Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = vineyard’s soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2181 KiB  
Article
Metabarcoding Analysis Reveals Microbial Diversity and Potential Soilborne Pathogens Associated with Almond Dieback and Decline
by André Albuquerque, Mariana Patanita, Joana Amaro Ribeiro, Maria Doroteia Campos, Filipa Santos, Tomás Monteiro, Margarida Basaloco and Maria do Rosário Félix
Plants 2025, 14(15), 2309; https://doi.org/10.3390/plants14152309 - 26 Jul 2025
Viewed by 395
Abstract
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond [...] Read more.
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond cultivars. Our results emphasize the multifactorial nature of almond decline and dieback, with possible co-infections by opportunistic fungi and bacteria playing a central role. Classical isolation identified 47 fungal species or genera, including Diaporthe amygdali, Diplodia corticola, Phytophthora sp., and several Fusarium species. Almond metabarcoding revealed a more diverse microbial community, highlighting the prevalence of soilborne pathogens such as Neocosmospora rubicola, Dactylonectria estremocensis, and Plectosphaerella niemeijerarum. Soil metabarcoding suggested that these pathogens likely originate from nursery substrates or soils shared with other crops, such as olives and vineyards, that serve as a source of inoculum. ‘Soleta’ generally presented lower richness when compared to the other tested cultivars, suggesting a higher degree of biotic stress and decreased plant resilience. This study highlights the value of integrating NGS approaches to comprehensively study complex diseases and the need for further research on pathogen interactions and cultivar susceptibility for the future development of new sustainable, targeted management strategies in almond orchards. Full article
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 317
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 263
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
17 pages, 1618 KiB  
Article
Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard
by Fabio De Francesco, Giovanni Mastrolonardo, Gregorio Fantoni, Fabrizio Ungaro and Silvia Baronti
Soil Syst. 2025, 9(3), 81; https://doi.org/10.3390/soilsystems9030081 - 19 Jul 2025
Viewed by 262
Abstract
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains [...] Read more.
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains untested under real field conditions. To address this, we monitored soil in a Tuscan vineyard where biochar was applied at 16 and 32 Mg ha−1, compared to control, on both flat and sloped plots. Soil compaction was induced by 20 passes of a wheeled orchard tractor. Soil bulk density (BD) was measured before, immediately after, and one year following the initial passes, during which 19 additional machine passes occurred as part of the vineyard’s routine agronomic management. Initial results showed a significant BD increase (up to 12.8%) across all treatments, though biochar significantly limited soil compaction, regardless of the applied dose. After one year, in which the soil underwent further compaction, BD further increased across all treatments (up to 20.2%), with the steepest increase observed on the sloped terrain. At this stage, the mitigating effect of biochar on soil compaction was no longer evident. Our findings suggest that biochar may offer some short-term relief from compaction, but further investigations are needed to clarify its long-term effectiveness under field conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

21 pages, 2903 KiB  
Article
Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew
by Giuliano Bonanomi, Giuseppina Iacomino, Ayoub Idbella, Giandomenico Amoroso, Alessia Staropoli, Andrea De Sio, Franco Saccocci, Ahmed M. Abd-ElGawad, Mauro Moreno and Mohamed Idbella
J. Fungi 2025, 11(7), 527; https://doi.org/10.3390/jof11070527 - 16 Jul 2025
Viewed by 308
Abstract
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the [...] Read more.
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the potential of compost tea to suppress downy mildew in a two-year field experiment (2023 and 2024), combined with reduced synthetic fungicide applications. The study design compared two phytosanitary management strategies on a commercial vineyard: a conventional fungicide against a compost tea strategy supplemented with two cymoxanil applications. The experiment set up had three replicated blocks, each consisting of 100 plants for a total of 600 plants. Mechanistic insights were provided through controlled laboratory experiments involving pre- and post-infection leaf assays, vineyard bacteriome profiling, via 16S rRNA gene sequencing for bacterial communities, across vineyard compartments, i.e., bulk soil, rhizosphere, and phyllosphere, and grapevine metabolomic analysis by GC-MS analysis. Field trials demonstrated that compost tea combined with two fungicide applications effectively reduced disease severity, notably outperforming the fungicide alone in the particularly rainy year of 2023. Bacteriome analysis revealed that compost tea treatment enriched beneficial bacterial genera, including Pseudomonas, Sphingomonas, Enterobacter, Massilia, and Bacillus, known for their growth-promoting and biocontrol activity in the rhizosphere and phyllosphere. Laboratory assays on detached leaves further showed that compost tea alone could suppress both infection and sporulation of P. viticola. Metabolomic analysis highlighted the accumulation of compounds such as tartaric and shikimic acids in compost tea treated leaves, suggesting a potential role in induced resistance. The findings indicate that applying compost tea with reduced fungicide treatments represents a promising and sustainable strategy for managing grapevine downy mildew, even in challenging climates. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

12 pages, 910 KiB  
Article
Critical Levels of Copper, Zinc, and Manganese Toxicity in Soil and Tissues of Plants That Cohabit Vineyards in the Pampa Biome
by Filipe Nunes de Oliveira, Letícia Morsch, Jean Michel Moura-Bueno, Adriele Tassinari, Edicarla Trentin, Anderson César Ramos Marques, Talita Andreolli, Bianca Goularte Dias, Luciane Almeri Tabaldi and Gustavo Brunetto
Horticulturae 2025, 11(7), 831; https://doi.org/10.3390/horticulturae11070831 - 14 Jul 2025
Viewed by 308
Abstract
Old vineyards in production in the Pampa biome have high levels of metals, such as copper (Cu), zinc (Zn), and manganese (Mn). The high metal contents in the soil can damage the growth and development of the cover plant species that cohabit the [...] Read more.
Old vineyards in production in the Pampa biome have high levels of metals, such as copper (Cu), zinc (Zn), and manganese (Mn). The high metal contents in the soil can damage the growth and development of the cover plant species that cohabit the vineyards. However, it is possible to define the critical toxicity level (CTL) of metals in soil and tissue in order to monitor and define possible strategies for reducing metal inputs and selecting more tolerant species. This study aimed to define the CTL of Cu, Zn, and Mn in the soil and plant tissue of plants present between the rows of vineyards with different cultivation histories in the Pampa biome in South America. For this purpose, soil and plant tissue samples were collected in a native field area (NF), without agricultural cultivation and in two vineyards, vineyard 1 (V1) and vineyard 2 (V2), both with a history of fungicide application. To define the CTL, the foliar concentrations and soil contents of Cu, Zn, and Mn were correlated with the dry mass production of the shoot. The CTLs for Cu, Zn, and Mn in the soil were set at 15, 3.0, and 35 mg kg−1, respectively. In the tissue, CTLs for Cu, Zn, and Mn were estimated at 75, 77, and 380 mg kg−1, respectively. The contents of Cu, Mn, and Zn in the soil of the vineyards are above the CTL. The concentrations of the metals in the tissue varied, with samples above the CTL for Cu and Zn in the vineyards. The values of Cu, Zn, and Mn in NF are below the CTL in soil and tissue. The high contents of Cu, Zn, and Mn in the soil and tissue limited the dry mass production of the plants between the rows of vineyards. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

8 pages, 830 KiB  
Communication
Differential N2O-Producing Activity of Soil Fungi Across Agricultural Systems: High in Vegetable Fields and Vineyards, Low in Paddies
by Shutan Ma, Jintao Zhang, Ting Wu, Yuqing Miao, Hua Fang, Haitao Wang, Huayuan Niu and Lan Ma
Nitrogen 2025, 6(3), 57; https://doi.org/10.3390/nitrogen6030057 - 11 Jul 2025
Viewed by 201
Abstract
The substrate-induced respiration-inhibition (SIRIN) method has been used to estimate fungi-derived N2O emissions, but its contribution to soil N2O emissions remains unclear. There is a need to quantify the fungal fraction of N2O production more precisely. Here, [...] Read more.
The substrate-induced respiration-inhibition (SIRIN) method has been used to estimate fungi-derived N2O emissions, but its contribution to soil N2O emissions remains unclear. There is a need to quantify the fungal fraction of N2O production more precisely. Here, using isotopocule analysis, we assessed the relative contribution of fungi to soil N2O production potential under denitrifying conditions, where key limiting factors of denitrification (soil moisture, soil NO3, and electron donor) were removed. The result showed that the ratio of fungi-derived N2O emissions (RF) was 0.83~4.28% in paddy soils, 13.80~23.21% in vineyard soils, and 15.34~65.94% in vegetable field soils, respectively. This indicated that the bacteria were the dominator of soil N2O production potential in most cases, but fungal pathways could be significant in vegetable field soils. The experiment with bactericide addition showed that inhibitors could affect non-target microorganisms in the SIRIN method. Our further analyses suggest that it is worth to explore the effect of soil organic carbon and microbial synergies on fungi-derived N2O emissions. Full article
Show Figures

Figure 1

15 pages, 3854 KiB  
Article
Evaluation of the Effect of Different Soil Surface Treatments in the Vineyard Inter-Row on the CO2 Emissions
by Patrik Burg, Vladimír Mašán, Petra Zabloudilová, Miroslav Češpiva, Jana Burgová, Jindřiška Jeřábková, Adam Lipinski and Piotr Markowski
Agronomy 2025, 15(7), 1611; https://doi.org/10.3390/agronomy15071611 - 1 Jul 2025
Viewed by 352
Abstract
In recent years, increasing efforts have been directed towards reducing greenhouse gas emissions from agriculturally managed soils to mitigate their negative environmental impacts. The total emissions released are influenced by the chosen farming practices, including soil surface treatment methods. While numerous studies have [...] Read more.
In recent years, increasing efforts have been directed towards reducing greenhouse gas emissions from agriculturally managed soils to mitigate their negative environmental impacts. The total emissions released are influenced by the chosen farming practices, including soil surface treatment methods. While numerous studies have focused on arable cropping systems, research in permanent crops, such as vineyards, remains limited. For this reason, our study aimed to assess the effects of different soil surface management strategies in vineyard inter-rows on CO2 emissions. Five treatments were examined: cultivation to a depth of 70 mm (C70); cultivation to a depth of 150 mm (C150); compost application (50 t·ha−1) incorporated into the soil at 150 mm depth (C+C150); mulching with plant residues left on the soil surface (M) and an untreated control (Co). Results from two-year measurements indicated the highest CO2 emissions in the C+C150 treatment (42–76% higher) and C150 (34–53% higher) compared to the control (Co). The impact of soil surface treatment on CO2 emissions is further substantiated by cumulative values recorded over 120 days, ranging from 11–24 g C-CO2·m−2·h−1, corresponding to 9.64–21.03 Mg C-CO2·ha−1·y−1. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 3803 KiB  
Article
Partial Substitution of Synthetic Nitrogen with Organic Nitrogen Enhances Soil Fertility, Photosynthesis, and Root Growth of Grapevine Seedlings
by Feng Han, Binxian Jiang, Wenyu Wang, Shuang Wu, Jinggui Wu, Yan Ma and Xiaochi Ma
Nitrogen 2025, 6(3), 49; https://doi.org/10.3390/nitrogen6030049 - 25 Jun 2025
Viewed by 444
Abstract
The overuse of synthetic nitrogen fertilizer in vineyards degrades soil quality and poses environmental risks. Partial substitution of synthetic nitrogen with organic alternatives may enhance grapevine performance and soil sustainability, depending on the substitution rate. This study evaluated the effects of replacing synthetic [...] Read more.
The overuse of synthetic nitrogen fertilizer in vineyards degrades soil quality and poses environmental risks. Partial substitution of synthetic nitrogen with organic alternatives may enhance grapevine performance and soil sustainability, depending on the substitution rate. This study evaluated the effects of replacing synthetic nitrogen with composted spent mushroom substrate at five different rates (0%, 25%, 50%, 75%, and 100%, denoted as NOS, OS-25, OS-50, OS-75, and OS-100, respectively) and a control with no nitrogen fertilization applied (CK), on soil fertility, root growth, and photosynthetic performance in grapevine seedlings. Compared to CK, nitrogen fertilization and organic substitution significantly increased soil electrical conductivity, organic matter, and macronutrient contents, but had no significant effect on soil pH. Organic substitution markedly improved leaf photosynthetic capacity in the summer, with the highest rates observed under OS-25, exceeding CK and NOS by 32.98–63.19% and 13.93–27.38%, respectively. Root growth was also significantly enhanced by organic substitution, with OS-25 exhibiting the best performance. Fine roots in the 0.0–0.5 mm diameter class were dominant, accounting for 56.88–63.06% of total root length and 96.22–97.31% of total root tip count. Increasing substitution rates beyond 25% yielded no further improvements in photosynthesis or root growth. Mantel test analysis indicated strong positive correlations between soil fertility parameters (e.g., alkali-hydrolyzable nitrogen, available phosphorous and potassium) and both photosynthetic efficiency and root growth. These findings suggest that an appropriate substitution rate (i.e., 25%) of organic nitrogen using spent mushroom substrate effectively improves soil fertility, simultaneously optimizing photosynthetic capacity and root growth of grapevine seedlings. Full article
Show Figures

Figure 1

21 pages, 14936 KiB  
Article
Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices
by Vania Lanari, Luca Pallotti, Tania Lattanzi and Oriana Silvestroni
Plants 2025, 14(12), 1823; https://doi.org/10.3390/plants14121823 - 13 Jun 2025
Viewed by 553
Abstract
Grapevine root distribution and density influence mineral and water absorption and are affected by soil management and the use of cover crops. This study, conducted in a ten-year-old commercial Mediterranean vineyard with desiccant-managed inter-rows, compares the effects of three different soil management practices—minimum [...] Read more.
Grapevine root distribution and density influence mineral and water absorption and are affected by soil management and the use of cover crops. This study, conducted in a ten-year-old commercial Mediterranean vineyard with desiccant-managed inter-rows, compares the effects of three different soil management practices—minimum tillage (MT), spontaneous natural covering (NC), and a commercial grass mixture (GM)—on root development in Montepulciano vines grafted onto Kober 5BB rootstocks. Root length, diameter, and weight across different soil layers were analyzed by digging trenches. The results show that thin roots, primarily responsible for water and nutrient absorption, ensure greater soil volume exploration, while medium-to-large roots contribute mainly to root biomass. The presence of cover crops reduces root development in the upper soil layers due to competition with herbaceous species; however, this promotes deeper root exploration and increases the total root length per plant. In the deeper soil layers, root growth is limited by higher soil compaction. Tillage enhances the development of medium-to-large roots and increases the total root biomass per plant. In conclusion, soil management influences vine root development, and competition from cover crops stimulates the growth of absorbing roots in deeper soil layers. Full article
(This article belongs to the Collection Feature Papers in Plant‒Soil Interactions)
Show Figures

Figure 1

19 pages, 1121 KiB  
Article
The Future of Vineyard Irrigation: AI-Driven Insights from IoT Data
by Simona Stojanova, Mojca Volk, Gregor Balkovec, Andrej Kos and Emilija Stojmenova Duh
Sensors 2025, 25(12), 3658; https://doi.org/10.3390/s25123658 - 11 Jun 2025
Viewed by 887
Abstract
Accurate irrigation volume prediction is crucial for sustainable agriculture. This study enhances precision irrigation by integrating diverse datasets, including historical irrigation records, soil moisture, and climatic factors, collected from a small-scale commercial estate vineyard in southwestern Idaho, the United States of America (USA), [...] Read more.
Accurate irrigation volume prediction is crucial for sustainable agriculture. This study enhances precision irrigation by integrating diverse datasets, including historical irrigation records, soil moisture, and climatic factors, collected from a small-scale commercial estate vineyard in southwestern Idaho, the United States of America (USA), over a period of three years (2017–2019). Focusing on long-term irrigation forecasting, addressing a critical gap in sustainable water management, we use machine learning (ML) methods to predict future irrigation needs, with improved accuracy. We designed, developed, and tested a Long Short-Term Memory (LSTM) model, which achieved a Mean Squared Error (MSE) of 0.37, and evaluated its performance against a simpler baseline linear regression (LinReg) model, which yielded a higher MSE of 1.29. We validate the results of the LSTM model using a cross-validation technique, wherein a mean MSE of 0.18 was achieved. The low value of the statistical analysis (p-value = 0.0009) of a paired t-test confirmed that the improvement is significant. This research shows the potential of Artificial Intelligence (AI) to optimize irrigation planning and advance sustainable precision agriculture (PA), by providing a practical tool for long-term forecasting and that supports data-driven decisions. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture: 2nd Edition)
Show Figures

Figure 1

17 pages, 1213 KiB  
Article
Characterization of Physiological Factors and Performance of Ungrafted GRN Rootstocks Under Moderate Water-Stress Conditions
by Jose R. Munoz, Jocelyn Alvarez Arredondo, Maria Alvarez Arredondo, Ava Brackenbury, John Howell, Jennifer Wootten, Myles Adams and Jean Catherine Dodson Peterson
Horticulturae 2025, 11(6), 663; https://doi.org/10.3390/horticulturae11060663 - 11 Jun 2025
Viewed by 345
Abstract
The commercial production of grapevines (Vitis vinifera L.) relies heavily on rootstocks that are hybrids of non-vinifera parentage. The relatively newly released GRN rootstocks (GRN-1, GRN-2, GRN-3, GRN-4, and GRN-5) were bred from especially under-studied genetic backgrounds. This study aimed to [...] Read more.
The commercial production of grapevines (Vitis vinifera L.) relies heavily on rootstocks that are hybrids of non-vinifera parentage. The relatively newly released GRN rootstocks (GRN-1, GRN-2, GRN-3, GRN-4, and GRN-5) were bred from especially under-studied genetic backgrounds. This study aimed to evaluate ungrafted GRN-series grape rootstocks under moderate water-stress conditions and to characterize and compare their physiological performances. Each of the GRN rootstocks had specific physiological characteristics that would make them suitable for a wide range of growing conditions and vineyard management goals. GRN-1 had growth habits which were more vigorous and the highest carbohydrate storage levels, while GRN-2 had the highest level of nitrogen and the largest leaf area, but the lowest levels of carbohydrate storage. GRN-3 was less tolerant to high-salinity soils, and had the longest internodes, while GRN-4 had high boron levels, which supports flowering and fruit set, and short internodes. GRN-5 was consistently moderate across all measured areas, except internode thickness, for which it was the highest. These findings show the variations in physiological growth habits among the ungrafted GRN-series rootstocks and suggest that growth habits, carbohydrate storage, leaf canopy, fruit production, and nutrition vary based on rootstock parentage. Further investigation is needed to determine whether these characteristics persist when grafted onto Vitis vinifera L. scions. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

31 pages, 7861 KiB  
Article
Improving Sustainable Viticulture in Developing Countries: A Case Study
by Zandra Betzabe Rivera Chavez, Alessia Porcaro, Marco Claudio De Simone and Domenico Guida
Sustainability 2025, 17(12), 5338; https://doi.org/10.3390/su17125338 - 9 Jun 2025
Viewed by 789
Abstract
This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in [...] Read more.
This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in this region faces acute challenges such as soil salinity, climate variability, labour shortages, and low technological readiness. Rather than offering a ready-made technological integration, this study adopts a step-by-step design approach grounded in the realities of smallholder farmers. The authors mapped the phenological stages of grapevines using the BBCH scale and systematically reviewed available sensing and monitoring technologies to determine the most context-appropriate solutions. Virtual modelling and preliminary analysis validate AgriRover’s geometric configuration and path-following capabilities within narrow vineyard rows. The proposed platform is meant to be adaptable, scalable, and maintainable using locally available material and human resources. AgriRover offers a practical and affordable foundation for precision agriculture in resource-constrained settings by aligning viticultural challenges with sensor deployment strategies and sustainability criteria. The sustainability analysis of the initial AgriRover concept was evaluated using the CML methodology, accounting for local waste processing rates and energy mixes to reflect environmental realities in Peru. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

19 pages, 1816 KiB  
Article
Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines
by Domagoj Ivan Žeravica, Ivana Tomaz, Darko Preiner, Iva Šikuten, Domagoj Stupić, Ana Jeromel and Edi Maletić
Beverages 2025, 11(3), 87; https://doi.org/10.3390/beverages11030087 - 9 Jun 2025
Viewed by 672
Abstract
The quality and sensory characteristics of wines are influenced by several factors, including grape variety, local climate, soil conditions, viticultural practices, and vintage. This study investigates the volatile organic compounds (VOCs) in Malvasija Dubrovačka wines, which include various chemical groups such as terpenes, [...] Read more.
The quality and sensory characteristics of wines are influenced by several factors, including grape variety, local climate, soil conditions, viticultural practices, and vintage. This study investigates the volatile organic compounds (VOCs) in Malvasija Dubrovačka wines, which include various chemical groups such as terpenes, esters, alcohols, acids, and C13-norisoprenoids. The aim was to investigate how vineyard location and vintage influence the VOC profiles of these wines in two consecutive vintages. Using gas chromatography–mass spectrometry, 54 individual VOCs were identified and quantified. The results showed remarkable differences in the composition of VOCs, especially C13-norisoprenoids, terpenes, and acids, between the two vintages and the studied locations. Principal component analysis showed a significant influence of vineyard location on the composition of Malvasija Dubrovačka wines, a result that was reinforced by conventional descriptive analysis (CDA) of sensory testing. Full article
Show Figures

Figure 1

19 pages, 1842 KiB  
Article
A.A.A. Good Wines WANTED: Blockchain, Non-Destructive Ultrasonic Techniques and Soil Health Assessment for Wine Traceability
by Diego Romano Perinelli, Martina Coletta, Beatrice Sabbatini, Aldo D’Alessandro, Fabio Fabiani, Andrea Passacantando, Giulia Bonacucina and Antonietta La Terza
Sensors 2025, 25(11), 3567; https://doi.org/10.3390/s25113567 - 5 Jun 2025
Viewed by 505
Abstract
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by [...] Read more.
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by using the arthropod-based Soil Biological Quality Index (QBS-ar) to enhance traceability, ensure wine quality, and certify sustainable vineyard practices. Four representative wines from the Marche region (Sangiovese, Maceratino, and two Verdicchio PDO varieties) were analyzed across two vintages (2021 and 2022). Ultrasound spectroscopy demonstrated high sensitivity in distinguishing wines based on ethanol and sugar content, comparably to conventional viscosity-based methods. The QBS-ar index was applied to investigate the soil biodiversity status according to the agricultural management practices applied in each vineyard, reinforcing consumer confidence in environmentally responsible viticulture. By recording these data on a public blockchain, we developed a secure, transparent, and immutable certification system to verify the geographical origin of wines along with their unique characteristics. This is the first study to integrate advanced analytical techniques with blockchain technology for wine traceability, simultaneously addressing counterfeiting, consumer demand for transparency, and biodiversity preservation. Our findings support the applicability of this model to other agri-food sectors, with potential for expansion through additional analytical techniques, such as isotopic analysis and further agroecosystem sustainability indicators. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

Back to TopTop