Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (760)

Search Parameters:
Keywords = vertical vibrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7503 KiB  
Article
A Diagnostic Framework for Decoupling Multi-Source Vibrations in Complex Machinery: An Improved OTPA Application on a Combine Harvester Chassis
by Haiyang Wang, Zhong Tang, Liyun Lao, Honglei Zhang, Jiabao Gu and Qi He
Appl. Sci. 2025, 15(15), 8581; https://doi.org/10.3390/app15158581 (registering DOI) - 1 Aug 2025
Abstract
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes [...] Read more.
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes a robust diagnostic framework to address this issue. We employed a multi-condition vibration test with sequential source activation and an improved Operational Transfer Path Analysis (OTPA) method. Applied to a harvester chassis, the results revealed that vibration energy is predominantly concentrated in the 0–200 Hz frequency band. Path contribution analysis quantified that the “cutting header → conveyor trough → hydraulic cylinder → chassis frame” path is the most critical contributor to vertical vibration, with a vibration acceleration level of 117.6 dB. Further analysis identified the engine (29.3 Hz) as the primary source for vertical vibration, while lateral vibration was mainly attributed to a coupled resonance between the threshing cylinder (58 Hz) and the engine’s second-order harmonic. This study’s theoretical contribution lies in validating a powerful methodology for vibration source apportionment in complex systems. Practically, the findings provide direct, actionable insights for targeted structural optimization and vibration suppression. Full article
Show Figures

Figure 1

18 pages, 5328 KiB  
Article
Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper
by Qilin Liu, Wu Ouyang, Gao Wan and Gaohui Xiao
Lubricants 2025, 13(8), 335; https://doi.org/10.3390/lubricants13080335 - 30 Jul 2025
Viewed by 86
Abstract
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study [...] Read more.
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study investigates the dynamic characteristics of the PSSS with the integral squeeze film damper (ISFD). A dynamic model of ISFD–PSSS is developed to systematically analyze the effects of shaft speed and external load on its dynamic behavior. Three test bearings (conventional, 1S, and 3S structure) are designed and manufactured to study the influence of damping structure layout scheme, damping fluid viscosity, unbalanced load, and shaft speed on the vibration reduction ability of ISFD–PSSS through axis orbit and vibration velocity. The results show that the damping effects of ISFD–PSSS are observed across all test conditions, presenting distinct nonlinear patterns. Suppression effectiveness is more pronounced in the vertical direction compared to the horizontal direction. The 3S structure bearing has better vibration reduction and structural stability than other schemes. The research results provide a reference for the vibration control method of rotating machinery. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Mechanical Characteristics and Precision Analysis of Inflatable Deployable Parabolic Membrane Antenna Structures
by Yu Hu, Huichao Ji and Wujun Chen
Aerospace 2025, 12(8), 677; https://doi.org/10.3390/aerospace12080677 - 29 Jul 2025
Viewed by 148
Abstract
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper [...] Read more.
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper is to explore the force analysis of parabolic antennas by theoretical method and to estimate the effect of different air pressures on the surface precision of parabolic antennas via experiments in horizontal and vertical directions, and then a numerical analysis of the vibration characteristics of the parabolic antenna is proposed to explore the transient response of parabolic antennas. It is found that the ratio of tension reduces as depth of the parabolic membrane increases and can infinitely converge to 1/2. For precision analysis, it is concluded that precision of the parabolic membrane surface in a vertical state is higher than that in a horizontal state. Full article
Show Figures

Figure 1

23 pages, 2779 KiB  
Article
Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake
by Lyubka Pashova, Emil Oynakov, Ivanka Paskaleva and Radan Ivanov
Appl. Sci. 2025, 15(15), 8385; https://doi.org/10.3390/app15158385 - 28 Jul 2025
Viewed by 248
Abstract
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data [...] Read more.
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data recorded at the basement (SGL1) and sixth floor (SGL2) levels during the earthquake. Using the Kanai–Yoshizawa (KY) model, the study estimates inter-story motion and assesses amplification effects across the structure. Analysis of peak ground acceleration (PGA), velocity (PGV), displacement (PGD), and spectral ratios reveals significant dynamic amplification of peak ground acceleration and displacement on the sixth floor, indicating flexible and dynamic behavior, as well as potential resonance effects. The analysis combines three spectral techniques—Horizontal-to-Vertical Spectral Ratio (H/V), Floor Spectral Ratio (FSR), and the Random Decrement Method (RDM)—to determine the building’s dynamic characteristics, including natural frequency and damping ratio. The results indicate a dominant vibration frequency of approximately 2.2 Hz and damping ratios ranging from 3.6% to 6.5%, which is consistent with the typical damping ratios of mid-rise concrete buildings. The findings underscore the significance of soil–structure interaction (SSI), particularly in sedimentary basins like the Sofia Graben, where localized geological effects influence seismic amplification. By integrating accelerometric data with advanced spectral techniques, this research can enhance ongoing site-specific monitoring and seismic design practices, contributing to the refinement of earthquake engineering methodologies for mitigating seismic risk in earthquake-prone urban areas. Full article
(This article belongs to the Special Issue Seismic-Resistant Materials, Devices and Structures)
Show Figures

Figure 1

21 pages, 4886 KiB  
Article
Field-Test-Driven Sensitivity Analysis and Model Updating of Aging Railroad Bridge Structures Using Genetic Algorithm Optimization Approach
by Rahul Anand, Sachin Tripathi, Celso Cruz De Oliveira and Ramesh B. Malla
Infrastructures 2025, 10(8), 195; https://doi.org/10.3390/infrastructures10080195 - 25 Jul 2025
Viewed by 249
Abstract
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. [...] Read more.
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. An initial FE model of the bridge was created based on original drawings and field observations. Field testing using a laser Doppler vibrometer captured the bridge’s dynamic response (vibrations and deflections) under regular train traffic. Key structural parameters (material properties, section properties, support conditions) were identified and varied in a sensitivity analysis to determine their influence on model outputs. A hybrid sensitivity analysis combining log-normal sampling and a genetic algorithm (GA) was employed to explore the parameter space and calibrate the model. The GA optimization tuned the FE model parameters to minimize discrepancies between simulated results and field measurements, focusing on vertical deflections and natural frequencies. The updated FE model showed significantly improved agreement with observed behavior; for example, vertical deflections under a representative train were matched within a few percent, and natural frequencies were accurately reproduced. This validated model provides a more reliable tool for predicting structural performance and fatigue life under various loading scenarios. The results demonstrate that integrating field data, sensitivity analysis, and model updating can greatly enhance the accuracy of structural assessments for aging railroad bridges, supporting more informed maintenance and management decisions. Full article
Show Figures

Figure 1

18 pages, 4172 KiB  
Article
Transient Dynamic Analysis of Composite Vertical Tail Structures Under Transportation-Induced Vibration Loads
by Wei Zheng, Wubing Yang, Sen Li, Dawei Wang, Weidong Yu, Zhuang Xing, Lan Pang, Zhenkun Lei and Yingming Wang
Symmetry 2025, 17(8), 1182; https://doi.org/10.3390/sym17081182 - 24 Jul 2025
Viewed by 274
Abstract
The potential damage to aviation products caused by vibration and shock during road transportation has long been overlooked, despite structural failure under dynamic loading emerging as a critical technical challenge affecting product reliability. For aviation components, both stress and vibration analysis are essential [...] Read more.
The potential damage to aviation products caused by vibration and shock during road transportation has long been overlooked, despite structural failure under dynamic loading emerging as a critical technical challenge affecting product reliability. For aviation components, both stress and vibration analysis are essential prerequisites prior to formal assembly. This study investigates a symmetric vertical tail, a common aviation structure, employing an innovative model group analysis method to characterize its dynamic stress and strain distributions under real transportation conditions. Experimental measurements of vibration acceleration and impact loads during transport served as input data for constructing a numerical model based on stress and vibration theory. The model elucidates the mechanical responses of the tail in both modal and vibrational states, enabling effectively evaluation of dynamic vibrations on the tail and its critical subcomponents during road transport. The findings provide actionable insights for optimizing aviation component packaging design, mitigating vibration-induced damage, and enhancing transportation safety. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 173
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

17 pages, 2635 KiB  
Article
Effects of Vibration Direction, Feature Selection, and the SVM Kernel on Unbalance Fault Classification
by Mine Ateş and Barış Erkuş
Machines 2025, 13(8), 634; https://doi.org/10.3390/machines13080634 - 22 Jul 2025
Viewed by 222
Abstract
In this study, the combined influence of vibration direction, feature selection strategy, and the support vector machine (SVM) kernel on the classification accuracy of unbalance faults was investigated. Experiments were carried out on a Jeffcott rotor test rig at a constant speed and [...] Read more.
In this study, the combined influence of vibration direction, feature selection strategy, and the support vector machine (SVM) kernel on the classification accuracy of unbalance faults was investigated. Experiments were carried out on a Jeffcott rotor test rig at a constant speed and under three operating conditions. The overlapping sliding window method was used for raw sample expansion. Features extracted from time domain signals and from the order and power spectra obtained in the frequency domain were ranked using the Kruskal–Wallis algorithm. Based on the feature-ranking results, the three most discriminative features for each domain–axis combination, as well as all nine most discriminative features for each axis in a hybrid manner, were fed into SVM classifiers with different kernels, and their performance was evaluated using ten-fold cross-validation. Classification using vibration signals in the vertical direction had higher accuracy rates than those using signals in the horizontal direction for the feature sets obtained in the same domains. According to the statistical results, feature set selection had a much greater impact on classification accuracy than SVM kernel choice. Power spectrum-based features allowed higher classification accuracies in all SVM algorithms compared to both the time domain features and the order spectrum-based features for detecting unbalance faults. Increasing the number of features or employing hybrid feature selection did not result in a consistent or significant enhancement in overall classification performance. Selecting the right SVM kernel shapes both the model’s flexibility and its fit to the chosen feature space; when this fit is inadequate, classification accuracy may decrease. Consequently, by selecting the appropriate vibration direction, feature set, and SVM kernel, an improvement of up to 67% in unbalance fault classification accuracy was achieved. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

9 pages, 1521 KiB  
Communication
Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration
by Motoyoshi Kobayashi, Takuya Sugimoto, Ryoichi Ishibashi and Shunsuke Sato
Liquids 2025, 5(3), 18; https://doi.org/10.3390/liquids5030018 - 11 Jul 2025
Viewed by 231
Abstract
Concentrated suspensions exhibit intriguing behaviors under external forces, including vibration and shear. While previous studies have focused primarily on cornstarch suspensions, this paper reports a novel observation that colloidal silica suspensions also exhibit dancing, bouncing, solidification, and melting under vertical vibration. Unlike cornstarch, [...] Read more.
Concentrated suspensions exhibit intriguing behaviors under external forces, including vibration and shear. While previous studies have focused primarily on cornstarch suspensions, this paper reports a novel observation that colloidal silica suspensions also exhibit dancing, bouncing, solidification, and melting under vertical vibration. Unlike cornstarch, silica particles offer high stability, controlled size distribution, and tunable surface properties, making them an ideal system for investigating these phenomena. The 70 wt.% aqueous suspensions of spherical silica particles with a diameter of 0.55 μm were subjected to controlled vertical vibration (60–100 Hz, 100–500 m/s2). High-speed video analysis revealed dynamic transitions, including melting, fingering, squirming, fragmentation, and jumping. The solidified suspension retained its shape after vibration ceased but melted upon weak vibration. This study demonstrates that such dynamic state transitions are not exclusive to starch-based suspensions but can also occur in well-defined colloidal suspensions. Our findings provide a new platform for investigating shear-thickening, jamming, and vibrational solidification in suspensions with controllable parameters. Further work is required to elucidate the underlying mechanisms. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

21 pages, 4791 KiB  
Article
Research on the Active Suspension Control Strategy of Multi-Axle Emergency Rescue Vehicles Based on the Inverse Position Solution of a Parallel Mechanism
by Qinghe Guo, Dingxuan Zhao, Yurong Chen, Shenghuai Wang, Hongxia Wang, Chen Wang and Renjun Liu
Vehicles 2025, 7(3), 69; https://doi.org/10.3390/vehicles7030069 - 9 Jul 2025
Viewed by 244
Abstract
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is [...] Read more.
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is proposed. First, the active suspension of the three-axle emergency rescue vehicle is grouped and interconnected within the group, and it is equivalently constructed into a 3-DOF parallel mechanism. Then, the displacement of each equivalent suspension actuating hydraulic cylinder is calculated by using the method of the inverse position solution of a parallel mechanism, and then the equivalent actuating hydraulic cylinder is reversely driven according to the displacement, thereby realizing the effective control of the attitude of the vehicle body. To verify the effectiveness of the proposed control strategy, a three-axis vehicle experimental platform integrating active suspension and hydro-pneumatic suspension was built, and a pulse road experiment and gravel pavement experiment were carried out and compared with hydro-pneumatic suspension. Both types of road experimental results show that compared to hydro-pneumatic suspension, the active suspension control strategy based on the inverse position solution of a parallel mechanism proposed in this paper exhibits different degrees of advantages in reducing the peak values of the vehicle vertical displacement, pitch angle, and roll angle changes, as well as suppressing various vibration accelerations, significantly improving the vehicle’s driving smoothness and handling stability. Full article
Show Figures

Figure 1

18 pages, 2431 KiB  
Article
A Dynamic Interaction Analysis of a Straddle Monorail Train and Steel–Concrete Composite Bridge
by Zhiyong Yao, Zongchao Liu and Zilin Zhong
Buildings 2025, 15(13), 2333; https://doi.org/10.3390/buildings15132333 - 3 Jul 2025
Viewed by 265
Abstract
Train–bridge dynamic interaction analysis is critical for the dynamic design of bridges and the safety and comfort assessment of trains. This study introduces a train–bridge dynamic model of a straddle monorail train and a steel–concrete composite track beam to investigate the dynamic performance [...] Read more.
Train–bridge dynamic interaction analysis is critical for the dynamic design of bridges and the safety and comfort assessment of trains. This study introduces a train–bridge dynamic model of a straddle monorail train and a steel–concrete composite track beam to investigate the dynamic performance of the bridge and train. It explores the influence of track irregularities and passenger loads on the dynamic response of train–bridge systems at various traveling speeds. The numerical results indicate that there is no significant resonance between the straddle monorail train and the steel–concrete composite bridge. However, track irregularities and train speed significantly amplify the responses of the train and bridge, including displacement, acceleration, and impact coefficient. Additionally, increased passenger load leads to a substantial rise in the vertical displacement of the bridge while reducing the vibration of the train, thereby improving riding comfort. The findings of this study provide valuable scientific insights and have significant practical applications for the use of steel–concrete composite bridges in straddle monorail systems. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

23 pages, 3708 KiB  
Article
Natural Frequency Analysis of a Stepped Drill String in Vertical Oil Wells Subjected to Coupled Axial–Torsional–Lateral Vibrations
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(13), 3492; https://doi.org/10.3390/en18133492 - 2 Jul 2025
Viewed by 323
Abstract
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage [...] Read more.
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage to drill bits. To reduce unwanted oscillations, drilling vibration modeling is the first approach used to determine the behavior of the drill string under various conditions. Natural frequencies, one of the modal characteristics of a vibrating drill string, can be estimated by analytical or numerical models. However, as the field conditions become more complicated, analytical models become increasingly difficult to use, and alternative approaches must be adopted. The main objective of this paper is to investigate the natural frequencies of drill strings with real geometry under coupled vibration modes using both analytical and finite element methods. This study bridges the literature gap in modeling stepped drill string geometries, which are usually represented as uniform beams. This paper used analytical and finite element models to determine the drill string’s lateral, axial, and torsional natural frequencies under varying lengths of drill pipes and drill collars. To assess the reliability of finite element models under complex geometry, the drill string was approximated as a stepped beam rather than a uniform beam. Then, a comparison was made with analytical models. The results showed that the length of drill pipes has a pronounced effect on the natural frequencies of the overall drill string for the three vibrational modes, while drill collar length only has a notable impact on the torsional mode. These findings contribute to drilling systems’ reliability and efficiency in the oil and gas energy sector. Full article
Show Figures

Figure 1

18 pages, 2954 KiB  
Article
Effect of Rubber Granulate Content on the Compressive Strength of Concrete for Industrial Vibration-Isolating Floors
by Maciej Gruszczyński, Alicja Kowalska-Koczwara and Tadeusz Tatara
Materials 2025, 18(13), 3134; https://doi.org/10.3390/ma18133134 - 2 Jul 2025
Viewed by 332
Abstract
Ensuring vibration and impact isolation is crucial in industrial flooring design, especially where vibroacoustic comfort is a priority. Excessive vibrations can negatively affect sensitive equipment, structural durability, and personnel comfort. With the rise of automation and high-precision processes, effective vibration control in floor [...] Read more.
Ensuring vibration and impact isolation is crucial in industrial flooring design, especially where vibroacoustic comfort is a priority. Excessive vibrations can negatively affect sensitive equipment, structural durability, and personnel comfort. With the rise of automation and high-precision processes, effective vibration control in floor systems is increasingly important. Traditional solutions like elastomer pads, rubber mats, or floating floors often have high installation costs, complex construction, and long-term degradation. Therefore, there is growing interest in integrated, durable alternatives that can be incorporated directly into concrete structures. One such approach uses rubber granulates from recycled tires as a modifying additive in cementitious composites. This can improve damping, enhance impact energy absorption, and reduce the need for external insulating layers. However, adding rubber particles to concrete may affect its compressive strength, a key design parameter. This article presents experimental research on concrete and mortar mixtures modified with rubber granulates for vibration-isolating industrial floor systems. The proposed solution combines a conventional concrete subbase with a rubber-enhanced mortar layer, forming a composite system to mitigate vibration transmission. Laboratory tests and real-scale verification under industrial conditions showed that the slab with hybrid EPDM/SBR rubber granulate mortar achieved the highest vibration-damping efficiency, reducing vertical acceleration by 58.6% compared to the reference slab. The EPDM-only mortar also showed a significant reduction of 45.5%. Full article
Show Figures

Figure 1

15 pages, 7056 KiB  
Article
Effects of Packaging Constraints on Vibration Damage of ‘Huangguan’ Pear During Simulated Transport
by Lijun Wang, Zechen Xie, Yumeng Wu, Jinguo Gao and Haiyan Song
Horticulturae 2025, 11(7), 749; https://doi.org/10.3390/horticulturae11070749 - 1 Jul 2025
Viewed by 297
Abstract
Fruit is typically transported in stacked packaging units, where external packaging constraints play a critical role in influencing mechanical damage during transit. This study primarily investigated the effects of external packaging constraints on vibration-induced damage and response vibration in ‘Huangguan’ pears (Pyrus [...] Read more.
Fruit is typically transported in stacked packaging units, where external packaging constraints play a critical role in influencing mechanical damage during transit. This study primarily investigated the effects of external packaging constraints on vibration-induced damage and response vibration in ‘Huangguan’ pears (Pyrus bretschneideri Rehd. ‘Huangguan’). Three external packaging constraint types—free constraint, elastic constraint, and fixed constraint—were applied to a two-layer stacked packaging system to limit vertical movement. The pears inside the containers were divided by a corrugated paperboard. Vibration excitation was simulated using the ASTM D4169 spectrum at three vibration levels. Damage indicators, including damage area, flesh firmness, respiratory rate, weight loss, titratable acidity, ascorbic acid, and tissue microstructure, were analyzed after vibration experiments. The results demonstrated that external packaging constraint type significantly affects the mechanical damage of ‘Huangguan’ pears, with damage severity being closely related to constraint strength. Comprehensive analysis revealed that the most severe damage occurred under free constraint, while the least damage was observed under fixed constraint. Stacking position also influenced damage, as pears on the top layer exhibited more severe damage compared to those on the bottom layer. The response vibration results aligned with the observed damage patterns. SEM analysis further revealed that vibration disrupted the tissue microstructure and damaged stone cells, which decreased in number and even disappeared at higher vibration levels. This study provides valuable insights for improving postharvest transport packaging designs and minimizing fruit loss during logistics. Full article
Show Figures

Figure 1

27 pages, 7037 KiB  
Article
Research on Three-Axis Vibration Characteristics and Vehicle Axle Shape Identification of Cement Pavement Under Heavy Vehicle Loads Based on EMD–Energy Decoupling Method
by Pengpeng Li, Linbing Wang, Songli Yang and Zhoujing Ye
Sensors 2025, 25(13), 4066; https://doi.org/10.3390/s25134066 - 30 Jun 2025
Viewed by 349
Abstract
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring [...] Read more.
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring and early warning system deployment. This investigation examines the triaxial dynamic response characteristics of cement concrete pavement subjected to low-speed, heavy-duty vehicular excitations, employing data acquired through in situ field measurements. A monitoring system incorporating embedded triaxial MEMS accelerometers was developed to capture vibration signals directly within the pavement structure. Raw data underwent preprocessing utilising a smoothing wavelet transform technique to attenuate noise, followed by empirical mode decomposition (EMD) and short-time energy (STE) analysis to scrutinise the time–frequency and energetic properties of triaxial vibration signals. The findings demonstrate that heavy, slow-moving vehicles generate substantial triaxial vibrations, with the vertical (Z-axis) response exhibiting the greatest amplitude and encompassing higher dominant frequency components compared to the horizontal (X and Y) axes. EMD successfully decomposed the complex signals into discrete intrinsic mode functions (IMFs), identifying high-frequency components (IMF1–IMF3) associated with transient vehicular impacts, mid-frequency components (IMF4–IMF6) presumably linked to structural and vehicle dynamics, and low-frequency components (IMF7–IMF9) representing system trends or ambient noise. The STE analysis of the selected IMFs elucidated the transient nature of axle loading, revealing pronounced, localised energy peaks. These findings furnish a comprehensive understanding of the dynamic behaviour of cement concrete pavements under heavy vehicle loads and establish a robust methodological framework for pavement performance assessment and refined axle load identification. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop