Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change
Abstract
1. Introduction
2. Global Distribution Characteristics
3. Damage and Host Range
4. Molecular Mechanisms in the Interaction Between M. enterolobii and Host Plants
4.1. Life Cycle of M. enterolobii
4.2. Formation of Feeding Sites
4.3. Functions of Effector Proteins
4.4. Host Resistance Genes Against RKNs
5. Rapid Detection Techniques for M. enterolobii
6. Green Control Strategies for M. enterolobii
6.1. Cultural Control
6.2. Precision Chemical Control
6.3. Biological Control
Representative Category | Agent Type | Representative Species/Compounds | Mechanism of Action | References |
---|---|---|---|---|
Bacteria | Antagonistic bacteria | Bacillus subtilis, B. thuringiensis | Secretion of secondary metabolites that directly inhibit nematode development | [95] |
Parasitic bacteria | Brevibacillus laterosporus | Direct parasitism of eggs or juveniles, extracting nutrients | [96] | |
Induced systemic resistance (ISR)-eliciting bacteria | Lactobacillus spp., Pseudomonas spp. | Induction of plant systemic defenses | [97,98,99] | |
Fungi | Parasitic fungi | Purpureocillium lilacinum, Metarhizium anisopliae | Penetration and degradation of egg shells or cuticle of juveniles | [100] |
Predatory fungi | Arthrobotrys oligospora, Dactylella spp. | Formation of trapping structures to actively capture and kill nematode juveniles or adults | [101,102] | |
Antagonistic fungi | Trichoderma viride, T. harzianum, T. harzianum | Secretion of antifungal/antinematodal compounds, competition for nutrients, and induction of plant defenses | [103,104] | |
Actinomycetes | Parasitic actinomycetes | Streptomyces griseus, S. aureofaciens | Inhibition of egg hatching and direct killing of nematodes | [105] |
Antagonistic actinomycetes | S. roseoflavus, S. hydrogenans | Production of antagonistic metabolites and competition for space and nutrients | [106] | |
Nematicidal Plants | Terpenoids and essential oils | Azadirachtin, cucurbitacin, ursolic acid | Release of volatile oils that repel nematodes and inhibit egg hatching | [107,108] |
Phenolics and flavonoids | Phenolic acids, flavonoids, gossypol | Disruption of nematode metabolism and neural transmission, reducing survival and reproduction | [109] | |
Alkaloids | Nicotine, lupanine, sanguinarine | Disruption of nematode cell membranes and nervous system | [110,111] |
6.4. Breeding for Resistance
Crop | Germplasm Accession | Resistance Gene | Key Features | References |
---|---|---|---|---|
Tomato | Solanum peruvianum and S. pimpinellifolium | Mi-1 | Confers resistance to Meloidogyne incognita, M. arenaria and M. javanica; located at the distal end of the short arm of chromosome 6; temperature-sensitive | [117,118] |
Other Mi alleles | Confer resistance to either M. incognita or M. javanica; heat-stable | [119] | ||
Mi-9 | Homologous to Mi-1, at the distal end of chromosome 6; heat-stable; broad-spectrum resistance to M. incognita, M. arenaria, M. javanica | [120,121] | ||
Mi-HT | At the same locus on chromosome 6; heat-stable, broad-spectrum resistance | [112] | ||
Hero | Located on chromosome 4; confers resistance to root-knot nematodes and potato cyst nematode | [122] | ||
Pepper | Nemaheart, Carolina wonder | N | Resistance to M. incognita, M. arenaria, M. javanica; susceptibility to M. hapla; resistance breaks down above 28 °C | [123] |
PI 322719, PI 201234, CM334 | Me1, Me3 | Resistance to M. incognita, M. arenaria, M. javanica; no resistance to M. enterolobii; mapped to the distal 28 cM region of chromosome P9 | [13] | |
Cucurbits | LI 90430 | Mj | Resistance to M. incognita, M. arenaria, M. javanica, M. hapla; used in cultivars ‘Lucia’, ‘Manteo’, ‘Shelby | [124] |
Cucumis metuliferus | EVM0025394 EVM0006042 | Resistance to M. incognita; not yet deployed in commercial breeding | [125] | |
Cucumis hystrix | Csa5M608240.1 Csa5M610420.1 Csa5M623410.1 Csa5M610370.1 | Resistance to M. incognita; not yet deployed in commercial breeding | [126] | |
Eggplant | Solanum aculeatissimum | SacMi | Resistance to M. incognita; member of the NBS-LRR gene family | [127] |
Carrot | Brasilia, PI 652188 | Mj-1, Mj-2 | Confer resistance to M. incognita and M. javanica; both loci mapped on chromosome 8, separated by 41 cM | [128,129] |
7. Challenges and Future Perspectives
7.1. Deciphering Temperature Adaptation Mechanisms Using High-Throughput Omics and Gene Editing Technologies
7.2. Developing Dynamic Predictive Models Based on GIS and Machine Learning
7.3. Integrating Multimodal Control Strategies with Intelligent Controlled-Release Systems
7.4. Potential Links Between Microbiome Manipulation and the Pathogenic Mechanisms of M. enterolobii
7.5. Promoting International Collaboration and the Construction of Data-Sharing Platforms
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad, P.; Gouzy, J.; Aury, J.M.; Castagnone-Sereno, P.; Danchin, E.G.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V.C.; et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Mantelin, S.; Bellafiore, S.; Kyndt, T. Meloidogyne graminicola: A major threat to rice agriculture. Mol. Plant Pathol. 2017, 18, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Koutsovoulos, G.D.; Poullet, M.; Elashry, A.; Kozlowski, D.K.L.; Sallet, E.; Da Rocha, M.; Perfus-Barbeoch, L.; Martin-Jimenez, C.; Frey, J.E.; Ahrens, C.H.; et al. Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode. Sci. Data 2020, 7, 324. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Chen, Y.P.; Liu, Q.; Jian, H. Research progresses in occurrence, diagnoses, pathogenic mechanisms and integrated management of vegetable root-knot nematodes in China. J. Plant Prot. 2022, 49, 424–438. [Google Scholar]
- Yang, B.J.; Eisenback, J.D. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. J. Nematol. 1983, 15, 381–391. [Google Scholar] [PubMed]
- Rammah, A.; Hirschmann, H. Meloidogyne mayaguensis n. sp. (Meloidogynidae), a Root-knot nematode from Puerto Rico. J. Nematol. 1988, 20, 58–69. [Google Scholar] [PubMed]
- Xu, J.H.; Liu, P.L.; Meng, Q.P.; Long, H.B. Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified Mitochondrial DNA restriction fragment length polymorphism. Eur. J. Plant Pathol. 2004, 110, 309–315. [Google Scholar] [CrossRef]
- Santos, D.; Abrantes, I.; Maleita, C. The quarantine root-knot nematode Meloidogyne enterolobii—A potential threat to Portugal and Europe. Plant Pathol. 2019, 68, 1607–1615. [Google Scholar] [CrossRef]
- Yang, F.; Xu, X.; Guo, R.; Yu, W.J.; Peng, Y.L.; Ji, H.L.; Zhuo, F.Y. Identification of root-knot nematode species from paddy field and surrounding environment in northern China. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2024, 52, 98–108. [Google Scholar]
- Pinheiro, J.B.; Boiteux, L.S.; Almeida, M.R.A.; Pereira, R.B.; Galhardo, L.C.S.; Gomes Carneiro, R.M.D. First report of Meloidogyne enterolobii in capsicum rootstocks carrying the Me1 and Me3/Me7 genes in central Brazil. Nematropica 2015, 45, 184–188. [Google Scholar]
- Rutter, W.B.; Wadl, P.A.; Mueller, J.D.; Agudelo, P. Identification of sweet potato germplasm resistant to pathotypically distinct Isolates of Meloidogyne enterolobii from the Carolinas. Plant Dis. 2021, 105, 3147–3153. [Google Scholar] [CrossRef] [PubMed]
- Djian-Caporalino, C.; Fazari, A.; Arguel, M.J.; Vernie, T.; VandeCasteele, C.; Faure, I.; Brunoud, G.; Pijarowski, L.; Palloix, A.; Lefebvre, V.; et al. Root-Knot Nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor. Appl. Genet. 2007, 114, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Yang, D.; Niu, J.H.; Zhao, J.L.; Jian, H. De novo analysis of the transcriptome of Meloidogyne enterolobii to uncover potential target genes for biological control. Int. J. Mol. Sci. 2016, 17, 1442. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Khan, A.; Khan, A.A.; Ali, A.; Mohhamad, H.I. Biological control: A novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek 2021, 114, 885–912. [Google Scholar] [CrossRef] [PubMed]
- Kiewnick, S.; Karssen, G.; Brito, J.A.; Oggenfuss, M.; Frey, J.E. First report of root-knot nematode Meloidogyne enterolobii on tomato and cucumber in Switzerland. Plant Dis. 2008, 92, 1370. [Google Scholar] [CrossRef] [PubMed]
- Quénéhervé, P.; Godefroid, M.; Mège, P.; Marie-Luce, S. Diversity of Meloidogyne spp. parasitizing plants in Martinique Island, French West Indies. Nematropica 2011, 41, 191–199. [Google Scholar]
- Karuri, H.W.; Olago, D.; Neilson, R.; Mararo, E.; Villinger, J. A survey of root knot nematodes and resistance to Meloidogyne incognita in sweet potato varieties from Kenyan fields. Crop Pro. 2017, 92, 114–121. [Google Scholar] [CrossRef]
- Olajide, E.; Kolombia, Y.A.; Amah, D.; Couvreur, M.; Swennen, R.; Coyne, D.; Cortada, L.; Bert, W. First report of the root-knot nematode Meloidogyne enterolobii parasitizing Plantain (Musa spp. AAB) in Nigeria. Plant Dis. 2023, 107, 970. [Google Scholar] [CrossRef]
- Ghule, T.M.; Phani, V.; Somvanshi, V.S.; Patil, M.; Bhattacharyya, S.; Khan, M.R. Further observations on Meloidogyne enterolobii (Nematoda: Meloidogynidae) infecting guava (Psidium guajava) in India. J. Nematol. 2020, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jindapunnapat, K.; Chinnasri, B.; Beesa, N.; Chomphuphuang, N. Molecular phylogeny and morphological studies reveal a 30-year-old rain tree (Samanea saman) maintains populations of Meloidogyne enterolobii, a new host plant in Thailand. J. Phytopathol. 2023, 171, 409–420. [Google Scholar] [CrossRef]
- Riva, G.; Brito, J.A.; de Oliveira, C.; Marin, M.; Gu, M.; Bui, H.X.; Desaeger, J. Identification, distribution, and hosts of Meloidogyne spp. infecting horticultural crops in Florida, USA with focus on Meloidogyne enterolobii. J. Nematol. 2024, 56, 20240042. [Google Scholar] [CrossRef] [PubMed]
- Long, H.B.; Bai, C.; Peng, J.; Zeng, F.Y. First report of the root-knot nematode Meloidogyne enterolobii infecting Jujube in China. Plant Dis. 2014, 98, 1451. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Wang, R.Y.; Chen, S.L.; Li, X.H.; Ma, J. First report of root-knot nematode Meloidogyne enterolobii on sweet potato in China. Plant Dis. 2014, 98, 702. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Hou, X.Y.; Cheng, M.; Deng, M.X.; Cheng, X.; Liu, G.K. First report of Meloidogyne enterolobii on Ginger (Zingiber officinale) in China. Plant Dis. 2018, 102, 684. [Google Scholar] [CrossRef]
- Pan, S.; Wang, Q.L.; Wei, P.Y.; Song, Q.L.; Liu, C.; Chen, Z.J.; Li, Y.M. First report of root-knot nematode Meloidogyne enterolobii infecting coriander in Shaanxi, Northern China. Plant Dis. 2024, 108, 1118. [Google Scholar] [CrossRef]
- Niu, J.H.; Jian, H.; Guo, Q.X.; Chen, C.L.; Wang, X.Y.; Liu, Q.; Guo, Y.D. Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathol. 2012, 61, 809–819. [Google Scholar] [CrossRef]
- Ji, Y.R.; Xiao, X.; Zhang, Z.H.; Li, G.W.; Dong, Y.; Yang, Q.L.; Gao, Y.; Nie, D.; Shi, J. Pathogenic identification of cucumber root-knot nematodes in Daqing greenhouse. J. Anhui Agric. Sci. 2022, 50, 144–146. [Google Scholar]
- Siddique, S.; Coomer, A.; Baum, T.; Williamson, V.M. Recognition and response in plant-nematode interactions. Annu. Rev. Phytopathol. 2022, 60, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Trudgill, D.L.; Blok, V.C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 2001, 39, 53–77. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.N.; Moens, M.; Starr, J.L. Root-Knot Nematodes; CABI: Cambridge, MA, USA, 2009. [Google Scholar]
- Gomes, V.M.; Souza, R.M.; Almeida, A.M.; Dolinski, C. Relationships between M. enterolobii and F. solani: Spatial and temporal dynamics in the occurrence of guava decline. Nematoda 2014, 1, e01014. [Google Scholar] [CrossRef]
- Souza, R.M.; Oliveira, D.F.; Gomes, V.M.; Viana, A.J.S.; Silva, G.H.; Machado, A.R.T. Meloidogyne enterolobii-induced changes in guava root exudates are associated with root rotting caused by Neocosmospora falciformis. J. Nematol. 2023, 55, 20230055. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.B.; Sikora, R.A.; Greco, N.; Vito, M.D.; Caubel, G. Screening techniques and sources of resistance to nematodes in cool season food legumes. Euphytica 1993, 73, 59–66. [Google Scholar] [CrossRef]
- Long, H.B.; Sun, Y.F.; Zeng, F.Y.; Bai, C. Effect of initial population density of Meloidogyne enterolobii on cucumber growth in greenhouse. Chin. J. Trop. Agric. 2015, 35, 61–64. [Google Scholar]
- Velloso, J.A.; Maquilan, M.A.D.; Campos, V.P.; Brito, J.A.; Dickson, D.W. Temperature effects on development of Meloidogyne enterolobii and M. floridensis. J. Nematol. 2022, 54, 20220013. [Google Scholar] [CrossRef] [PubMed]
- Philbrick, A.N.; Adhikari, T.B.; Louws, F.J.; Gorny, A.M. Meloidogyne enterolobii, a major threat to tomato production: Current status and future prospects for its management. Front. Plant Sci. 2020, 16, 606395. [Google Scholar] [CrossRef] [PubMed]
- Holbein, J.; Franke, R.B.; Marhavý, P.; Fujita, S.; Górecka, M.; Sobczak, M.; Geldner, N.; Schreiber, L.; Grundler, F.M.W.; Siddique, S. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes. Plant J. 2019, 100, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Bellafiore, S.; Shen, Z.; Rosso, M.N.; Abad, P.; Shih, P.; Briggs, S.P. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog. 2008, 4, e1000192. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.; Rao, U.; Giri, A.P. Effectors of root-knot nematodes: An arsenal for successful parasitism. Front. Plant Sci. 2021, 12, 800030. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.G.K.; Goto, D.B. Root-knot nematodes and giant cells. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 83–100. [Google Scholar]
- Collett, R.L.; Rashidifard, M.; Marais, M.F. Hendrika, Insights into the life-cycle development of Meloidogyne enterolobii, M. incognita and M. javanica on tomato, soybean and maize. Eur. J. Plant Pathol. 2024, 168, 137–146. [Google Scholar] [CrossRef]
- Silva, A.J.D.; Oliveira, G.H.D.; Pastoriza, R.J.; Maranho, E.H.; Carvalho Filho, J.L.S.D. Search for sources of resistance to Meloidogyne enterolobii in commercial and wild tomatoes. Hortic. Bras. 2019, 37, 188–198. [Google Scholar] [CrossRef]
- Zhuo, K.; Chen, J.S.; Lin, B.R.; Wang, J.; Sun, F.X.; Hu, L.L.; Liao, J.L. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol. Plant Pathol. 2017, 18, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, K.; Chi, Y.L.; Hu, L.L.; Luo, M.; Liao, J.L. Cloning and RNA interference analysis of a pectate lyase gene of Meloidogyne enterolobii. Acta Phytopathol. Sin. 2011, 41, 473–481. [Google Scholar]
- Long, H.B.; Sun, Y.F.; Zeng, F.Y.; Peng, J.; Bai, C. Identification and developmental analysis of a new pectate lyase gene Me-pel2 in the root-knot nematode Meloidogyne enterolobii. Chin. J. Trop. Crops. 2016, 37, 92–98. [Google Scholar]
- Long, H.B.; Wei, L.S.Z.; Zhao, Z.X.; Chen, M.C. Cloning and functional analysis of a cellulose binding protein gene Me-cbp-1 from the Root-Knot Nematode Meloidogyne enterolobii. J. Agric. Biotechnol. 2017, 25, 196–204. [Google Scholar]
- Pei, J.; Feng, T.Z.; Long, H.B.; Chen, Y.; Pei, Y.L.; Sun, Y.F. Molecular characterization and virus-induced gene silencing of a collagen gene, Me-col-1, in root-knot nematode Meloidogyne enterolobii. Life 2022, 12, 2103. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.R. Cloning and RNAi Effect Analysis of the Effector Gene Me-cm-1 from Meloidogyne enterolobii. Master’s Thesis, Hainan University, Haikou, China, 2021. [Google Scholar]
- Wei, L.S.Z.; Long, H.B.; Chen, M.C.; Zhao, Z.X. Cloning and RNAi of Me-mapk1 gene from the root-knot nematode Meloidogyne enterolobii. Chin. J. Trop. Crops 2016, 37, 1980–1985. [Google Scholar]
- Lian, D.M.; Wang, H.F.; Zhao, Z.X.; Chen, M.C. Cloning and prokaryotic expression of Hsp70 from Meloidogyne enterolobii. Acta Phytopathol. Sin. 2015, 45, 7–13. [Google Scholar]
- Jin, J. Identification and Functional Analysis of Secreted Effector, MeCPI, from Meloidogyne enterolobii. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Feng, T.Z.; Long, H.B.; Pei, Y.L.; Sun, Y.F.; Wei, L.S.Z. Cloning and functional analysis of a novel effector gene Me-3C06 from Meloidogyne enterolobii. In Green Ecological Sustainable Development and Plant Protection—Proceedings of the 12th National Congress and Academic Annual Meeting of the Chinese Society of Plant Protection, Changsha, China, 8 November, 2017; Chinese Society of Plant Protection: Changsha, China, 2017; p. 1. [Google Scholar]
- Feng, T.Z.; Chen, Y.; Li, Z.R.; Pei, J.; Peng, D.L.; Peng, H.; Long, H.B. A novel chorismate mutase effector secreted from root-knot nematode Meloidogyne enterolobii manipulates plant immunity to promote parasitism. J. Integr. Agric. 2024, 23, 4107–4119. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liu, Q.; Sun, X.Q.; Liu, L.; Zhao, J.L.; Yang, S.S.; Wang, X.F.; Quentin, M.; Abad, P.; Favery, B.; et al. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism. New Phytol. 2023, 240, 2468–2483. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 2006, 124, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.; Simons, G.; Jesse, T.; Wijbrandi, J.; Heinen, L.; Hogers, R.; Frijters, A.; Groenendijk, J.; Diergaarde, P.; Reijans, M.; et al. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 1998, 16, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Schaff, J.E.; Nielsen, D.M.; Smith, C.P.; Scholl, E.H.; Bird, D.M. Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance. Plant Physiol. 2007, 144, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, B.; Ammiraju, J.S.; Bhattarai, K.K.; Mantelin, S.; Martinez de Ilarduya, O.; Roberts, P.A.; Kaloshian, I. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol. 2007, 143, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, G.J.; Anderson, P.A.; Dodds, P.N.; Ellis, J.G. Relationships between rust resistance genes at the M locus in flax. Mol. Plant Pathol. 2010, 11, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Radwan, O.; Gandhi, S.; Heesacker, A.; Whitaker, B.; Taylor, C.; Plocik, A.; Kesseli, R.; Kozik, A.; Michelmore, R.W.; Knapp, S.J. Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol. Genet. Genomics. 2008, 280, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Seah, S.; Telleen, A.C.; Williamson, V.M. Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor. Appl. Genet. 2007, 114, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Manley, J.L. Cell signaling and the control of pre-mRNA splicing. Nat. Rev. Mol. Cell Biol. 2004, 5, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Him, N.A.; Gillan, V.; Emes, R.D.; Maitland, K.; Devaney, E. Hsp-90 and the biology of nematodes. BMC Evol. Biol. 2009, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Kiewnick, S.; Dessimoz, M.; Franck, L. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. J. Nematol. 2009, 41, 134–139. [Google Scholar] [PubMed]
- Mantelin, S.; Bhattarai, K.K.; Jhaveri, T.Z.; Kaloshian, I. Mi-1-Mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. PLoS ONE 2013, 8, e63281. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Long, H.; Feng, T.; Pei, Y.; Sun, Y.; Zhang, X. Development of a novel primer–TaqMan probe set for diagnosis and quantification of Meloidogyne enterolobii in soil using qPCR and droplet digital PCR assays. Int. J. Mol. Sci. 2022, 23, 11185. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, S.; Guo, Y.; Wang, L.; Feng, T.; Zhang, X.; Long, H. Development of the duplex droplet digital PCR for quantitative monitoring of mixed infections of Meloidogyne incognita and M. enterolobii. Pest. Manag. Sci. 2025, 81, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Kiewnick, S.; Frey, J.E.; Braun-Kiewnick, A. Development and validation of LNA-based Quantitative Real-Time PCR assays for detection and identification of the root-knot nematode Meloidogyne enterolobii in complex DNA backgrounds. Phytopathology 2015, 105, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.H.; Guo, Q.X.; Jian, H.; Chen, C.L.; Yang, D.; Liu, Q.; Guo, Y.D. Rapid detection of Meloidogyne spp. by LAMP assay in soil and roots. Crop Prot. 2011, 30, 1063–1069. [Google Scholar] [CrossRef]
- Suwanngam, A.; Schiffer, P.H.; Sasnarukkit, A.; Siripattanapipong, S.; Jindapunnapat, K.; Chinnasri, B.; Ruang-Areerate, T. Development of colorimetric and fluorescent closed tube LAMP assay using simplified extraction for diagnosis of Meloidogyne enterolobii in root tissues. Sci. Rep. 2025, 15, 160. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.X.; Gao, B.; Wang, R.Y.; Chen, S.L.; Li, X.H.; Dong, Y.H.; Ma, J. Development of enzyme-mediated duplex exponential amplification assay for detection and identification of Meloidogyne enterolobii in field. Microorganisms 2025, 13, 1353. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.L.; Maria, M.; Barsalote, E.M.; Castillo, P.; Zheng, J.W. Morphological and molecular characterization of the rice root-knot nematode, Meloidogyne graminicola, Golden and Birchfeild, 1965 occurring in Zhejiang, China. J. Integr. Agric. 2018, 17, 2724–2733. [Google Scholar] [CrossRef]
- Kamran, M.; Javed, N.; Ullah, I.; Nazir, S.; Jamil, S.; Iqbal, M.Z.; Abbas, H.; Khan, S.A.; Ehetisham ul Haq, M. Genetic variability among different populations of root knot nematodes based on their encumbrance response to pasteuria isolates using PCR-RFLP. Plant Pathol. J. 2019, 35, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.; Li, C.; Ye, W.; Davis, E. Distribution of Meloidogyne enterolobii in eastern North Carolina and comparison of four isolates. Plant Health Prog. 2020, 21, 91–96. [Google Scholar] [CrossRef]
- Zijlstra, C.; Donkers-Venne, D.T.; Fargette, M. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2000, 2, 847–853. [Google Scholar] [CrossRef]
- Feng, G.Q.; Dong, L.Y.; Chen, Y.J.; Shang, H.; Liu, Y.Z.; Li, J.R.; Yang, J.Z.; Cui, X.M.; Yang, P.W. PCR detection of nematode isolated from Panax notoginseng. Southwest China J. Agric. Sci. 2008, 2, 100–102. [Google Scholar]
- Long, H.; Liu, H.; Xu, J.H. Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathol. Sin. 2006, 36, 109–115. [Google Scholar]
- Huang, F.Y.; Deng, X.P.; Gao, L.L.; Cai, X.J.; Yan, D.; Cai, Y.Z.; Chen, X.L.; Yang, M.; Tong, W.J.; Yu, L. Effect of marigold (Tagetes erecta L.) on soil microbial communities in continuously cropped tobacco fields. Sci. Rep. 2022, 12, 19632. [Google Scholar] [CrossRef] [PubMed]
- Rashidifard, M.; Ashrafi, S.; Claassens, S.; Thünen, T.; Fourie, H. A pilot approach investigating the potential of crop rotation with sainfoin to reduce Meloidogyne enterolobii infection of Maize under greenhouse conditions. Front. Plant Sci. 2021, 12, 659322. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, C.J.; Bian, X.W.; Zeng, S.Y.; Lin, K.C.; Wu, B.; Zhang, G.A.; Zhang, X. Nematicidal efficacy of isothiocyanates against root-knot nematode Meloidogyne javanica in cucumber. Crop Prot. 2011, 30, 33–37. [Google Scholar] [CrossRef]
- Burns, A.R.; Baker, R.J.; Kitner, M.; Knox, J.; Cooke, B.; Volpatti, J.R.; Vaidya, A.S.; Puumala, E.; Palmeira, B.M.; Redman, E.M.; et al. Selective control of parasitic nematodes using bioactivated nematicides. Nature 2023, 618, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Jian, J.Z.; Long, H.B.; Jiang, Q.H.; Huang, W.K.; Kong, L.A.; Yin, M.Z.; Shen, J.; Su, X.F.; Peng, D.L.; et al. Self-assembled nanonematicide induces adverse effects on oxidative stress, succinate dehydrogenase activity, and ATP generation. ACS Appl. Mater. Interfaces 2023, 15, 31173–31184. [Google Scholar] [CrossRef] [PubMed]
- Frei dit Frey, N.; Favery, B. Plant-parasitic nematode secreted peptides hijack a plant secretory pathway. New Phytol. 2021, 229, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Yang, H.; Sun, Y.; Zhang, J.; Gao, K.; Wu, J.; Zhu, C.; Yin, C.; Chen, X.; Liu, Q.; et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science 2025, 388, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Forghani, F.; Hajihassani, A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef] [PubMed]
- Sikandar, A.; Gao, F.; Mo, Y.; Chen, Q.; Ullah, R.M.K.; Wu, H. Efficacy of Aspergillus tubingensis GX3’ fermentation against Meloidogyne enterolobii in tomato (Solanum lycopersicum L.). Plants 2023, 12, 2724. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rodriguez, J.A.; Reyes-Pérez, J.J.; Quiñones-Aguilar, E.E.; Hernandez-Montiel, L.G. Actinomycete potential as biocontrol agent of phytopathogenic fungi: Mechanisms, source, and applications. Plants 2022, 11, 3201. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Song, B.A. Natural nematicidal active compounds: Recent research progress and outlook. J. Integr. Agric. 2021, 20, 2015–2031. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, K.Q. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat. Prod. Rep. 2023, 40, 646–675. [Google Scholar] [CrossRef] [PubMed]
- Pasche, J.M.; Sawlani, R.; Buttrós, V.H.; Desaeger, J.; Garrett, K.A.; Martins, S.J. Underground guardians: How collagen and chitin amendments shape soil microbiome structure and function for Meloidogyne enterolobii control. Microbiome 2025, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- López-Lima, D.; Alarcón-Utrera, D.; Ordáz-Meléndez, J.; Villain, L.; Carrión, G. Metarhizium carneum formulations: A promising new biological control to be incorporated in the integrated management of Meloidogyne enterolobii on tomato plants. Plants 2023, 12, 3431. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Lu, Y.Q.; Liao, K.M.; Ma, X.Q.; Meng, L.L.; Jiang, M.G.; Zhou, Y. A novel tpp-like protein from Bacillus thuringiensis strain GXUN31-2 with nematicidal activity against Meloidogyne enterolobii. Microb. Pathog. 2025, 198, 107191. [Google Scholar] [CrossRef] [PubMed]
- Migunova, V.D.; Sasanelli, N. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 2021, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Stucky, T.; Hochstrasser, M.; Meyer, S.; Segessemann, T.; Ruthes, A.C.; Ahrens, C.H.; Pelludat, C.; Dahlin, P. A novel robust screening assay identifies pseudomonas strains as reliable antagonists of the root-knot nematode Meloidogyne incognita. Microorganisms 2023, 11, 2011. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.Q.; Fu, Q.; Zhang, J.; Hao, G.Y.; Liang, C.; Duan, F.M.; Ma, J.; Zhao, H.H.; Song, W.W. Paenibacillus polymyxa J2-4 induces cucumber to enrich rhizospheric Pseudomonas and contributes to Meloidogyne incognita management under field conditions. Pest. Manag. Sci. 2025, 81, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.J.; Park, A.R.; Kim, S.; Yeon, J.; Yu, N.H.; Ha, S.; Chang, J.Y.; Park, H.W.; Kim, J.C. Biological control of root-knot nematodes by organic acid-producing lactobacillus brevis WiKim0069 isolated from kimchi. Plant Pathol. J. 2019, 35, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.D.; Carneiro, R.M.D.G.; Faria, M.; Souza, D.A.; Lopes, R.B. Evaluation of pochonia chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne enterolobii on tomato and banana. J. Nematol. 2017, 49, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, C.G.; Xu, J.P.; Ji, X.L.; Niu, X.M.; Yang, J.K.; Huang, X.W.; Zhang, K.Q. Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2015, 53, 67–95. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, R.S.; Patil, J.A.; Yadav, S. Prospects of using predatory nematodes in biological control for plant parasitic nematodes—A review. Biological Control. 2021, 160, 104668. [Google Scholar] [CrossRef]
- Ramatsitsi, N.; Dube, Z.P.; Ramachela, K.; Motloba, T. Bio-control efficacy of selected indigenous nematophagous fungi against Meloidogyne enterolobii in vitro and on dry bean (Phaseolus vulgaris L.). Int. Microbiol. 2024, 28, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Pofu, K.M.; Mashela, P.W. Interactive effects of filamentous fungi and cucurbitacin phytonematicide on growth of cowpea and suppression of Meloidogyne enterolobii. Front. Microbiol. 2022, 13, 765051. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Jang, H.J.; Park, J.Y.; Yang, Y.K.; Kim, M.J.; Park, C.S.; Lee, S.; Yun, B.S.; Lee, S.J.; Lee, S.W.; et al. Efficacy evaluation of Streptomyces nigrescens KA-1 against the root-knot nematode Meloidogyne incognita. Biol. Control 2023, 179, 105150. [Google Scholar] [CrossRef]
- Sharma, N.; Manhas, R.K.; Ohri, P. Streptomyces hydrogenans strain DH-16 alleviates negative impact of Meloidogyne incognita stress by modifying physio-biochemical attributes in Solanum lycopersicum plants. Sci. Rep. 2022, 12, 15214. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.G.; Luo, X.D. Meliaceous limonoids: Chemistry and biological activities. Chem. Rev. 2011, 111, 7437–7522. [Google Scholar] [CrossRef] [PubMed]
- Naz, I.; Saifullah; Khan, M.R. Nematicidal activity of nonacosane-10-ol and 23a-homostigmast-5-en-3β-ol isolated from the roots of Fumaria parviflora (Fumariaceae). J. Agric. Food Chem. 2013, 61, 5689–5695. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.C.S.; Ferri, P.H.; Seraphin, J.C.; Fortes, G.A.C.; Rocha, M.R.; Santos, S.C. Principal response curves analysis of polyphenol variation in resistant and susceptible cotton after infection by a root-knot nematode (RKN). Physiol. Mol. Plant Pathol. 2016, 96, 19–28. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Jang, J.Y.; Dang, Q.L.; Choi, Y.H.; Choi, G.J.; Jang, K.S.; Cha, B.; Luu, N.H.; Kim, J.C. Nematicidal activities of 4-quinolone alkaloids isolated from the aerial part of Triumfetta grandidens against Meloidogyne incognita. J. Agric. Food Chem. 2015, 63, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M.L. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)—A century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef]
- El-Sappah, A.H.; M. M., I.; El-Awady, H.H.; Yan, S.; Qi, S.M.; Liu, J.Y.; Cheng, G.T.; Liang, Y. Tomato natural resistance genes in controlling the Root-Knot Nematode. Genes 2019, 10, 925. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef] [PubMed]
- Phani, V.; Gowda, M.T.; Dutta, T.K. Grafting vegetable crops to manage plant-parasitic nematodes: A review. J. Pest. Sci. 2024, 97, 539–560. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Li, H.; Tian, X.X.; Xie, G.Y.; Chen, Y.L.; Zhu, J.; Zhu, G.P. Analysis of metabolomic discrepancy in response to the infection of Meloidogyne enterolobii between tomato rootstocks with diverse resistance. Chin. J. Trop. Crops 2024, 45, 2407–2415. [Google Scholar]
- Rashid, M.H.; Al-Mamun, M.H.; Uddin, M.N. How durable is root knot nematode resistance in tomato? Plant Breed. Biotech. 2017, 5, 143–162. [Google Scholar] [CrossRef]
- Milligan, S.B.; Bodeau, J.; Yaghoobi, J.; Kaloshian, I.; Zabel, P.; Williamson, V.M. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 1998, 10, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Veremis, J.C.; Roberts, P.A. Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor. Appl. Genet. 1996, 93, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Ammiraju, J.S.; Veremis, J.C.; Huang, X.; Roberts, P.A.; Kaloshian, I. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor. Appl. Genet. 2003, 106, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.J.; Ling, J.; Zhao, J.L.; Yang, Y.H.; Yang, Y.; Li, Y.; Jiao, Y.; Mao, Z.C.; Wang, Y.; Xie, B.Y. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157, conferring heat-stable resistance to Meloidogyne incognita. Plant Biotechnol. J. 2023, 21, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Ernst, K.; Kumar, A.; Kriseleit, D.; Kloos, D.U.; Phillips, M.S.; Ganal, M.W. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J. 2002, 31, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Fazari, A.; Palloix, A.; Wang, L.; Yan Hua, M.; Sage-Palloix, A.-M.; Zhang, B.X.; Djian-Caporalino, C. The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed. 2012, 131, 665–673. [Google Scholar] [CrossRef]
- Walters, S.A.; Wehner, T.C. ‘Lucia’, ‘Manteo’, and ‘Shelby’ root-knot nematode-resistant cucumber inbred lines. Hort. Sci. 1997, 32, 1301–1303. [Google Scholar] [CrossRef]
- Xie, X.X.; Ling, J.; Lu, J.R.; Mao, Z.C.; Zhao, J.L.; Zheng, S.J.; Yang, Q.H.; Li, Y.; Visser, R.G.F.; Bai, Y.L.; et al. Genetic dissection of Meloidogyne incognita resistance genes based on VIGS functional analysis in Cucumis metuliferus. BMC Plant Biol. 2024, 24, 964. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Wang, X.; Liu, X.J.; Yang, S.Q.; Yu, X.Q.; Qian, C.T.; Li, J.; Lou, Q.F.; Chen, J.F. Candidate genes underlying the quantitative trait loci for root-knot nematode resistance in a Cucumis hystrix introgression line of cucumber based on population sequencing. J. Plant Res. 2019, 132, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.H.; Liu, J.; Bao, S.Y.; Yang, Y.; Zhuang, Y. Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to Meloidogyne incognita. Int. J. Mol. Sci. 2018, 19, 583. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Matthews, W.C.; Cavagnaro, P.F.; Iorizzo, M.; Roberts, P.A.; Simon, P.W. Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot. J. Hered. 2014, 105, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Boiteux, L.S.; Belter, J.G.; Roberts, P.A.; Simon, P.W. RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor. Appl. Genet. 2000, 100, 439–446. [Google Scholar] [CrossRef]
- Rogers, A.K.; Phillips, C.M. RNAi pathways repress reprogramming of C. elegans germ cells during heat stress. Nucleic Acids Res. 2020, 48, 4256–4273. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, Y.; Kawano, K.; Iwasaki, T.; Kawano, T. RNA interference-mediated growth control of the southern root-knot nematode Meloidogyne incognita. Biosci. Biotechnol. Biochem. 2012, 76, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.Y.; Cao, Y.; Zhang, K.Q. Metagenomic insights into communities, functions of endophytes, and their associations with infection by root-knot nematode Meloidogyne incognita in tomato roots. Sci. Rep. 2015, 5, 17087. [Google Scholar] [CrossRef] [PubMed]
- Elhady, A.; Adss, S.; Hallmann, J.; Heuer, H. Rhizosphere microbiomes modulated by pre-crops assisted plants in resistance to plant-parasitic nematodes. Front. Microbiol. 2017, 8, 1133. [Google Scholar]
- Liu, R.; Chen, M.F.; Liu, B.L.; Huang, K.W.; Mao, Z.C.; Li, H.X.; Zhao, J.L. A root-knot nematode effector manipulates the rhizosphere microbiome for establishing parasitism relationship with hosts. Front. Microbiol. 2023, 14, 1217863. [Google Scholar] [CrossRef] [PubMed]
Functional Categories | Effector | Function | Reference |
---|---|---|---|
Cell wall modification | ME-PEL-1 | Degrading plant cell wall | [45] |
Me-pel2 | Degrading plant cell wall | [46] | |
Me-cbp-1 | Loosening plant cell wall | [47] | |
Me-col-1 | Reduced egg production | [48] | |
Promoting feeding site formation | Me-cm-1 | Formation of giant cells | [49] |
Me-mapk1 | Related to the growth and development of nematodes | [50] | |
Me Hsp70 | Related to the growth and development of nematodes | [51] | |
Plant defense suppression | TCTP | Inhibit the host ETI response | [44] |
MeCPI | Suppressing host innate immune responses | [52] | |
Me-3C06 | Suppressing host innate immune responses | [53] | |
Me-cm | Related to the salicylic acid pathway | [54] | |
MeMSP1 | Regulation of host metabolism | [55] |
Species | Prime Sequence (5′-3′) | Length/bp | Annealing Temperature/°C | References |
---|---|---|---|---|
M. incongnita | MiSF: GGGCAAGTAAGGATGCTCTG MiSD: GCACCTCTTTCATAGCCACG | 502 | 55 | [10] |
M. arenaria | Far: TCGGCGATAGAGGTAAATGAC Rar: TCGGCGATAGACACTACAACT | 420 | 61 | [77] |
M. javanica | Fjav: GGTGCGCGATTGAACTGAGC Rjav: CAGGCCCTTCAGTGGAACTATAC | 670 | 64 | [77] |
M. hapla | Mh-F: CGAATAGTCTCAACGTTTATC Mh-R: ATGTGACAGCGAAAAGAATT | 462 | 52 | [78] |
M. enterolobii | MeF: AACTTTTGTGAAAGTGCCGCTG MeR: TCAGTTCAGGCAGGATCAACC | 236 | 56 | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Liu, R.; Madhusanka, D.U.N.; Liu, Y.; Luo, N.; Guo, W.; Zhao, J.; Li, H.; Mao, Z. Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change. Microbiol. Res. 2025, 16, 165. https://doi.org/10.3390/microbiolres16080165
Shi M, Liu R, Madhusanka DUN, Liu Y, Luo N, Guo W, Zhao J, Li H, Mao Z. Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change. Microbiology Research. 2025; 16(8):165. https://doi.org/10.3390/microbiolres16080165
Chicago/Turabian StyleShi, Mingming, Rui Liu, D. U. Nilunda Madhusanka, Yonggang Liu, Ning Luo, Wei Guo, Jianlong Zhao, Huixia Li, and Zhenchuan Mao. 2025. "Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change" Microbiology Research 16, no. 8: 165. https://doi.org/10.3390/microbiolres16080165
APA StyleShi, M., Liu, R., Madhusanka, D. U. N., Liu, Y., Luo, N., Guo, W., Zhao, J., Li, H., & Mao, Z. (2025). Emerging Threat of Meloidogyne enterolobii: Pathogenicity Mechanisms and Sustainable Management Strategies in the Context of Global Change. Microbiology Research, 16(8), 165. https://doi.org/10.3390/microbiolres16080165