Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators
Simple Summary
Abstract
1. Introduction
2. Integrating Behavioral Indicators with Reproductive Traits
2.1. Female Behavioral Indicators
2.2. Male Behavioral Indicators
2.3. Maternal Behavior Indicators
3. Integration of AI-Powered Tools and Technologies in Behavioral Monitoring of Sheep Reproduction
4. Challenges and Considerations
5. Proposed Model: ReproBehaviorNet—An AI-Driven Selection Framework for Reproductive Traits in Sheep
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ML | Machine learning |
PLF | Precision livestock farming |
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
LSTM | Long Short-Term Memory |
YOLO | You Only Look Once |
MBI | Maternal Behavior Index |
GPS | Global Positioning System |
GNSS | Global Navigation Satellite System |
IMU | Inertial measurement unit |
RGB | Red Green Blue (color model) |
BCS | Body condition score |
HRM | Heart rate monitor |
References
- Al-Jaryan, I.L.; Al-Thuwaini, T.M.; Merzah, L.H.; Alkhammas, A.H. Reproductive Physiology and Advanced Technologies in Sheep Reproduction. Rev. Agric. Sci. 2023, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Sacarrão-Birrento, L.; Almeida, M.; Ribeiro, D.M.; Guedes, C.; Montaña, J.R.G.; Pereira, A.M.F.; Zaralis, K.; Geraldo, A.C.A.P.M.; Tzamaloukas, O.; et al. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals 2022, 12, 885. [Google Scholar] [CrossRef] [PubMed]
- Menezes, G.L.; Mazon, G.; Ferreira, R.; Cabrera, V.E.; Dórea, J.R.R. Artificial Intelligence for Livestock: A Narrative Review of the Applications of Computer Vision Systems and Large Language Models for Animal Farming. Anim. Front. 2024, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Mana, A.A.; Allouhi, A.; Hamrani, A.; Rehman, S.; Jamaoui, I.E.; Jayachandran, K. Sustainable AI-Based Production Agriculture: Exploring AI Applications and Implications in Agricultural Practices. Smart Agric. Technol. 2024, 7, 100416. [Google Scholar] [CrossRef]
- Çakmakçı, C. Sheep’s Coping Style Can Be Identified by Unsupervised Machine Learning from Unlabeled Data. Behav. Process. 2021, 194, 104559. [Google Scholar] [CrossRef]
- Lama, G.C.M.L.; Pascual-Alonso, M.; Aguayo-Ulloa, L.; Sepúlveda, W.S.; Villarroel, M.; María, G.A. Social Personality in Sheep: Can Social Strategies Predict Individual Differences in Cognitive Abilities, Morphology Features, and Reproductive Success? J. Vet. Behav. 2019, 31, 82. [Google Scholar] [CrossRef]
- Lindburg, D.G.; Fitch-Snyder, H. Use of Behavior to Evaluate Reproductive Problems in Captive Mammals. Zoo Biol. 1994, 13, 433. [Google Scholar] [CrossRef]
- Wilson, V.A.D.; Guenther, A.; Øverli, Ø.; Seltmann, M.W.; Altschul, D. Future Directions for Personality Research: Contributing New Insights to the Understanding of Animal Behavior. Animals 2019, 9, 240. [Google Scholar] [CrossRef]
- Kenyon, P.R.; Corner-Thomas, R.A. Breeding Ewe Lambs: An Australasian Perspective. Animals 2022, 12, 3207. [Google Scholar] [CrossRef]
- Thénard, V.; Quénon, J.; Arsenos, G.; Bailo, G.; Baptista, T.; Byrne, T.J.; Barbieri, I.D.; Bruni, G.; Freire, F.d.C.O.; Theodoridis, A.; et al. Identifying selection strategies based on the practices and preferences of small ruminant farmers to improve the sustainability of their breeding systems. Animal 2024, 18, 101208. [Google Scholar] [CrossRef]
- Valasi, I.; Chadio, S.; Fthenakis, G.C.; Amiridis, G.S. Management of pre-pubertal small ruminants: Physiological basis and clinical approach. Anim. Reprod. Sci. 2012, 130, 126. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Nieto, C.A.; Thompson, A.N.; Martin, G.B. A new perspective on managing the onset of puberty and early reproductive performance in ewe lambs: A review. Anim. Prod. Sci. 2018, 58, 1967. [Google Scholar] [CrossRef]
- Alhamada, M.; Debus, N.; Lurette, A.; Bocquier, F. Validation of automated electronic oestrus detection in sheep as an alternative to visual observation. Small Rumin. Res. 2015, 134, 97. [Google Scholar] [CrossRef]
- Grant, E.P.; Brown, A.; Wickham, S.L.; Anderson, F.; Barnes, A.; Fleming, P.A.; Miller, D.W. What can the quantitative and qualitative behavioural assessment of videos of sheep moving through an autonomous data capture system tell us about welfare? Appl. Anim. Behav. Sci. 2018, 208, 31. [Google Scholar] [CrossRef]
- Endo, N.; Rahayu, L.P.; Arakawa, T.; Tanaka, T. Video tracking analysis of behavioral patterns during estrus in goats. J. Reprod. Dev. 2016, 62, 115–119. [Google Scholar] [CrossRef]
- Barwick, J.; Lamb, D.; Dobos, R.; Welch, M.; Schneider, D.; Trotter, M. Identifying Sheep Activity from Tri-Axial Acceleration Signals Using a Moving Window Classification Model. Remote Sens. 2020, 12, 646. [Google Scholar] [CrossRef]
- Paganoni, B.L.; Macleay, C.; van Burgel, A.; Thompson, A.N. Proximity sensors fitted to ewes and rams during joining can indicate the birth date of lambs. Comput. Electron. Agric. 2020, 170, 105249. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Manning, J.; Trotter, M.; Schneider, D.; Thomson, P.C.; Bush, R.D.; Cronin, G.M. GNSS technology and its application for improved reproductive management in extensive sheep systems. Anim. Prod. Sci. 2014, 55, 1272. [Google Scholar] [CrossRef]
- Godfrey, R.W.; Lakos, S.A. PSX-28 Using estrus detection patches or a ram wearing a marking harness to monitor estrus in synchronized hair sheep ewes. J. Anim. Sci. 2020, 98, 460. [Google Scholar] [CrossRef]
- Singh, S.; Bhakat, M.; Mohanty, T.K.; Kumar, A.; Gupta, A.; Chakravarty, A.K.; Singh, P. Sexual behavior and its relationship with semen quality parameters in Sahiwal breeding bulls. Vet. World 2015, 8, 745–749. [Google Scholar] [CrossRef]
- Blache, D.; Bickell, S. Temperament and reproductive biology: Emotional reactivity and reproduction in sheep. Rev. Bras. Zootec. 2010, 39, 401. [Google Scholar] [CrossRef]
- Sifuentes-Lamónt, P.I.; Meza-Herrera, C.A.; Véliz-Deras, F.G.; Alvarado-Espino, A.S.; Alvarado-Espino, A.V.; Calderón-Leyva, G.; Angel-Garcia, O.; Carrillo-Moreno, D.I.; Contreras-Villarreal, V.; Delgado González, R.A.; et al. Multifaceted interplay among social dominance, body condition, appetitive and consummatory sexual behaviors, and semen quality in Dorper rams during out-of-season and transition periods. Animals 2022, 12, 3339. [Google Scholar] [CrossRef] [PubMed]
- Sierra, A.B.; Avendaño-Reyes, L.; Hernández-Rivera, J.A.; Vicente-Pérez, R.; Correa-Calderón, A.; Mellado, M.; Meza-Herrera, C.A.; Macías-Cruz, U. Termorregulación y respuestas reproductivas de carneros bajo estrés por calor. Rev. Mex. Cienc. Pecu. 2021, 12, 910. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Peralta, O.A.; Sales, F. Reproduction of Small Ruminants in Extreme Environments. In Proceedings of the XXIV Congresso Brasileiro de Reprodução Animal (CBRA-2021) and VIII International Symposium on Animal Biology of Reproduction—Joint Meeting, Belo Horizonte, Brazil, 19–22 October 2021. [Google Scholar] [CrossRef]
- Farina, G.; Castillo-Hernández, G.; Gutiérrez-Hernández, J.L.; Pérez, D.I.M.; Ramírez, C.M.R.; Terrazas, A.; Pérez, J. Stress-induced leokocytospermia in rams with healthy reproductive tract. Small Rumin. Res. 2016, 137, 34. [Google Scholar] [CrossRef]
- Price, E.O.; Erhard, H.; Borgwardt, R.; Dally, M.R. Measures of libido and their relation to serving capacity in the ram. J. Anim. Sci. 1992, 70, 3376. [Google Scholar] [CrossRef]
- Díaz, A.; Orihuela, A.; Aguirre, V.; Clemente, N.; Pedernera, M.; Flores-Pérez, I.; Vázquez, R.; Ungerfeld, R. Ewes prefer subordinate rather than dominant rams as sexual partners. Appl. Anim. Behav. Sci. 2021, 238, 105306. [Google Scholar] [CrossRef]
- Abecia, J.A.; María, G.A.; Forcada, F. A note on mating preferences in Rasa Aragonesa rams. Appl. Anim. Behav. Sci. 2004, 91, 355. [Google Scholar] [CrossRef]
- González-Tavizón, A.; Meza-Herrera, C.A.; Arellano-Rodríguez, G.; Mellado, M.; Contreras-Villarreal, V.; Ángel-García, Ó.; Arévalo, J.R.; Véliz-Deras, F.G. Effect of Dorper Rams’ Social-Sexual Hierarchy on Their Sexual Behavior and Capacity to Induce Estrus in Ewes. Agriculture 2022, 12, 391. [Google Scholar] [CrossRef]
- Ungerfeld, R.; González-Pensado, S. Social dominance and courtship and mating behaviour in rams in non-competitive and competitive pen tests. Reprod. Domest. Anim. 2008, 44, 44. [Google Scholar] [CrossRef]
- Waters, B.E.; McDonagh, J.; Tzimiropoulos, G.; Slinger, K.R.; Huggett, Z.J.; Bell, M. Changes in sheep behavior before lambing. Agriculture 2021, 11, 715. [Google Scholar] [CrossRef]
- Emsen, E.; Odevci, B.B.; Korkmaz, M.K. Using machine learning to identify key predictors of maternal success in sheep for improved lamb survival. Front. Anim. Sci. 2025, 6, 1543490. [Google Scholar] [CrossRef]
- Lambe, N.R.; Conington, J.; Bishop, S.C.; Waterhouse, A.; Simm, G. Genetics of maternal behaviour in Scottish Blackface sheep under field conditions: Factors affecting maternal behaviour scores and their influence on lamb live weights and survival. Proc. Br. Soc. Anim. Sci. 2000, 2000, 65. [Google Scholar] [CrossRef]
- Cloete, S.W.P.; Burger, M.; Scholtz, A.; Cloete, J.J.E.; Nel, C.; Gilmour, A.; van Wyk, J.B. The genetics of perinatal behaviour of Merinos in relation to lamb survival and lambs weaned per ewe mated. Appl. Anim. Behav. Sci. 2021, 236, 105217. [Google Scholar] [CrossRef]
- Brown, D.J.; Fogarty, N.M.; Iker, C.; Ferguson, D.M.; Blache, D.; Gaunt, G.M. Genetic evaluation of maternal behaviour and temperament in Australian sheep. Anim. Prod. Sci. 2015, 56, 767. [Google Scholar] [CrossRef]
- Sohi, R.; Almasi, F.; Nguyen, H.D.; Carroll, A.; Trompf, J.P.; Weerasinghe, M.; Bervan, A.; Godoy, B.I.; Ahmed, A.; Stear, M.J.; et al. Determination of ewe behaviour around lambing time and prediction of parturition 7 days prior to lambing by tri-axial accelerometer sensors in an extensive farming system. Anim. Prod. Sci. 2022, 62, 1729. [Google Scholar] [CrossRef]
- Turner, K.E.; Sohel, F.; Harris, I.; Ferguson, M.; Thompson, A.N. Lambing event detection using deep learning from accelerometer data. Comput. Electron. Agric. 2023, 208, 107787. [Google Scholar] [CrossRef]
- Ivanova, I.P.; Tpoцeнкo, И.B.; Trotsenko, V. Automation of Processes in Dairy Cattle Production. IOP Conf. Ser. Mater. Sci. Eng. 2019, 582, 012035. [Google Scholar] [CrossRef]
- Martin, R.; Pook, T.; Bennewitz, J.; Schmid, M. Optimization Strategies to Adapt Sheep Breeding Programs to Pasture-Based Production Environments: A Simulation Study. Animals 2023, 13, 3476. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Trotter, M. Autonomous on-animal sensors in sheep research: A systematic review. Comput. Electron. Agric. 2018, 150, 245. [Google Scholar] [CrossRef]
- Dobos, R.C.; Dickson, S.; Bailey, D.W.; Trotter, M.G. The use of GNSS technology to identify lambing behaviour in pregnant grazing Merino ewes. Anim. Prod. Sci. 2014, 54, 1722–1727. [Google Scholar] [CrossRef]
- Pérez-Barbería, F.J.; Robertson, E.; Gordon, I.J. Are social factors and clocks co-regulating foraging in ruminants? J. Zool. 2015, 297, 210–219. [Google Scholar] [CrossRef]
- Munn, A.J.; Dawson, T.J.; Croft, D.B. Energy, water and nitrogen intake in a population of free-ranging red kangaroos (Macropus rufus): Do they really drink water? Aust. J. Zool. 2016, 64, 197–208. [Google Scholar] [CrossRef]
- Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- McLennan, K.M.; Rebelo, C.J.B.; Corke, M.J.; Holmes, M.A.; Leach, M.C.; Constantino-Casas, F. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 2015, 176, 19–26. [Google Scholar] [CrossRef]
- Giovanetti, V.; Mattiello, S.; Battini, M.; Andrighetto, I.; Barbieri, S. Short communication: Use of tri-axial accelerometers to assess lying behaviour in dairy sheep. J. Dairy Sci. 2017, 100, 7489–7494. [Google Scholar] [CrossRef]
- Goddard, P.J.; Waterhouse, A.; Dwyer, C.; Stott, A. The perception of welfare of sheep in extensive systems. Anim. Welf. 2000, 9, 385–401. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelis, J.A.; Dardamani, A. The effects of the pre-slaughter environment on meat quality traits of lambs. Small Rumin. Res. 2012, 103, 112–118. [Google Scholar] [CrossRef]
- Coulon, M.; Nowak, R.; Peyrat, J.; Chandèze, H.; Boissy, A.; Boivin, X. Do lambs perceive regular human stroking as pleasant? Behavior and heart rate variability analyses. PLoS ONE 2015, 10, e0118617. [Google Scholar] [CrossRef]
- Penning, P.D. A technique for recording the biting and grazing behaviour of sheep. Grass Forage Sci. 1983, 38, 89–96. [Google Scholar] [CrossRef]
- Animut, G.; Goetsch, A.L.; Aiken, G.E.; Puchala, R.; Detweiler, G.; Krehbiel, C.R. Grazing behavior and energy expenditure by sheep and goats co-grazing grass/forb pastures at three stocking rates. Small Rumin. Res. 2005, 59, 191–201. [Google Scholar] [CrossRef]
- Barkai, D.; Landau, S.; Brosh, A.; Baram, H.; Molle, G. Estimation of energy intake from heart rate and energy expenditure in sheep under confinement or grazing condition. Livest. Prod. Sci. 2002, 73, 237–246. [Google Scholar] [CrossRef]
- Broster, J.C.; Dehaan, R.L.; Swain, D.L.; Friend, M.A. Ewe and lamb contact at lambing is influenced by both shelter type and birth number. Animal 2010, 4, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R.E.; Broster, J.C.; Barnes, K.; Browne, W.J. Temperament, age and weather predict social interaction in the sheep flock. Behav. Process. 2016, 131, 53–58. [Google Scholar] [CrossRef]
- Freire, R.; Swain, D.L.; Friend, M.A. Spatial distribution patterns of sheep following manipulation of feeding motivation and food availability. Animal 2012, 6, 846–851. [Google Scholar] [CrossRef]
- Lowe, J.C.; Abeyesinghe, S.M.; Demmers, T.G.M.; Wathes, C.M.; McKeegan, D.E.F. A novel telemetric logging system for recording physiological signals in unrestrained animals. Comput. Electron. Agric. 2007, 57, 74–79. [Google Scholar] [CrossRef]
- Reefmann, N.; Bütikofer Kaszàs, F.; Wechsler, B.; Gygax, L. Physiological expression of emotional valence in sheep. Behav. Brain Res. 2009, 198, 386–390. [Google Scholar] [CrossRef]
- Tallet, C.; Veissier, I.; Boissy, A. Emotional value of situations: Determinants and expression. In Proceedings of the Measuring Behaviour 2005: 5th International Conference on Methods and Techniques in Behavioural Research, Wageningen, The Netherlands, 30 August–2 September 2005; pp. 15–18. [Google Scholar]
- Neethirajan, S. The Use of Artificial Intelligence in Assessing Affective States in Livestock. Front. Vet. Sci. 2021, 8, 715261. [Google Scholar] [CrossRef]
- Curti, P.; Selli, A.; Pinto, D.L.; Merlos-Ruiz, A.; Balieiro, J.C.C.; Ventura, R.V. Applications of livestock monitoring devices and machine learning algorithms in animal production and reproduction: An overview. Anim. Reprod. 2023, 20, e20230077. [Google Scholar] [CrossRef]
- Gurule, S.C.; Tobin, C.; Bailey, D.W.; Gifford, J.A.H. Evaluation of the tri-axial accelerometer to identify and predict parturition-related activities of Debouillet ewes in an intensive setting. Appl. Anim. Behav. Sci. 2021, 237, 105296. [Google Scholar] [CrossRef]
- Redfearn, A.; Janodet, E.; McNally, J.; Brewer, H.; Doyle, E.; Doyle, R.E.; Schmoelzl, S. Postnatal maternal behaviour expression depends on lambing difficulty in Merino ewes. Theriogenology 2022, 196, 31. [Google Scholar] [CrossRef]
- An, Y.; Song, Y.; Jiang, H.; Wang, Y.; Liu, N.; Xia, L.; Zhang, Z.-H.; An, X. Analysis of Calving Cow Posture Recognition, Behavioral Changes, and Influencing Factors Based on Machine Vision. Animals 2025, 15, 1201. [Google Scholar] [CrossRef] [PubMed]
- Michie, C.; Andonović, I.; Davison, C.; Hamilton, A.; Tachtatzis, C.; Jonsson, N.N.; Duthie, C.-A.; Bowen, J.M.; Gilroy, M. The Internet of Things enhancing animal welfare and farm operational efficiency. J. Dairy Res. 2020, 87, 20. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Artificial Intelligence and Sensor Technologies in Dairy Livestock Export: Charting a Digital Transformation. Sensors 2023, 23, 7045. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, C.J.; Decker, J.E. From reactive to proactive: Impact of artificial intelligence on management and selection of livestock. Anim. Front. 2024, 14, 64. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Liu, K.; Cuan, K.; Hua, Z.; Li, K.; Wang, K. Non-invasive monitoring for precision sheep farming: Development, challenges, and future perspectives. Comput. Electron. Agric. 2025, 231, 110050. [Google Scholar] [CrossRef]
- Thakur, M.S. Basic Animal Breeding Methods. In IntechOpen eBooks; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Ajafar, M.; Kadhim, A.H.; Al-Thuwaini, T.M. The Reproductive Traits of Sheep and Their Influencing Factors. Rev. Agric. Sci. 2022, 10, 82. [Google Scholar] [CrossRef]
- Bishop, S.; Woolliams, J. Genetic approaches and technologies for improving the sustainability of livestock production. J. Sci. Food Agric. 2004, 84, 911. [Google Scholar] [CrossRef]
- Priya, P.; Dutt, T.; Singh, M.; Gaur, G.K.; Sahu, V. ‘Artificial Intelligence’ as an Intelligent Tool for the Future Animal Production and Better Management: A Review. Agric. Rev. 2022, 45, 229–238. [Google Scholar] [CrossRef]
- Rosati, A. Guiding principles of AI: Application in animal husbandry and other considerations. Anim. Front. 2024, 14, 3. [Google Scholar] [CrossRef]
- Knight, W. The dark secret at the heart of AI. MIT Technol. Rev. 2017, 120, 54–65. [Google Scholar]
- Cannas, A.; Tedeschi, L.O.; Atzori, A.S.; Lunesu, M.F. How can nutrition models increase the production efficiency of sheep and goat operations? Anim. Front. 2019, 9, 33. [Google Scholar] [CrossRef] [PubMed]
Sensor Type | Most Common Use | Applications | Attachment | References | Relation to Reproductive Behavior |
---|---|---|---|---|---|
GPS | Tracking movement and location | Behavior, environment, health, method validation | Collars, harnesses | [41,42,43] | GPS can be used to monitor ewe movement near lambing, mating behavior |
Motion Sensors (Accelerometers, IMUs) | Posture, walking, activity | Sensor validation, behavior | Collars, leg bands, harnesses | [44,45,46] | Motion sensors can detect restlessness, mounting, lambing signs |
Heart Rate Monitors (HRM) | Physiological monitoring (stress, welfare) | Health, welfare | Collars, chest straps | [47,48,49] | HRM can be used to assess physiological stress and responses during estrus and parturition |
Jaw/Bite Sensors | Feeding behavior | Feeding behavior | Jaw-mounted | [50,51,52] | These sensors can be linked to feeding behavior changes around lambing and mating |
Contact Loggers | Social/contact behavior | Behavior, sensor validation | Collars, ear tags | [53,54,55] | Loggers can detect proximity and contact during mating and ewe–lamb bonding |
Other Sensors | Various (temperature, respiration, etc.) | Diverse experimental focus | Custom methods (horns, fleece, etc.) | [56,57,58] | Limited used in specific studies (e.g., disease, respiration, temperature) |
Category | Application Area | Sensor Types | Model Types | Performance Metrics | Cases of Use in Sheep |
---|---|---|---|---|---|
Facial Recognition | Individual identification, breed classification, emotional state (pain/fear) | High-resolution RGB cameras, thermal infrared cameras | CNN, VGG variants, YOLOv8n, facial landmark detection networks | Up to 96.1% accuracy in pain/fear expression detection; YOLO-based breed ID > 95% | Monitoring pain post-procedure (e.g., tail docking), breed differentiation, individual tracking without tags |
Body Metrics Measurement | Liveweight estimation, body condition scoring (BCS), growth monitoring | Depth cameras, 3D imaging systems, image processing with stereo vision | Computer vision algorithms, regression-based CNNs | Accurate within ±2–3 kg for bodyweight in penned settings; BCS prediction R2 > 0.9 | Automated weighing without handling, early detection of poor body condition in extensive systems |
Behavioral Monitoring | Detection of feeding, walking, standing, mounting (estrus), lambing events | Wearable accelerometers (ear, leg, jaw), RGB video cameras, microphones | YOLOv5, CNN-RNN hybrid networks, LSTM, rule-based activity classifiers | Estrus detection mAP > 99% with YOLOv5; lambing recall up to 0.94 | Estrus detection for timed AI, predicting lambing time, identifying abnormal locomotion |
Physiological Monitoring | Temperature mapping, respiratory rate, heart rate, pregnancy detection | Thermal cameras (eye, udder), piezoelectric belts, handheld ultrasound | Segmentation-based CNNs, object detection models, anomaly detectors | Thermal-based respiratory rate detection error < 2 breaths/min; pregnancy ultrasound > 90% accuracy | Non-contact fever screening, early disease or heat stress detection, automated pregnancy scanning |
Age Group | Target Trait | Observed Behavior | Sensor Type | AI Processing | Selection Relevance |
---|---|---|---|---|---|
Prepubertal ewe lambs | Puberty prediction in ewe lambs | Increased locomotion, vocalization, early mounting attempts | Accelerometers, video | LSTM for temporal trends; YOLOv5 for behavior tagging | Early identification of replacement breeders |
Prepubertal ram lambs | Sexual maturity estimation | Flehmen response, sniffing, mounting, nudging | Video, thermal camera | CNN for visual traits; rule-based scoring for sexual behavior onset | Selection of early-maturing rams for artificial insemination centers or natural mating |
Adult females | Estrus and lambing | Tail wagging, mounting by others, isolation, pawing ground | Accelerometers, GPS, video | Hybrid CNN-RNN model for stage prediction | Accurate timing for artificial insemination or mating, measuring estrus synchronization efficiency, predictive of lambing event, dystocia management |
Adult males | Mating performance | Courtship intensity, ejaculation latency, hierarchy behaviors | Proximity loggers, video | Social interaction mapping; behavior–frequency analysis | Sire fertility prediction, mating compatibility |
Postpartum ewes | Maternal bonding | Grooming, nursing initiation, proximity to lambs | Microphones, proximity sensors, video | Maternal Behavior Index (MBI) calculation based on behavior-scoring models | Lamb survival, dam selection, maternal instinct evaluation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emsen, E.; Kutluca Korkmaz, M.; Odevci, B.B. Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators. Animals 2025, 15, 2110. https://doi.org/10.3390/ani15142110
Emsen E, Kutluca Korkmaz M, Odevci BB. Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators. Animals. 2025; 15(14):2110. https://doi.org/10.3390/ani15142110
Chicago/Turabian StyleEmsen, Ebru, Muzeyyen Kutluca Korkmaz, and Bahadir Baran Odevci. 2025. "Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators" Animals 15, no. 14: 2110. https://doi.org/10.3390/ani15142110
APA StyleEmsen, E., Kutluca Korkmaz, M., & Odevci, B. B. (2025). Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators. Animals, 15(14), 2110. https://doi.org/10.3390/ani15142110