmanned aerial vehicles show promise, most studies optimize isolated modules rather than providing a user-oriented, system-level pathway. This paper [...] Read more.
Vertical greening (VG) delivers measurable urban ecosystem benefits, yet maintenance is constrained by at-height safety risks, heterogeneous facade geometries, and low labor efficiency. Although unmanned aerial vehicles show promise, most studies optimize isolated modules rather than providing a user-oriented, system-level pathway. This paper proposes a closed-loop, multi-method framework integrating the Decision-Making Trial and Evaluation Laboratory-Analytic Network Process, the Functional Analysis System Technique, and the Theory of Inventive Problem Solving. DEMATEL-ANP models causal interdependencies among requirements and derives prioritized weights,; FAST decomposes functions and localizes conflicts, and TRIZ converts those conflicts into principle-guided structural concepts—establishing a traceable requirements → functions → conflicts → structure pipeline. We illustrate the approach at the prototype level with Rhino–KeyShot visualizations under near-facade constraints, showing how prioritized requirements propagate into candidate UAV architectures. The framework structures the identification and resolution of tightly coupled technical conflicts, supports adaptability in facade-proximal scenarios, and provides a transparent mapping from user needs to structure-level concepts. Claims are restricted to methodological feasibility; comprehensive quantitative field validation remains for future work. The framework offers a reproducible methodological reference for the systematic design and decision-making of intelligent UAV maintenance systems for VG. Full article
Show Figures

Figure 1

18 pages, 5377 KB  
Article
M3ENet: A Multi-Modal Fusion Network for Efficient Micro-Expression Recognition
by Ke Zhao, Xuanyu Liu and Guangqian Yang
Sensors 2025, 25(20), 6276; https://doi.org/10.3390/s25206276 - 10 Oct 2025
Viewed by 386
Abstract
Micro-expression recognition (MER) aims to detect brief and subtle facial movements that reveal suppressed emotions, discerning authentic emotional responses in scenarios such as visitor experience analysis in museum settings. However, it remains a highly challenging task due to the fleeting duration, low intensity, [...] Read more.
Micro-expression recognition (MER) aims to detect brief and subtle facial movements that reveal suppressed emotions, discerning authentic emotional responses in scenarios such as visitor experience analysis in museum settings. However, it remains a highly challenging task due to the fleeting duration, low intensity, and limited availability of annotated data. Most existing approaches rely solely on either appearance or motion cues, thereby restricting their ability to capture expressive information fully. To overcome these limitations, we propose a lightweight multi-modal fusion network, termed M3ENet, which integrates both motion and appearance cues through early-stage feature fusion. Specifically, our model extracts horizontal, vertical, and strain-based optical flow between the onset and apex frames, alongside RGB images from the onset, apex, and offset frames. These inputs are processed by two modality-specific subnetworks, whose features are fused to exploit complementary information for robust classification. To improve generalization in low data regimes, we employ targeted data augmentation and adopt focal loss to mitigate class imbalance. Extensive experiments on five benchmark datasets, including CASME I, CASME II, CAS(ME)2, SAMM, and MMEW, demonstrate that M3ENet achieves state-of-the-art performance with high efficiency. Ablation studies and Grad-CAM visualizations further confirm the effectiveness and interpretability of the proposed architecture. Full article
(This article belongs to the Special Issue AI-Based Computer Vision Sensors & Systems—2nd Edition)
Show Figures

Figure 1

12 pages, 2218 KB  
Article
The Effects of Muscle Fatigue on Lower Extremity Biomechanics During the Three-Step Layup Jump and Drop Landing in Male Recreational Basketball Players
by Li Jin and Brandon Yang
Biomechanics 2025, 5(4), 81; https://doi.org/10.3390/biomechanics5040081 - 10 Oct 2025
Viewed by 483
Abstract
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue [...] Read more.
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue on ankle, knee, and hip-joint biomechanics during layup and landing. We hypothesized that fatigue would increase peak vertical ground reaction force (GRF), peak knee extension angle, and peak joint moments. Methods: Fourteen healthy male participants performed 3-step layups and drop landings using their dominant leg on force plates. The fatigue protocol consisted of squat jumps, step-ups, and repeated countermovement jumps (CMJs), with fatigue defined as three consecutive CMJs below 80% of the participant’s pre-established maximum jump height. After a fatigue protocol, they repeated the tasks. Kinematic data were collected using an eight-camera Vicon system (100 Hz), and GRF data were recorded with two AMTI force plates (1000 Hz). Thirty-six reflective markers were placed on lower-limb anatomical landmarks, and data were processed using Visual 3D. Paired t-tests (α = 0.05) were conducted using SPSS (V26.0) to compare pre- and post-fatigue outcomes. Results: Significant increases were found in peak GRF during landing (pre: 3.41 ± 0.81 BW [Body Weight], post: 3.95 ± 1.05 BW, p = 0.036), and peak negative hip joint work during landing (pre: 0.34 ± 0.18 J/kg, post: 0.66 ± 0.43 J/kg, p = 0.025). Conclusions: These findings indicate that fatigue may alter landing mechanics, reflected in increased ground reaction forces and negative hip joint work. These preliminary findings should be interpreted cautiously, and future studies with larger samples and additional neuromuscular measures under sport-specific conditions are needed to improve ecological validity. Full article
Show Figures

Figure 1

22 pages, 4621 KB  
Article
Determination of the Mechanical Tensile Characteristics of Some 3D-Printed Specimens from NYLON 12 CARBON Fiber Material
by Claudiu Babiș, Andrei Dimitrescu, Sorin Alexandru Fica, Ovidiu Antonescu, Daniel Vlăsceanu and Constantin Stochioiu
Technologies 2025, 13(10), 456; https://doi.org/10.3390/technologies13100456 - 8 Oct 2025
Viewed by 346
Abstract
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, [...] Read more.
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, vertical, and lateral. Each specimen was printed with a soluble SR-30 support material, which was subsequently dissolved in an SCA 1200-HT wash station using heated alkaline solution. Following support removal, all samples underwent thermal annealing at 80 °C for 5 h in the printer’s controlled chamber to eliminate residual moisture and improve structural integrity. The annealed specimens were subjected to uniaxial tensile testing using an Instron 8875 electrohydraulic machine, with strain measured by digital image correlation (DIC) on a speckle-patterned gauge section. Key mechanical properties, including Young’s modulus, Poisson’s ratio, yield strength, and ultimate tensile strength, were determined. Finally, a finite element analysis (FEA) was performed using MSC Visual Nastran for Windows to simulate the tensile loading conditions and assess internal stress distributions for each print orientation. The combined experimental and numerical results confirm the feasibility of using additively manufactured parts in demanding engineering applications. Full article
Show Figures

Figure 1

12 pages, 6410 KB  
Article
Design and Color Prediction of Anthracene-Based Dyes Based on Quantum Chemical Calculations
by Yanyi Li, Jiahao Zhang, Mei Bai, Hao Li, Zengbo Ke and Chunsheng Zhou
Molecules 2025, 30(19), 3975; https://doi.org/10.3390/molecules30193975 - 3 Oct 2025
Viewed by 302
Abstract
We systematically investigated the parent anthracene (abbreviated as en-1, C14H10) and three N,N′-disubstituted derivatives: the 1,5-diethylanthracene (en-2, C18H18), the 1,5-divinylanthracene (en-3, C18H14), and the 1,5-diphenylanthracene (en-4, C26 [...] Read more.
We systematically investigated the parent anthracene (abbreviated as en-1, C14H10) and three N,N′-disubstituted derivatives: the 1,5-diethylanthracene (en-2, C18H18), the 1,5-divinylanthracene (en-3, C18H14), and the 1,5-diphenylanthracene (en-4, C26H18), using a rigorous density functional theory (DFT)/time-dependent density functional theory (TD-DFT) approach. Following full geometric optimization and frequency validation (no imaginary frequencies), frontier molecular orbital analysis revealed an inverse correlation between conjugation extent and the HOMO-LUMO energy gap. Electrostatic potential (ESP) analysis further indicated a progressive increase in surface potential variance upon substitution, reflecting charge redistribution. TD-DFT calculations yielded vertical excitation wavelengths of 438 nm, 441 nm, 464 nm, and 496 nm for en-1, en-2, en-3, and en-4, respectively. Complementary color theory predicts visual colors of yellow, yellow, red, and orange for these compounds based on their absorption characteristics. This work establishes a closed-loop “computation-spectra-color” model for anthracene-based dyes, providing a transferable design paradigm for novel functional pigments with high molar extinction coefficients. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Viewed by 553
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

19 pages, 5861 KB  
Article
Topological Signal Processing from Stereo Visual SLAM
by Eleonora Di Salvo, Tommaso Latino, Maria Sanzone, Alessia Trozzo and Stefania Colonnese
Sensors 2025, 25(19), 6103; https://doi.org/10.3390/s25196103 - 3 Oct 2025
Viewed by 359
Abstract
Topological signal processing is emerging alongside Graph Signal Processing (GSP) in various applications, incorporating higher-order connectivity structures—such as faces—in addition to nodes and edges, for enriched connectivity modeling. Rich point clouds acquired by multi-camera systems in Visual Simultaneous Localization and Mapping (V-SLAM) are [...] Read more.
Topological signal processing is emerging alongside Graph Signal Processing (GSP) in various applications, incorporating higher-order connectivity structures—such as faces—in addition to nodes and edges, for enriched connectivity modeling. Rich point clouds acquired by multi-camera systems in Visual Simultaneous Localization and Mapping (V-SLAM) are typically processed using graph-based methods. In this work, we introduce a topological signal processing (TSP) framework that integrates texture information extracted from V-SLAM; we refer to this framework as TSP-SLAM. We show how TSP-SLAM enables the extension of graph-based point cloud processing to more advanced topological signal processing techniques. We demonstrate, on real stereo data, that TSP-SLAM enables a richer point cloud representation by associating signals not only with vertices but also with edges and faces of the mesh computed from the point cloud. Numerical results show that TSP-SLAM supports the design of topological filtering algorithms by exploiting the mapping between the 3D mesh faces, edges and vertices and their 2D image projections. These findings confirm the potential of TSP-SLAM for topological signal processing of point cloud data acquired in challenging V-SLAM environments. Full article
(This article belongs to the Special Issue Stereo Vision Sensing and Image Processing)
Show Figures

Figure 1

22 pages, 12194 KB  
Article
Visual Signal Recognition with ResNet50V2 for Autonomous ROV Navigation in Underwater Environments
by Cristian H. Sánchez-Saquín, Alejandro Gómez-Hernández, Tomás Salgado-Jiménez, Juan M. Barrera Fernández, Leonardo Barriga-Rodríguez and Alfonso Gómez-Espinosa
Automation 2025, 6(4), 51; https://doi.org/10.3390/automation6040051 - 1 Oct 2025
Viewed by 406
Abstract
This study presents the design and evaluation of AquaSignalNet, a deep learning-based system for recognizing underwater visual commands to enable the autonomous navigation of a Remotely Operated Vehicle (ROV). The system is built on a ResNet50 V2 architecture and trained with a custom [...] Read more.
This study presents the design and evaluation of AquaSignalNet, a deep learning-based system for recognizing underwater visual commands to enable the autonomous navigation of a Remotely Operated Vehicle (ROV). The system is built on a ResNet50 V2 architecture and trained with a custom dataset, UVSRD, comprising 33,800 labeled images across 12 gesture classes, including directional commands, speed values, and vertical motion instructions. The model was deployed on a Raspberry Pi 4 integrated with a TIVA C microcontroller for real-time motor control, a PID-based depth control loop, and an MPU9250 sensor for orientation tracking. Experiments were conducted in a controlled pool environment using printed signal cards to define two autonomous trajectories. In the first trajectory, the system achieved 90% success, correctly interpreting a mixed sequence of turns, ascents, and speed changes. In the second, more complex trajectory, involving a rectangular inspection loop and multi-layer navigation, the system achieved 85% success, with failures mainly due to misclassification resulting from lighting variability near the water surface. Unlike conventional approaches that rely on QR codes or artificial markers, AquaSignalNet employs markerless visual cues, offering a flexible alternative for underwater inspection, exploration, and logistical operations. The results demonstrate the system’s viability for real-time gesture-based control. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

Back to TopTop