Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.2.1. Testing Procedure
2.2.2. Phases of the STS Task
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Sex Differences and Correlation Analysis of AHI and Arch Stiffness
3.2. Sex Differences in Postural Control During the STS
3.3. Sex Differences in Energy Flow During the STS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zifchock, R.A.; Davis, I.; Hillstrom, H.; Song, J. The effect of gender, age, and lateral dominance on arch height and arch stiffness. Foot Ankle Int. 2006, 27, 367–372. [Google Scholar] [CrossRef]
- Song, J.; Choe, K.; Neary, M.; Zifchock, R.A.; Cameron, K.L.; Trepa, M.; Hannan, M.T.; Hillstrom, H. Comprehensive biomechanical characterization of feet in USMA cadets: Comparison across race, gender, arch flexibility, and foot types. Gait Posture 2018, 60, 175–180. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Theriot, C.; Hillstrom, H.J.; Song, J.; Neary, M. The relationship between arch height and arch flexibility: A proposed arch flexibility classification system for the description of multidimensional foot structure. J. Am. Podiatr. Med. Assoc. 2017, 107, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Nagano, K.; Okuyama, R.; Taniguchi, N.; Yoshida, T. Gender difference in factors affecting the medial longitudinal arch height of the foot in healthy young adults. J. Phys. Ther. Sci. 2018, 30, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Jor, A.; Lai, C.H.; Khan, M.J.; He, Y.; Lam, W.K.; Winser, S.J.; Gao, F.; Zhang, M.; Kobayashi, T. Effects of somatosensory-stimulating foot orthoses on postural balance in older adults: A computerized dynamic posturography analysis. Gait Posture 2025, 119, 189–196. [Google Scholar] [CrossRef]
- Sedaghati, P.; Kazemi Pakdel, F.; Zarei, H. Investigating the effects of high-arch and flat foot deformities on postural control: A systematic review and meta-analysis. J. Mod. Rehabil. 2023, 17, 363–374. [Google Scholar] [CrossRef]
- Shum, G.L.; Crosbie, J.; Lee, R.Y. Energy transfer across the lumbosacral and lower-extremity joints in patients with low back pain during sit-to-stand. Arch. Phys. Med. Rehabil. 2009, 90, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Augustus, S.; Hudson, P.E.; Harvey, N.; Smith, N. Whole-body energy transfer strategies during football instep kicking: Implications for training practices. Sports Biomech. 2024, 23, 1917–1932. [Google Scholar] [CrossRef] [PubMed]
- Fickey, S.N.; Browne, M.G.; Franz, J.R. Biomechanical effects of augmented ankle power output during human walking. J. Exp. Biol. 2018, 221, jeb182113. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Liu, Y. Coordination patterns and energy flow analysis in sit-to-stand transitions among individuals with different body mass indexes. Life 2025, 15, 464. [Google Scholar] [CrossRef]
- Sadeh, S.; Gobert, D.; Shen, K.-H.; Foroughi, F.; Hsiao, H.-Y. Biomechanical and neuromuscular control characteristics of sit-to-stand transfer in young and older adults: A systematic review with implications for balance regulation mechanisms. Clin. Biomech. 2023, 109, 106068. [Google Scholar] [CrossRef]
- Nilsson, M.K.; Friis, R.; Michaelsen, M.S.; Jakobsen, P.A.; Nielsen, R.O. Classification of the height and flexibility of the medial longitudinal arch of the foot. J. Foot Ankle Res. 2012, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.S.; McClay, I.S. Measurements used to characterize the foot and the medial longitudinal arch: Reliability and validity. Phys. Ther. 2000, 80, 864–871. [Google Scholar] [CrossRef]
- Vieira, M.F.; Sacco, I.C.N.; Nora, F.G.S.; Rosenbaum, D.; Lobo da Costa, P.H. Footwear and foam surface alter gait initiation of typical subjects. PLoS ONE 2015, 10, e0135821. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Zhao, X.; Gu, Y.; Yu, J.; Ma, Y.; Zhou, Z. The influence of gender, age, and body mass index on arch height and arch stiffness. J. Foot Ankle Surg. 2020, 59, 298–302. [Google Scholar] [CrossRef]
- Fukano, M.; Fukubayashi, T. Gender-based differences in the functional deformation of the foot longitudinal arch. Foot 2012, 22, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Pavão, S.L.; dos Santos, A.N.; Rocha, N.A.C.F. Sex and age influence on postural sway during sit-to-stand movement in children and adolescents: Cross-sectional study. Int. J. Dev. Neurosci. 2021, 81, 520–528. [Google Scholar] [CrossRef]
- Norman-Gerum, V.; McPhee, J. Comprehensive description of sit-to-stand motions using force and angle data. J. Biomech. 2020, 112, 110046. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.W.; Williams, D.S.B.; Windsor, B.; Butler, R.J.; Zhang, S. Ankle work and dynamic joint stiffness in high- compared to low-arched athletes during a barefoot running task. Hum. Mov. Sci. 2014, 34, 147–156. [Google Scholar] [CrossRef]
- Karataş, L.; Karasu, A.U. Association of medial longitudinal arch height and stiffness with lower extremity alignment, pain, and disease severity in knee osteoarthritis: A cross-sectional study. Arch. Rheumatol. 2024, 39, 641–651. [Google Scholar] [CrossRef]
- Kawakami, W.; Iwamoto, Y.; Sekiya, J.; Ota, M.; Ishii, Y.; Takahashi, M. Impact of pronated foot on energetic behavior and efficiency during walking. Gait Posture 2024, 107, 23–27. [Google Scholar] [CrossRef] [PubMed]
Male | Female | |
---|---|---|
Age (y) | 22.3 ± 2.35 | 22.71 ± 2.51 |
Height (cm) | 176.12 ± 5.39 | 164.01 ± 5.41 |
Weight (kg) | 70.37 ± 9.95 | 55.67 ± 5.87 |
Body mass index (kg/m2) | 22.61 ± 2.46 | 20.72 ± 1.72 |
Foot length (cm) | 25.56 ± 1.14 | 23.24 ± 0.89 |
Truncated foot length (cm) | 20.75 ± 1.43 | 22.2 ± 21.43 |
Standing arch height (cm) | 7.14 ± 0.59 | 6.47 ± 0.53 |
Sitting arch height (cm) | 7.61 ± 0.65 | 6.92 ± 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhou, S.; Pan, Y.; Li, L.; Liu, Y. Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks. Life 2025, 15, 1550. https://doi.org/10.3390/life15101550
Liu X, Zhou S, Pan Y, Li L, Liu Y. Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks. Life. 2025; 15(10):1550. https://doi.org/10.3390/life15101550
Chicago/Turabian StyleLiu, Xuan, Shu Zhou, Yan Pan, Lei Li, and Ye Liu. 2025. "Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks" Life 15, no. 10: 1550. https://doi.org/10.3390/life15101550
APA StyleLiu, X., Zhou, S., Pan, Y., Li, L., & Liu, Y. (2025). Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks. Life, 15(10), 1550. https://doi.org/10.3390/life15101550