Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,742)

Search Parameters:
Keywords = vehicle working conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 484 KiB  
Article
Design of Extended Dissipative Approach via Memory Sampled-Data Control for Stabilization and Its Application to Mixed Traffic System
by Wimonnat Sukpol, Vadivel Rajarathinam, Porpattama Hammachukiattikul and Putsadee Pornphol
Mathematics 2025, 13(15), 2449; https://doi.org/10.3390/math13152449 (registering DOI) - 29 Jul 2025
Viewed by 129
Abstract
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity [...] Read more.
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity model, with the acceleration of a single-linked automated vehicle regulated directly by a suggested CMSDC. The ultimate objective of this work is to present a CMSDC approach for optimizing traffic flow amidst disruptions. The primary emphasis is on the proper design of the CMSDC to ensure that the closed-loop MTS is extended dissipative and quadratically stable. A more generalized CMSDC methodology incorporating a time delay effect is created using a Bernoulli-distributed sequence. The existing Lyapunov–Krasovskii functional (LKF) and enhanced integral inequality methods offer sufficient conditions for the suggested system to achieve an extended dissipative performance index. The suggested criteria provide a comprehensive dissipative study, evaluating L2L, H, passivity, and dissipativity performance. A simulation example illustrates the accuracy and superiority of the proposed controller architecture for the MTS. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization for Transportation Systems)
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 166
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

20 pages, 4256 KiB  
Article
Design Strategies for Stack-Based Piezoelectric Energy Harvesters near Bridge Bearings
by Philipp Mattauch, Oliver Schneider and Gerhard Fischerauer
Sensors 2025, 25(15), 4692; https://doi.org/10.3390/s25154692 - 29 Jul 2025
Viewed by 128
Abstract
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as [...] Read more.
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as bridges. The need for such monitoring is exemplified by the fact that the condition of close to 25% of public roadway bridges in, e.g., Germany is not satisfactory. Stack-based piezoelectric energy harvesting systems (pEHSs) installed near bridge bearings could provide information about the traffic and dynamic loads on the one hand and condition-dependent changes in the bridge characteristics on the other. This paper presents an approach to co-optimizing the design of the mechanical and electrical components using a nonlinear solver. Such an approach has not been described in the open literature to the best of the authors’ knowledge. The mechanical excitation is estimated through a finite element simulation, and the electric circuitry is modeled in Simulink to account for the nonlinear characteristics of rectifying diodes. We use real traffic data to create statistical randomized scenarios for the optimization and statistical variation. A main result of this work is that it reveals the strong dependence of the energy output on the interaction between bridge, harvester, and traffic details. A second result is that the methodology yields design criteria for the harvester such that the energy output is maximized. Through the case study of an actual middle-sized bridge in Germany, we demonstrate the feasibility of harvesting a time-averaged power of several milliwatts throughout the day. Comparing the total amount of harvested energy for 1000 randomized traffic scenarios, we demonstrate the suitability of pEHS to power wireless sensor nodes. In addition, we show the potential sensory usability for traffic observation (vehicle frequency, vehicle weight, axle load, etc.). Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

26 pages, 4789 KiB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 199
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

28 pages, 2976 KiB  
Review
Catalytic Combustion Hydrogen Sensors for Vehicles: Hydrogen-Sensitive Performance Optimization Strategies and Key Technical Challenges
by Biyi Huang, Yi Wang, Chao Wang, Lijian Wang and Shubin Yan
Processes 2025, 13(8), 2384; https://doi.org/10.3390/pr13082384 - 27 Jul 2025
Viewed by 333
Abstract
As an efficient and low-carbon renewable energy source, hydrogen plays a strategic role in the global energy transition, particularly in the transportation sector. However, the flammable and explosive nature of hydrogen makes leakage risks in enclosed environments a core challenge for the safe [...] Read more.
As an efficient and low-carbon renewable energy source, hydrogen plays a strategic role in the global energy transition, particularly in the transportation sector. However, the flammable and explosive nature of hydrogen makes leakage risks in enclosed environments a core challenge for the safe promotion of hydrogen fuel cell vehicles. Catalytic combustion sensors are ideal choices due to their high sensitivity and long lifespan. Nevertheless, they face technical bottlenecks under vehicle operational conditions, such as high-power consumption caused by elevated working temperatures, slow response rates, weak anti-interference capabilities, and catalyst poisoning. This paper systematically reviews the research status of catalytic combustion hydrogen sensors for vehicle applications, summarizes technical difficulties and development strategies from the perspectives of hydrogen-sensitive material design and integration processes, and provides theoretical references and technical guidance for the development of catalytic combustion hydrogen sensors suitable for vehicle use. Full article
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 363
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

23 pages, 999 KiB  
Article
Unmanned Aerial Vehicle Position Tracking Using Nonlinear Autoregressive Exogenous Networks Learned from Proportional-Derivative Model-Based Guidance
by Wilson Pavon, Jorge Chavez, Diego Guffanti and Ama Baduba Asiedu-Asante
Math. Comput. Appl. 2025, 30(4), 78; https://doi.org/10.3390/mca30040078 - 24 Jul 2025
Viewed by 248
Abstract
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing [...] Read more.
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing a neural-network-based approach designed to replicate the behavior of classical control systems. A complete nonlinear model of the quadcopter was derived and linearized around a hovering point to design a traditional proportional derivative (PD) controller, which served as a baseline for training a nonlinear autoregressive exogenous (NARX) artificial neural network. The NARX model, selected for its feedback structure and ability to capture temporal dynamics, was trained to emulate the control signals of the PD controller under varied reference trajectories, including step, sinusoidal, and triangular inputs. The trained networks demonstrated performance comparable to the PD controller, particularly in the vertical axis, where the NARX model achieved a minimal Mean Squared Error (MSE) of 7.78×105 and an R2 value of 0.9852. These results confirm that the NARX neural network, trained via supervised learning to emulate a PD controller, can replicate and even improve classical control strategies in nonlinear scenarios, thereby enhancing robustness against dynamic changes and modeling uncertainties. This research contributes a scalable approach for integrating neural models into UAV control systems, offering a promising path toward adaptive and autonomous flight control architectures that maintain stability and accuracy in complex environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

35 pages, 5898 KiB  
Article
A Unified Machine Learning Framework for Li-Ion Battery State Estimation and Prediction
by Afroditi Fouka, Alexandros Bousdekis, Katerina Lepenioti and Gregoris Mentzas
Appl. Sci. 2025, 15(15), 8164; https://doi.org/10.3390/app15158164 - 22 Jul 2025
Viewed by 223
Abstract
The accurate estimation and prediction of internal states in lithium-ion (Li-Ion) batteries, such as State of Charge (SoC) and Remaining Useful Life (RUL), are vital for optimizing battery performance, safety, and longevity in electric vehicles and other applications. This paper presents a unified, [...] Read more.
The accurate estimation and prediction of internal states in lithium-ion (Li-Ion) batteries, such as State of Charge (SoC) and Remaining Useful Life (RUL), are vital for optimizing battery performance, safety, and longevity in electric vehicles and other applications. This paper presents a unified, modular, and extensible machine learning (ML) framework designed to address the heterogeneity and complexity of battery state prediction tasks. The proposed framework supports flexible configurations across multiple dimensions, including feature engineering, model selection, and training/testing strategies. It integrates standardized data processing pipelines with a diverse set of ML models, such as a long short-term memory neural network (LSTM), a convolutional neural network (CNN), a feedforward neural network (FFNN), automated machine learning (AutoML), and classical regressors, while accommodating heterogeneous datasets. The framework’s applicability is demonstrated through five distinct use cases involving SoC estimation and RUL prediction using real-world and benchmark datasets. Experimental results highlight the framework’s adaptability, methodological transparency, and robust predictive performance across various battery chemistries, usage profiles, and degradation conditions. This work contributes to a standardized approach that facilitates the reproducibility, comparability, and practical deployment of ML-based battery analytics. Full article
Show Figures

Figure 1

22 pages, 6496 KiB  
Article
Real-Time Search and Rescue with Drones: A Deep Learning Approach for Small-Object Detection Based on YOLO
by Francesco Ciccone and Alessandro Ceruti
Drones 2025, 9(8), 514; https://doi.org/10.3390/drones9080514 - 22 Jul 2025
Viewed by 542
Abstract
Unmanned aerial vehicles are increasingly used in civil Search and Rescue operations due to their rapid deployment and wide-area coverage capabilities. However, detecting missing persons from aerial imagery remains challenging due to small object sizes, cluttered backgrounds, and limited onboard computational resources, especially [...] Read more.
Unmanned aerial vehicles are increasingly used in civil Search and Rescue operations due to their rapid deployment and wide-area coverage capabilities. However, detecting missing persons from aerial imagery remains challenging due to small object sizes, cluttered backgrounds, and limited onboard computational resources, especially when managed by civil agencies. In this work, we present a comprehensive methodology for optimizing YOLO-based object detection models for real-time Search and Rescue scenarios. A two-stage transfer learning strategy was employed using VisDrone for general aerial object detection and Heridal for Search and Rescue-specific fine-tuning. We explored various architectural modifications, including enhanced feature fusion (FPN, BiFPN, PB-FPN), additional detection heads (P2), and modules such as CBAM, Transformers, and deconvolution, analyzing their impact on performance and computational efficiency. The best-performing configuration (YOLOv5s-PBfpn-Deconv) achieved a mAP@50 of 0.802 on the Heridal dataset while maintaining real-time inference on embedded hardware (Jetson Nano). Further tests at different flight altitudes and explainability analyses using EigenCAM confirmed the robustness and interpretability of the model in real-world conditions. The proposed solution offers a viable framework for deploying lightweight, interpretable AI systems for UAV-based Search and Rescue operations managed by civil protection authorities. Limitations and future directions include the integration of multimodal sensors and adaptation to broader environmental conditions. Full article
Show Figures

Figure 1

19 pages, 1356 KiB  
Article
Using Transformers and Reinforcement Learning for the Team Orienteering Problem Under Dynamic Conditions
by Antoni Guerrero, Marc Escoto, Majsa Ammouriova, Yangchongyi Men and Angel A. Juan
Mathematics 2025, 13(14), 2313; https://doi.org/10.3390/math13142313 - 20 Jul 2025
Viewed by 291
Abstract
This paper presents a reinforcement learning (RL) approach for solving the team orienteering problem under both deterministic and dynamic travel time conditions. The proposed method builds on the transformer architecture and is trained to construct routes that adapt to real-time variations, such as [...] Read more.
This paper presents a reinforcement learning (RL) approach for solving the team orienteering problem under both deterministic and dynamic travel time conditions. The proposed method builds on the transformer architecture and is trained to construct routes that adapt to real-time variations, such as traffic and environmental changes. A key contribution of this work is the model’s ability to generalize across problem instances with varying numbers of nodes and vehicles, eliminating the need for retraining when problem size changes. To assess performance, a comprehensive set of experiments involving 27,000 synthetic instances is conducted, comparing the RL model with a variable neighborhood search metaheuristic. The results indicate that the RL model achieves competitive solution quality while requiring significantly less computational time. Moreover, the RL approach consistently produces feasible solutions across all dynamic instances, demonstrating strong robustness in meeting time constraints. These findings suggest that learning-based methods can offer efficient, scalable, and adaptable solutions for routing problems in dynamic and uncertain environments. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

36 pages, 8047 KiB  
Article
Fed-DTB: A Dynamic Trust-Based Framework for Secure and Efficient Federated Learning in IoV Networks: Securing V2V/V2I Communication
by Ahmed Alruwaili, Sardar Islam and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 48; https://doi.org/10.3390/jcp5030048 - 19 Jul 2025
Viewed by 429
Abstract
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial [...] Read more.
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial attacks, and the handling of available resources. This paper introduces Fed-DTB, a new dynamic trust-based framework for FL that aims to overcome these challenges in the context of IoV. Fed-DTB integrates the adaptive trust evaluation that is capable of quickly identifying and excluding malicious clients to maintain the authenticity of the learning process. A performance comparison with previous approaches is shown, where the Fed-DTB method improves accuracy in the first two training rounds and decreases the per-round training time. The Fed-DTB is robust to non-IID data distributions and outperforms all other state-of-the-art approaches regarding the final accuracy (87–88%), convergence rate, and adversary detection (99.86% accuracy). The key contributions include (1) a multi-factor trust evaluation mechanism with seven contextual factors, (2) correlation-based adaptive weighting that dynamically prioritises trust factors based on vehicular conditions, and (3) an optimisation-based client selection strategy that maximises collaborative reliability. This work opens up opportunities for more accurate, secure, and private collaborative learning in future intelligent transportation systems with the help of federated learning while overcoming the conventional trade-off of security vs. efficiency. Full article
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 418
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

20 pages, 7661 KiB  
Article
Incorporating a Deep Neural Network into Moving Horizon Estimation for Embedded Thermal Torque Derating of an Electric Machine
by Alexander Winkler, Pranav Shah, Katrin Baumgärtner, Vasu Sharma, David Gordon and Jakob Andert
Energies 2025, 18(14), 3813; https://doi.org/10.3390/en18143813 - 17 Jul 2025
Viewed by 252
Abstract
This study presents a novel state estimation approach integrating Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE). This is a shift from using traditional physics-based models within MHE towards data-driven techniques. Specifically, a Long Short-Term Memory (LSTM)-based DNN is trained using synthetic [...] Read more.
This study presents a novel state estimation approach integrating Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE). This is a shift from using traditional physics-based models within MHE towards data-driven techniques. Specifically, a Long Short-Term Memory (LSTM)-based DNN is trained using synthetic data derived from a high-fidelity thermal model of a Permanent Magnet Synchronous Machine (PMSM), applied within a thermal derating torque control strategy for battery electric vehicles. The trained DNN is directly embedded within an MHE formulation, forming a discrete-time nonlinear optimal control problem (OCP) solved via the acados optimization framework. Model-in-the-Loop simulations demonstrate accurate temperature estimation even under noisy sensor conditions and simulated sensor failures. Real-time implementation on embedded hardware confirms practical feasibility, achieving computational performance exceeding real-time requirements threefold. By integrating the learned LSTM-based dynamics directly into MHE, this work achieves state estimation accuracy, robustness, and adaptability while reducing modeling efforts and complexity. Overall, the results highlight the effectiveness of combining model-based and data-driven methods in safety-critical automotive control systems. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Graphical abstract

18 pages, 10314 KiB  
Article
Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations
by Jesús Gabriel Rangel-Peraza, Sergio Alberto Monjardin-Armenta, Osiris Chávez-Martínez and José de Anda
Processes 2025, 13(7), 2281; https://doi.org/10.3390/pr13072281 - 17 Jul 2025
Viewed by 194
Abstract
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images [...] Read more.
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images with seven spectral bands complemented this characterization. The spectral characterization was conducted by comparing three experimental conditions: the background of the study area without droplets, the droplets generated from purified water, and the droplets produced from tequila vinasses. Two monitoring campaigns, conducted in November 2024 and January 2025, revealed that the tequila vinasse droplets exhibited a maximum influence radius of 16 m, primarily regulated by wind speed conditions (6–16 km/h). Thermal analysis identified the droplet plume as a zone with a lower temperature, creating a thermal contrast of up to 6.6 °C against the average background temperature of 36.6 °C. No significant difference was observed in the influence radius between the droplets generated from vinasse and those from potable water. Spectral analysis of the UAV and satellite images showed significant (p < 0.05) differences in reflectance when the droplets were present (e.g., the coastal blue band increased from an average of 14.43 to 95.59 when vinasse droplets were present). This suggests that the presence of chemical compounds altered light absorption and reflection. However, the instrument’s sensitivity limited the detection of organic compounds at concentrations below its detection limit. The monitoring data presented in this manuscript is crucial for developing strategies to mitigate the potential environmental impacts of the droplets emitted by this novel process. Full article
Show Figures

Figure 1

Back to TopTop