Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (878)

Search Parameters:
Keywords = vision-assisted

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2413 KiB  
Article
Vision-Ray-Calibration-Based Monocular Deflectometry by Poses Estimation from Reflections
by Cheng Liu, Jianhua Liu, Yanming Xing, Xiaohui Ao, Wang Zhang and Chunguang Yang
Sensors 2025, 25(15), 4778; https://doi.org/10.3390/s25154778 - 3 Aug 2025
Viewed by 54
Abstract
A monocular deflectometric system comprises a camera and a screen that collaboratively facilitate the reconstruction of a specular surface under test (SUT). This paper presents a methodology for solving the slope distribution of the SUT utilizing pose estimation derived from reflections, based on [...] Read more.
A monocular deflectometric system comprises a camera and a screen that collaboratively facilitate the reconstruction of a specular surface under test (SUT). This paper presents a methodology for solving the slope distribution of the SUT utilizing pose estimation derived from reflections, based on vision ray calibration (VRC). Initially recorded by the camera, an assisted flat mirror in different postures reflects the patterns displayed by a screen maintained in a constant posture. The system undergoes a calibration based on the VRC to ascertain the vision ray distribution of the camera and the spatial relationship between the camera and the screen. Subsequently, the camera records the reflected patterns by the SUT, which remains in a constant posture while the screen is adjusted to multiple postures. Utilizing the VRC, the vision ray distribution among several postures of the screen and the SUT is calibrated. Following this, an iterative integrated calibration is performed, employing the calibration results from the preceding separate calibrations as initial parameters. The integrated calibration amalgamates the cost functions from the separate calibrations with the intersection of lines in Plücker space. Ultimately, the results from the integrated calibration yield the slope distribution of the SUT, enabling an integral reconstruction. In both the numeric simulations and actual measurements, the integrated calibration significantly enhances the accuracy of the reconstructions when compared to the reconstructions with the separate calibrations. Full article
(This article belongs to the Section Optical Sensors)
17 pages, 2222 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 - 2 Aug 2025
Viewed by 83
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
Show Figures

Figure 1

20 pages, 12851 KiB  
Article
Evaluation of a Vision-Guided Shared-Control Robotic Arm System with Power Wheelchair Users
by Breelyn Kane Styler, Wei Deng, Cheng-Shiu Chung and Dan Ding
Sensors 2025, 25(15), 4768; https://doi.org/10.3390/s25154768 - 2 Aug 2025
Viewed by 165
Abstract
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed [...] Read more.
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed methods approach participants compared VGS and manual joystick control, providing performance metrics, qualitative insights, and lessons learned. Data collection included demographic questionnaires, the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and exit interviews. No significant SUS differences were found between control modes, but NASA-TLX scores revealed VGS control significantly reduced workload during the drinking task and the popcorn task. VGS control reduced operation time and improved task success but was not universally preferred. Six participants preferred VGS, five preferred manual, and one had no preference. In addition, participants expressed interest in robotic arms for daily tasks and described two main operation challenges: distinguishing wrist orientation from rotation modes and managing depth perception. They also shared perspectives on how a personal robotic arm could complement caregiver support in their home. Full article
(This article belongs to the Special Issue Intelligent Sensors and Robots for Ambient Assisted Living)
Show Figures

Figure 1

14 pages, 1974 KiB  
Article
The Identification of the Competency Components Necessary for the Tasks of Workers’ Representatives in the Field of OSH to Support Their Selection and Development, as Well as to Assess Their Effectiveness
by Peter Leisztner, Ferenc Farago and Gyula Szabo
Safety 2025, 11(3), 73; https://doi.org/10.3390/safety11030073 - 1 Aug 2025
Viewed by 132
Abstract
The European Union Council’s zero vision aims to eliminate workplace fatalities, while Industry 4.0 presents new challenges for occupational safety. Despite HR professionals assessing managers’ and employees’ competencies, no system currently exists to evaluate the competencies of workers’ representatives in occupational safety and [...] Read more.
The European Union Council’s zero vision aims to eliminate workplace fatalities, while Industry 4.0 presents new challenges for occupational safety. Despite HR professionals assessing managers’ and employees’ competencies, no system currently exists to evaluate the competencies of workers’ representatives in occupational safety and health (OSH). It is crucial to establish the necessary competencies for these representatives to avoid their selection based on personal bias, ambition, or coercion. The main objective of the study is to identify the competencies and their components required for workers’ representatives in the field of occupational safety and health by following the steps of the DACUM method with the assistance of OSH professionals. First, tasks were identified through semi-structured interviews conducted with eight occupational safety experts. In the second step, a focus group consisting of 34 OSH professionals (2 invited guests and 32 volunteers) determined the competencies and their components necessary to perform those tasks. Finally, the results were validated through an online questionnaire sent to the 32 volunteer participants of the focus group, from which 11 responses (34%) were received. The research categorized the competencies into the following three groups: core competencies (occupational safety and professional knowledge) and distinguishing competencies (personal attributes). Within occupational safety knowledge, 10 components were defined; for professional expertise, 7 components; and for personal attributes, 16 components. Based on the results, it was confirmed that all participants of the tripartite system have an important role in the training and development of workers’ representatives in the field of occupational safety and health. The results indicate that although OSH representation is not yet a priority in Hungary, there is a willingness to collaborate with competent, well-prepared representatives. The study emphasizes the importance of clearly defining and assessing the required competencies. Full article
Show Figures

Figure 1

25 pages, 8468 KiB  
Article
An Autonomous Localization Vest System Based on Advanced Adaptive PDR with Binocular Vision Assistance
by Tianqi Tian, Yanzhu Hu, Xinghao Zhao, Hui Zhao, Yingjian Wang and Zhen Liang
Micromachines 2025, 16(8), 890; https://doi.org/10.3390/mi16080890 (registering DOI) - 30 Jul 2025
Viewed by 135
Abstract
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and [...] Read more.
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and binocular vision, designed to provide a low-cost, high-reliability, and high-precision solution for rescuers. By analyzing the characteristics of measurement data from various body parts, the chest is identified as the optimal placement for sensors. A chest-mounted advanced APDR method based on dynamic step segmentation detection and adaptive step length estimation has been developed. Furthermore, step length features are innovatively integrated into the visual tracking algorithm to constrain errors. Visual data is fused with dead reckoning data through an extended Kalman filter (EKF), which notably enhances the reliability and accuracy of the positioning system. A wearable autonomous localization vest system was designed and tested in indoor corridors, underground parking lots, and tunnel environments. Results show that the system decreases the average positioning error by 45.14% and endpoint error by 38.6% when compared to visual–inertial odometry (VIO). This low-cost, wearable solution effectively meets the autonomous positioning needs of rescuers in disaster scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence for Micro Inertial Sensors)
Show Figures

Figure 1

20 pages, 3729 KiB  
Article
Can AIGC Aid Intelligent Robot Design? A Tentative Research of Apple-Harvesting Robot
by Qichun Jin, Jiayu Zhao, Wei Bao, Ji Zhao, Yujuan Zhang and Fuwen Hu
Processes 2025, 13(8), 2422; https://doi.org/10.3390/pr13082422 - 30 Jul 2025
Viewed by 348
Abstract
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in [...] Read more.
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in conceptual and technical design, functional module design, and the training of the perception ability to accelerate prototyping. Taking the design of an apple-harvesting robot, for example, we demonstrate a basic framework of the AIGC-assisted robot design methodology, leveraging the generation capabilities of available multimodal large language models, as well as the human intervention to alleviate AI hallucination and hidden risks. Second, we study the enhancement effect on the robot perception system using the generated apple images based on the large vision-language models to expand the actual apple images dataset. Further, an apple-harvesting robot prototype based on an AIGC-aided design is demonstrated and a pick-up experiment in a simulated scene indicates that it achieves a harvesting success rate of 92.2% and good terrain traversability with a maximum climbing angle of 32°. According to the tentative research, although not an autonomous design agent, the AIGC-driven design workflow can alleviate the significant complexities and challenges of intelligent robot design, especially for beginners or young engineers. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

19 pages, 1555 KiB  
Article
MedLangViT: A Language–Vision Network for Medical Image Segmentation
by Yiyi Wang, Jia Su, Xinxiao Li and Eisei Nakahara
Electronics 2025, 14(15), 3020; https://doi.org/10.3390/electronics14153020 - 29 Jul 2025
Viewed by 237
Abstract
Precise medical image segmentation is crucial for advancing computer-aided diagnosis. Although deep learning-based medical image segmentation is now widely applied in this field, the complexity of human anatomy and the diversity of pathological manifestations often necessitate the use of image annotations to enhance [...] Read more.
Precise medical image segmentation is crucial for advancing computer-aided diagnosis. Although deep learning-based medical image segmentation is now widely applied in this field, the complexity of human anatomy and the diversity of pathological manifestations often necessitate the use of image annotations to enhance segmentation accuracy. In this process, the scarcity of annotations and the lightweight design requirements of associated text encoders collectively present key challenges for improving segmentation model performance. To address these challenges, we propose MedLangViT, a novel language–vision multimodal model for medical image segmentation that incorporates medical descriptive information through lightweight text embedding rather than text encoders. MedLangViT innovatively leverages medical textual information to assist the segmentation process, thereby reducing reliance on extensive high-precision image annotations. Furthermore, we design an Enhanced Channel-Spatial Attention Module (ECSAM) to effectively fuse textual and visual features, strengthening textual guidance for segmentation decisions. Extensive experiments conducted on two publicly available text–image-paired medical datasets demonstrated that MedLangViT significantly outperforms existing state-of-the-art methods, validating the effectiveness of both the proposed model and the ECSAM. Full article
Show Figures

Figure 1

19 pages, 744 KiB  
Article
The Epidemiology of Mobility Difficulty in Saudi Arabia: National Estimates, Severity Levels, and Sociodemographic Differentials
by Ahmed Alduais, Hind Alfadda and Hessah Saad Alarifi
Healthcare 2025, 13(15), 1804; https://doi.org/10.3390/healthcare13151804 - 25 Jul 2025
Viewed by 492
Abstract
Background: Mobility limitation is a pivotal but under-documented dimension of disability in Saudi Arabia. Leveraging the 2017 National Disability Survey, this cross-sectional study provides a population-wide profile of mobility-related physical difficulty. Objectives: Five research aims were pursued: (1) estimate national prevalence and severity [...] Read more.
Background: Mobility limitation is a pivotal but under-documented dimension of disability in Saudi Arabia. Leveraging the 2017 National Disability Survey, this cross-sectional study provides a population-wide profile of mobility-related physical difficulty. Objectives: Five research aims were pursued: (1) estimate national prevalence and severity by sex; (2) map regional differentials; (3) examine educational and marital correlates; (4) characterize cause, duration, and familial context among those with multiple limitations; and (5) describe patterns of assistive-aid and social-service use. Methods: Publicly available aggregate data covering 20,408,362 Saudi citizens were cleaned and analyzed across 14 mobility indicators and three baseline files. Prevalence ratios and χ2 tests assessed associations. Results: Overall, 1,445,723 Saudis (7.1%) reported at least one functional difficulty; 833,136 (4.1%) had mobility difficulty, of whom 305,867 (36.7%) had mobility-only impairment. Severity was chiefly mild (35% of cases), with moderate (16%) and severe (7%) forms forming a descending pyramid. Prevalence varied more than threefold across the thirteen regions, peaking in Aseer (9.4%) and bottoming in Najran (2.9%). Mobility difficulty clustered among adults with no schooling (36.1%) and widowed status (18.5%), with sharper female disadvantage in both domains (p < 0.001). Among those with additional limitations, chronic disease dominated etiology (56.3%), and 90.1% had lived with disability for ≥25 years; women were overrepresented in the longest-duration band. Aid utilization was led by crutches (47.7%), personal assistance (25.3%), and wheelchairs (22.6%), while 83.8% accessed Ministry rehabilitation services, yet fewer than 4% used home or daycare support. Conclusions: These findings highlight sizeable, regionally concentrated, and gender-patterned mobility burdens, underscoring the need for education-sensitive prevention, chronic-care management, investment in advanced assistive technology, and distributed community services to achieve Vision 2030 inclusion goals. Full article
(This article belongs to the Section Health Informatics and Big Data)
Show Figures

Figure 1

24 pages, 4809 KiB  
Article
Compensation of Leg Length Discrepancy Using Computer Vision in a Self-Adaptive Transtibial Prosthesis
by Dimitrie Cristian Fodor, Otilia Zvorișteanu, Dragoș Florin Chitariu, Adriana Munteanu, Ștefan Daniel Achirei, Vasile Ion Manta and Neculai Eugen Seghedin
Technologies 2025, 13(8), 319; https://doi.org/10.3390/technologies13080319 - 24 Jul 2025
Viewed by 399
Abstract
There are numerous methods available for evaluating leg length discrepancy (LLD), ranging from classic clinical techniques to advanced systems based on sophisticated and expensive equipment, as well as rudimentary manual adjustment mechanisms for the prosthesis by specialists. However, unilateral amputee patients often face [...] Read more.
There are numerous methods available for evaluating leg length discrepancy (LLD), ranging from classic clinical techniques to advanced systems based on sophisticated and expensive equipment, as well as rudimentary manual adjustment mechanisms for the prosthesis by specialists. However, unilateral amputee patients often face difficulties in accessing these solutions. They either lack the necessary equipment or do not have a medical specialist available to assist them in preventing postural imbalances. This study proposes the first smartphone-based computer vision system that evaluates and automatically compensates for leg length discrepancy in transtibial prostheses, offering a low-cost, accessible, and fully autonomous alternative to existing solutions. The method was tested using complex metrological systems. The application of the proposed method demonstrated its effectiveness in correcting simulated LLD for various values. Experimental validation demonstrated the system’s ability to restore symmetry in simulated LLD cases within the 1–10 mm range, achieving a relative compensation error of 2.44%. The proposed method for correcting LLD, based on computer vision and integrated into a smartphone, represents a significant advancement in restoring symmetry for unilaterally amputated patients. This technology could provide an accessible, efficient solution, thereby reducing the need for frequent prosthetist visits and enhancing user autonomy. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

26 pages, 2261 KiB  
Article
Real-Time Fall Monitoring for Seniors via YOLO and Voice Interaction
by Eugenia Tîrziu, Ana-Mihaela Vasilevschi, Adriana Alexandru and Eleonora Tudora
Future Internet 2025, 17(8), 324; https://doi.org/10.3390/fi17080324 - 23 Jul 2025
Viewed by 226
Abstract
In the context of global demographic aging, falls among the elderly remain a major public health concern, often leading to injury, hospitalization, and loss of autonomy. This study proposes a real-time fall detection system that combines a modern computer vision model, YOLOv11 with [...] Read more.
In the context of global demographic aging, falls among the elderly remain a major public health concern, often leading to injury, hospitalization, and loss of autonomy. This study proposes a real-time fall detection system that combines a modern computer vision model, YOLOv11 with integrated pose estimation, and an Artificial Intelligence (AI)-based voice assistant designed to reduce false alarms and improve intervention efficiency and reliability. The system continuously monitors human posture via video input, detects fall events based on body dynamics and keypoint analysis, and initiates a voice-based interaction to assess the user’s condition. Depending on the user’s verbal response or the absence thereof, the system determines whether to trigger an emergency alert to caregivers or family members. All processing, including speech recognition and response generation, is performed locally to preserve user privacy and ensure low-latency performance. The approach is designed to support independent living for older adults. Evaluation of 200 simulated video sequences acquired by the development team demonstrated high precision and recall, along with a decrease in false positives when incorporating voice-based confirmation. In addition, the system was also evaluated on an external dataset to assess its robustness. Our results highlight the system’s reliability and scalability for real-world in-home elderly monitoring applications. Full article
Show Figures

Figure 1

24 pages, 8015 KiB  
Article
Innovative Multi-View Strategies for AI-Assisted Breast Cancer Detection in Mammography
by Beibit Abdikenov, Tomiris Zhaksylyk, Aruzhan Imasheva, Yerzhan Orazayev and Temirlan Karibekov
J. Imaging 2025, 11(8), 247; https://doi.org/10.3390/jimaging11080247 - 22 Jul 2025
Viewed by 484
Abstract
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional [...] Read more.
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional neural networks (CNNs) for automated mammogram classification is presented in this work, along with the introduction of two innovative multi-view integration techniques: Dual-Branch Ensemble (DBE) and Merged Dual-View (MDV). By setting aside two datasets for out-of-sample testing, we evaluate the generalizability of the model using six different mammography datasets that represent various populations and imaging systems. We compare a number of cutting-edge architectures on both individual and combined datasets, including ResNet, DenseNet, EfficientNet, MobileNet, Vision Transformers, and VGG19. Both MDV and DBE strategies improve classification performance, according to experimental results. VGG19 and DenseNet both obtained high ROC AUC scores of 0.9051 and 0.7960 under the MDV approach. DenseNet demonstrated strong performance in the DBE setting, achieving a ROC AUC of 0.8033, while ResNet50 recorded a ROC AUC of 0.8042. These enhancements demonstrate how beneficial multi-view fusion is for boosting model robustness. The impact of domain shift is further highlighted by generalization tests, which emphasize the need for diverse datasets in training. These results offer practical advice for improving CNN architectures and integration tactics, which will aid in the creation of trustworthy, broadly applicable AI-assisted breast cancer screening tools. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Graphical abstract

18 pages, 2423 KiB  
Article
A New AI Framework to Support Social-Emotional Skills and Emotion Awareness in Children with Autism Spectrum Disorder
by Andrea La Fauci De Leo, Pooneh Bagheri Zadeh, Kiran Voderhobli and Akbar Sheikh Akbari
Computers 2025, 14(7), 292; https://doi.org/10.3390/computers14070292 - 20 Jul 2025
Viewed by 920
Abstract
This research highlights the importance of Emotion Aware Technologies (EAT) and their implementation in serious games to assist children with Autism Spectrum Disorder (ASD) in developing social-emotional skills. As AI is gaining popularity, such tools can be used in mobile applications as invaluable [...] Read more.
This research highlights the importance of Emotion Aware Technologies (EAT) and their implementation in serious games to assist children with Autism Spectrum Disorder (ASD) in developing social-emotional skills. As AI is gaining popularity, such tools can be used in mobile applications as invaluable teaching tools. In this paper, a new AI framework application is discussed that will help children with ASD develop efficient social-emotional skills. It uses the Jetpack Compose framework and Google Cloud Vision API as emotion-aware technology. The framework is developed with two main features designed to help children reflect on their emotions, internalise them, and train them how to express these emotions. Each activity is based on similar features from literature with enhanced functionalities. A diary feature allows children to take pictures of themselves, and the application categorises their facial expressions, saving the picture in the appropriate space. The three-level minigame consists of a series of prompts depicting a specific emotion that children have to match. The results of the framework offer a good starting point for similar applications to be developed further, especially by training custom models to be used with ML Kit. Full article
(This article belongs to the Special Issue AI in Its Ecosystem)
Show Figures

Figure 1

21 pages, 9749 KiB  
Article
Enhanced Pose Estimation for Badminton Players via Improved YOLOv8-Pose with Efficient Local Attention
by Yijian Wu, Zewen Chen, Hongxing Zhang, Yulin Yang and Weichao Yi
Sensors 2025, 25(14), 4446; https://doi.org/10.3390/s25144446 - 17 Jul 2025
Viewed by 422
Abstract
With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes’ movements continue to hinder progress in this area. To [...] Read more.
With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes’ movements continue to hinder progress in this area. To address these issues, we propose an enhanced pose estimation framework tailored to badminton players, built upon an improved YOLOv8-Pose architecture. In particular, we introduce an efficient local attention (ELA) mechanism that effectively captures fine-grained spatial dependencies and contextual information, thereby significantly improving the keypoint localization accuracy and overall pose estimation performance. To support this study, we construct a dedicated badminton pose dataset comprising 4000 manually annotated samples, captured using a Microsoft Kinect v2 camera. The raw data undergo careful processing and refinement through a combination of depth-assisted annotation and visual inspection to ensure high-quality ground truth keypoints. Furthermore, we conduct an in-depth comparative analysis of multiple attention modules and their integration strategies within the network, offering generalizable insights to enhance pose estimation models in other sports domains. The experimental results show that the proposed ELA-enhanced YOLOv8-Pose model consistently achieves superior accuracy across multiple evaluation metrics, including the mean squared error (MSE), object keypoint similarity (OKS), and percentage of correct keypoints (PCK), highlighting its effectiveness and potential for broader applications in sports vision tasks. Full article
(This article belongs to the Special Issue Computer Vision-Based Human Activity Recognition)
Show Figures

Figure 1

19 pages, 5755 KiB  
Article
A Context-Aware Doorway Alignment and Depth Estimation Algorithm for Assistive Wheelchairs
by Shanelle Tennekoon, Nushara Wedasingha, Anuradhi Welhenge, Nimsiri Abhayasinghe and Iain Murray
Computers 2025, 14(7), 284; https://doi.org/10.3390/computers14070284 - 17 Jul 2025
Viewed by 284
Abstract
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the [...] Read more.
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the algorithmic development of a lightweight, vision-based doorway detection and alignment module with contextual awareness. It integrates channel and spatial attention, semantic feature fusion, unsupervised depth estimation, and doorway alignment that offers real-time navigational guidance to the wheelchairs control system. The model achieved a mean average precision of 95.8% and a F1 score of 93%, while maintaining low computational demands suitable for future deployment on embedded systems. By eliminating the need for depth sensors and enabling contextual awareness, this study offers a robust solution to improve indoor mobility and deliver actionable feedback to support safe and independent doorway traversal for wheelchair users. Full article
(This article belongs to the Special Issue AI for Humans and Humans for AI (AI4HnH4AI))
Show Figures

Figure 1

18 pages, 871 KiB  
Review
Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators
by Ebru Emsen, Muzeyyen Kutluca Korkmaz and Bahadir Baran Odevci
Animals 2025, 15(14), 2110; https://doi.org/10.3390/ani15142110 - 17 Jul 2025
Viewed by 386
Abstract
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video [...] Read more.
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video tracking, wearable sensors, and machine learning (ML) algorithms, offer new opportunities to identify behavior-based indicators linked to key reproductive traits such as estrus, lambing, and maternal behavior. This review synthesizes the current research on AI-powered behavioral monitoring tools and proposes a conceptual model, ReproBehaviorNet, that maps age- and sex-specific behaviors to biological processes and AI applications, supporting real-time decision-making in both intensive and semi-intensive systems. The integration of accelerometers, GPS systems, and computer vision models enables continuous, non-invasive monitoring, leading to earlier detection of reproductive events and greater breeding precision. However, the implementation of such technologies also presents challenges, including the need for high-quality data, a costly infrastructure, and technical expertise that may limit access for small-scale producers. Despite these barriers, AI-assisted behavioral phenotyping has the potential to improve genetic progress, animal welfare, and sustainability. Interdisciplinary collaboration and responsible innovation are essential to ensure the equitable and effective adoption of these technologies in diverse farming contexts. Full article
Show Figures

Figure 1

Back to TopTop