Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,498)

Search Parameters:
Keywords = virulence proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

28 pages, 2282 KiB  
Article
From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts
by Azza SalahEldin El-Demerdash, Amira E. Sehim, Abeer Altamimi, Hanan Henidi, Yasmin Mahran and Ghada E. Dawwam
Microorganisms 2025, 13(8), 1818; https://doi.org/10.3390/microorganisms13081818 - 4 Aug 2025
Abstract
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. [...] Read more.
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. Hibiscus sabdariffa emerged as the most promising, demonstrating potent broad-spectrum antimicrobial and significant antibiofilm activity. Sub-inhibitory concentrations of H. sabdariffa robustly downregulated essential bacterial virulence genes and suppressed aflatoxin gene expression. Comprehensive chemical profiling via HPLC identified major anthocyanin glucosides, while GC-MS revealed diverse non-pigment bioactive compounds, including fatty acids and alcohols. Molecular docking suggested favorable interactions of key identified compounds (Cyanidin-3-O-glucoside and 1-Deoxy-d-arabitol) with E. coli outer membrane protein A (OmpA), indicating potential antiadhesive and antimicrobial mechanisms. Furthermore, H. sabdariffa exhibited selective cytotoxicity against MCF-7 breast cancer cells. These findings establish H. sabdariffa pigment-enriched extract as a highly promising, multi-functional source of novel therapeutics, highlighting its potential for simultaneously addressing drug resistance and cancer challenges through an integrated chemical, biological, and computational approach. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

18 pages, 4468 KiB  
Article
Proteomic and Functional Analysis Reveals Temperature-Driven Immune Evasion Strategies of Streptococcus iniae in Yellowfin Seabream (Acanthopagrus latus)
by Yanjian Yang, Guanrong Zhang, Ruilong Xu, Yiyang Deng, Zequan Mo, Yanwei Li and Xueming Dan
Biology 2025, 14(8), 986; https://doi.org/10.3390/biology14080986 (registering DOI) - 2 Aug 2025
Viewed by 263
Abstract
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion [...] Read more.
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion strategies of S. iniae. Our results demonstrated a striking temperature-dependent virulence phenotype, with significantly higher A. latus mortality rates observed at high temperature (HT, 33 °C) compared to low temperature (LT, 23 °C). Proteomic analysis revealed temperature-dependent upregulation of key virulence factors, including streptolysin S-related proteins (SagG, SagH), antioxidant-related proteins (SodA), and multiple capsular polysaccharide (cps) synthesis proteins (cpsD, cpsH, cpsL, cpsY). Flow cytometry analysis showed that HT infection significantly reduced the percentage of lymphocyte and myeloid cell populations in the head kidney leukocytes of A. latus, which was associated with elevated caspase-3/7 expression and increased apoptosis. In addition, HT infection significantly inhibited the release of reactive oxygen species (ROS) but not nitric oxide (NO) production. Using S. iniae cps-deficient mutant, Δcps, we demonstrated that the cps is essential for temperature-dependent phagocytosis resistance in S. iniae, as phagocytic activity against Δcps remained unchanged across temperatures, while NS-1 showed significantly reduced uptake at HT. These findings provide new insights into the immune evasion of S. iniae under thermal regulation, deepening our understanding of the thermal adaptation of aquatic bacterial pathogens. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 - 1 Aug 2025
Viewed by 213
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

32 pages, 4311 KiB  
Article
Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
by Jewel Nicole Anna Todd, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones and Blondy Canto-Canché
Microbiol. Res. 2025, 16(8), 175; https://doi.org/10.3390/microbiolres16080175 - 1 Aug 2025
Viewed by 150
Abstract
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen [...] Read more.
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen pleinteractions, but there is increasing evidence showing their involvement in other types of interaction, including microbe–microbe interactions. Through the use of LC-MS/MS sequencing, effector candidates were identified in the in vitro interaction between a banana pathogen, Pseudocercospora fijiensis and a biological control agent, Trichoderma harzianum. The diverse interaction secretome revealed various glycoside hydrolase families, proteases and oxidoreductases. T. harzianum secreted more proteins in the microbial interaction compared to P. fijiensis, but its presence induced the secretion of more P. fijiensis proteins that were exclusive to the interaction secretome. The interaction secretome, containing 256 proteins, was screened for effector candidates using the algorithms EffHunter and WideEffHunter. Candidates with common fungal effector motifs and domains such as LysM, Cerato-platanin, NPP1 and CFEM, among others, were identified. Homologs of true effectors and virulence factors were found in the interaction secretome of T. harzianum and P. fijiensis. Further characterization revealed a potential novel effector of T. harzianum. Full article
Show Figures

Figure 1

19 pages, 5927 KiB  
Article
Modeling the Anti-Adhesive Role of Punicalagin Against Listeria Monocytogenes from the Analysis of the Interaction Between Internalin A and E-Cadherin
by Lorenzo Pedroni, Sergio Ghidini, Javier Vázquez, Francisco Javier Luque and Luca Dellafiora
Int. J. Mol. Sci. 2025, 26(15), 7327; https://doi.org/10.3390/ijms26157327 - 29 Jul 2025
Viewed by 290
Abstract
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational [...] Read more.
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational pipeline envisioned to identify the molecular determinants for the recognition between the bacterial protein internalin A (InlA) and the human E-cadherin (Ecad), which is the first step leading to internalization. This pipeline consists of molecular docking and extended atomistic molecular dynamics simulations to identify key interaction clusters between InlA and Ecad. It exploits this information in the screening of chemical libraries of natural compounds that might competitively interact with InIA and hence impede the formation of the InIA–Ecad complex. This strategy was effective in providing a molecular model for the anti-adhesive activity of punicalagin and disclosed two natural phenolic compounds with a similar interaction pattern. Besides elucidating key aspects of the mutual recognition between InIA and Ecad, this study provides a molecular basis about the mechanistic underpinnings of the anti-adhesive action of punicalagin that enable application against L. monocytogenes. Full article
(This article belongs to the Special Issue Computational Approaches for Protein Design)
Show Figures

Figure 1

12 pages, 825 KiB  
Review
Yin Yang 1: Role in Leishmaniasis
by Devki Nandan, Dilraj Kaur Longowal and Neil Reiner
Cells 2025, 14(15), 1149; https://doi.org/10.3390/cells14151149 - 25 Jul 2025
Viewed by 260
Abstract
Leishmaniasis, caused by protozoan parasites of the genus Leishmania, is one of the most neglected human diseases, affecting millions worldwide. A detailed understanding of the molecular mechanisms that govern the outcome of macrophage–Leishmania interactions is crucial for a comprehensive understanding of [...] Read more.
Leishmaniasis, caused by protozoan parasites of the genus Leishmania, is one of the most neglected human diseases, affecting millions worldwide. A detailed understanding of the molecular mechanisms that govern the outcome of macrophage–Leishmania interactions is crucial for a comprehensive understanding of leishmaniasis; however, our current knowledge of these mechanisms remains limited. It is clear that Leishmania has co-evolved to engage several clever strategies to regulate the cell biology of host macrophages to survive and multiply in phagolysosomes of these cells. In this review, we discuss how Leishmania exploits the macrophage Yin-Yang 1 protein as a critical proxy virulence factor to promote its survival. Additionally, we discuss an atlas of YY1-dependent proteins in human macrophages, which could serve as a valuable resource for researchers studying the role of YY1 in macrophage cell biology. Full article
(This article belongs to the Special Issue The Role of Macrophages in Leishmaniasis: Current Perspective)
Show Figures

Figure 1

41 pages, 7499 KiB  
Article
Development of a Broad-Spectrum Pan-Mpox Vaccine via Immunoinformatic Approaches
by Japigorn Puagsopa, Panuwid Jumpalee, Sittichoke Dechanun, Sukanya Choengchalad, Pana Lohasupthawee, Thanawat Sutjaritvorakul and Bunyarit Meksiriporn
Int. J. Mol. Sci. 2025, 26(15), 7210; https://doi.org/10.3390/ijms26157210 - 25 Jul 2025
Viewed by 903
Abstract
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time [...] Read more.
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time consuming, and susceptible to reversion to virulence. Alternatively, a reverse vaccinology approach offers a rapid, efficient, and safer alternative for MPXV vaccine design. Here, MPXV proteins associated with viral infection were analyzed for immunogenic epitopes to design multi-epitope vaccines based on B-cell, CD4+, and CD8+ epitopes. Epitopes were selected based on allergenicity, antigenicity, and toxicity parameters. The prioritized epitopes were then combined via peptide linkers and N-terminally fused to various protein adjuvants, including PADRE, beta-defensin 3, 50S ribosomal protein L7/12, RS-09, and the cholera toxin B subunit (CTB). All vaccine constructs were computationally validated for physicochemical properties, antigenicity, allergenicity, safety, solubility, and structural stability. The three-dimensional structure of the selected construct was also predicted. Moreover, molecular docking and molecular dynamics (MD) simulations between the vaccine and the TLR-4 immune receptor demonstrated a strong and stable interaction. The vaccine construct was codon-optimized for high expression in the E. coli and was finally cloned in silico into the pET21a (+) vector. Collectively, these results could represent innovative tools for vaccine formulation against MPXV and be transformative for other infectious diseases. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

18 pages, 2215 KiB  
Article
Exploration of Phosphoproteins in Acinetobacter baumannii
by Lisa Brémard, Sébastien Massier, Emmanuelle Dé, Nicolas Nalpas and Julie Hardouin
Pathogens 2025, 14(8), 732; https://doi.org/10.3390/pathogens14080732 - 24 Jul 2025
Viewed by 366
Abstract
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new [...] Read more.
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new therapeutic strategies. Post-translational modifications (PTMs), such as phosphorylation, play essential roles in various bacterial processes, including antibiotic resistance, virulence or biofilm formation. Although proteomics has increasingly enabled their characterization, the identification of phosphorylated peptides remains challenging, primarily due to the enrichment procedures. In this study, we focused on characterizing serine, threonine, and tyrosine phosphorylation in the A. baumannii ATCC 17978 strain. We optimized three parameters for phosphopeptide enrichment using titanium dioxide (TiO2) beads (number of enrichment fractions between the phosphopeptides and TiO2 beads, the quantity peptides and type of loading buffer) to determine the most effective conditions for maximizing phosphopeptide identification. Using this optimized protocol, we identified 384 unique phosphorylation sites across 241 proteins, including 260 novel phosphosites previously unreported in A. baumannii. Several of these phosphorylated proteins are involved in critical bacterial processes such as antimicrobial resistance, biofilm formation or pathogenicity. We discuss these proteins, focusing on the potential functional implications of their phosphorylation. Notably, we identified 34 phosphoproteins with phosphosites localized at functional sites, such as active sites, multimer interfaces, or domains important for structural integrity. Our findings significantly expand the current phosphoproteomic landscape of A. baumannii and support the hypothesis that PTMs, particularly phosphorylation, play a central regulatory role in its physiology and pathogenic potential. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

19 pages, 1545 KiB  
Review
Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change
by Mingming Shi, Rui Liu, D. U. Nilunda Madhusanka, Yonggang Liu, Ning Luo, Wei Guo, Jianlong Zhao, Huixia Li and Zhenchuan Mao
Microbiol. Res. 2025, 16(8), 165; https://doi.org/10.3390/microbiolres16080165 - 22 Jul 2025
Viewed by 312
Abstract
Meloidogyne enterolobii, a highly virulent and broad-host-range plant-parasitic nematode, poses an increasing threat to global agricultural production. By inducing the formation of nutrient-rich giant cells in host roots and deploying a diverse array of effector proteins to modulate plant immune responses, this [...] Read more.
Meloidogyne enterolobii, a highly virulent and broad-host-range plant-parasitic nematode, poses an increasing threat to global agricultural production. By inducing the formation of nutrient-rich giant cells in host roots and deploying a diverse array of effector proteins to modulate plant immune responses, this nematode achieves efficient colonization and invasion, resulting in impaired crop growth and significant economic losses. In recent years, global climate warming combined with the rapid development of protected agriculture has broken the traditional geographical limits of tropical and subtropical regions, thereby increasing the risk of M. enterolobii occurrence in temperate and high-latitude areas. Concurrently, conventional chemical control methods are increasingly limited by environmental pollution and the development of resistance, steering research toward green control strategies. This review systematically summarizes the latest research progress of M. enterolobii in terms of ecological diffusion trends, pathogenic mechanisms, and green control, and explored the feasibility of integrating multidisciplinary technologies to construct an efficient and precise control system. The ultimate aim is to provide theoretical support and technical supports for green and sustainable development of global agriculture. Full article
Show Figures

Figure 1

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 410
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

27 pages, 5867 KiB  
Article
Distinct Virologic Properties of African and Epidemic Zika Virus Strains: The Role of the Envelope Protein in Viral Entry, Immune Activation, and Neuropathogenesis
by Ashkan Roozitalab, Chenyu Zhang, Jiantao Zhang, Ge Li, Chengyu Yang, Wangheng Hou, Qiyi Tang and Richard Y. Zhao
Pathogens 2025, 14(7), 716; https://doi.org/10.3390/pathogens14070716 - 19 Jul 2025
Viewed by 341
Abstract
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in [...] Read more.
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in humans? Phylogenetic studies have identified two genetically distinct ZIKV, the African and Asian lineages, which differ in their pathogenicity. Previous studies including ours suggest that the envelope (E) protein plays a key role in viral entry, immune activation, and neuropathogenesis. This study aimed to further elucidate virologic and pathogenic differences between these lineages by assessing their ability to bind and replicate in host cells, induce apoptotic cell death, trigger inflammatory responses, and influence human neural progenitor cell (hNPC)-derived neurosphere formation. We compared a historic African ZIKV strain (MR766) with an epidemic Brazilian strain (BR15) and evaluated the effects of the E protein inhibitor quercetin-3-β-O-D-glucoside (Q3G) and an E protein-neutralizing antibody (AbII). Our results revealed distinct virologic properties and that MR766 exhibited stronger inhibition of neurosphere formation due to enhanced viral binding to neuronal SH-SY5Y cells, while BR15 infection triggered a heightened pro-inflammatory cytokine response with reduced viral binding. Chimeric virus studies suggested that the E protein likely influences viral binding, replication efficiency, immune activation, and neuropathogenesis. Notably, Q3G exhibited antiviral activities against both MR766 and BR15, whereas AbII preferentially inhibited MR766. These findings highlight the virological differences between ancestral and epidemic viral strains, as well as the critical role of E protein in viral permissiveness, immune response, and neuropathogenesis, providing insights for developing targeted antiviral strategies. Full article
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 558
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

21 pages, 4501 KiB  
Article
Functional Characterization of Dual-Initiation Codon-Derived V2 Proteins in Tomato Yellow Leaf Curl Virus
by Zhiyuan Wang, Pan Gong, Siwen Zhao, Fangfang Li and Xueping Zhou
Agronomy 2025, 15(7), 1726; https://doi.org/10.3390/agronomy15071726 - 17 Jul 2025
Viewed by 308
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 [...] Read more.
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 and V2-2 expression in infected Nicotiana benthamiana and tomato plants. Deletion mutants revealed their specialized roles: V2-1 was indispensable for viral replication and systemic spread—its loss severely reduced pathogenicity and genome accumulation. V2-2 acted as an auxiliary factor, and its deletion attenuated symptoms but kept the virus infection. Host-specific effects were observed—V2-1 deletion led to lower viral DNA/coat protein levels in N. benthamiana than in tomato, suggesting host-dependent regulation. Mutant viruses declined progressively in tomato, indicating host defense clearance. Heterologous co-expression of both isoforms via potato virus X induced systemic necrosis in N. benthamiana, demonstrating functional synergy between isoforms. Both initiation codons were essential for V2-mediated suppression of transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). This study uncovers the mechanistic divergence of V2 isoforms in TYLCV infection, highlighting their collaborative roles in virulence and host manipulation. The findings advance understanding of geminivirus coding complexity and offer potential targets for resistance strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

22 pages, 761 KiB  
Review
Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans
by Jovany Jordan Betancourt and Kirsten Nielsen
J. Fungi 2025, 11(7), 529; https://doi.org/10.3390/jof11070529 - 17 Jul 2025
Viewed by 482
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and causative agent of cryptococcosis and cryptococcal meningitis (CM). Cryptococcal disease accounts for up to 19% of AIDS-related mortalities globally, warranting its label as a pathogen of critical priority by the World Health Organization. Standard treatments [...] Read more.
Cryptococcus neoformans is an opportunistic fungal pathogen and causative agent of cryptococcosis and cryptococcal meningitis (CM). Cryptococcal disease accounts for up to 19% of AIDS-related mortalities globally, warranting its label as a pathogen of critical priority by the World Health Organization. Standard treatments for CM rely heavily on high doses of antifungal agents for long periods of time, contributing to the growing issue of antifungal resistance. Moreover, mortality rates for CM are still incredibly high (13–78%). Attempts to create new and effective treatments have been slow due to the complex and diverse set of immune-evasive and survival-enhancing virulence factors that C. neoformans employs. To bolster the development of better clinical tools, deeper study into host–Cryptococcus proteomes is needed to identify clinically relevant proteins, pathways, antigens, and beneficial host response mechanisms. Mass spectrometry-based proteomics approaches serve as invaluable tools for investigating these complex questions. Here, we discuss some of the insights into cryptococcal disease and biology learned using proteomics, including target proteins and pathways regulating Cryptococcus virulence factors, metabolism, and host defense responses. By utilizing proteomics to probe deeper into these protein interaction networks, new clinical tools for detecting, diagnosing, and treating C. neoformans can be developed. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

Back to TopTop