Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,678)

Search Parameters:
Keywords = vehicle segmentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2975 KiB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 (registering DOI) - 19 Jul 2025
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 543 KiB  
Article
Cost Modeling for Pickup and Delivery Outsourcing in CEP Operations: A Multidimensional Approach
by Ermin Muharemović, Amel Kosovac, Muhamed Begović, Snežana Tadić and Mladen Krstić
Logistics 2025, 9(3), 96; https://doi.org/10.3390/logistics9030096 - 17 Jul 2025
Abstract
Background: The growth of parcel volumes in urban areas, largely driven by e-commerce, has increased the complexity of pickup and delivery operations. To meet demands for cost efficiency, flexibility, and sustainability, CEP (Courier, Express, and Parcel) operators increasingly outsource segments of their [...] Read more.
Background: The growth of parcel volumes in urban areas, largely driven by e-commerce, has increased the complexity of pickup and delivery operations. To meet demands for cost efficiency, flexibility, and sustainability, CEP (Courier, Express, and Parcel) operators increasingly outsource segments of their last-mile networks. Methods: This study proposes a novel multidimensional cost model for outsourcing, integrating five key variables: transport unit type (parcel/pallet), service phase (pickup/delivery), vehicle category, powertrain type, and delivery point type. The model applies correction coefficients based on internal operational costs, further adjusted for location and service quality using a bonus/malus mechanism. Results: Each cost component is calculated independently, enabling full transparency and route-level cost tracking. A real-world case study was conducted using operational data from a CEP operator in Bosnia and Herzegovina. The model demonstrated improved accuracy and fairness in cost allocation, with measurable savings of up to 7% compared to existing fixed-price models. Conclusions: The proposed model supports data-driven outsourcing decisions, allows tailored cost structuring based on operational realities, and aligns with sustainable last-mile delivery strategies. It offers a scalable and adaptable tool for CEP operators seeking to enhance cost control and service efficiency in complex urban environments. Full article
21 pages, 4008 KiB  
Article
Enhancing Suburban Lane Detection Through Improved DeepLabV3+ Semantic Segmentation
by Shuwan Cui, Bo Yang, Zhifu Wang, Yi Zhang, Hao Li, Hui Gao and Haijun Xu
Electronics 2025, 14(14), 2865; https://doi.org/10.3390/electronics14142865 - 17 Jul 2025
Abstract
Lane detection is a key technology in automatic driving environment perception, and its accuracy directly affects vehicle positioning, path planning, and driving safety. In this study, an enhanced real-time model for lane detection based on an improved DeepLabV3+ architecture is proposed to address [...] Read more.
Lane detection is a key technology in automatic driving environment perception, and its accuracy directly affects vehicle positioning, path planning, and driving safety. In this study, an enhanced real-time model for lane detection based on an improved DeepLabV3+ architecture is proposed to address the challenges posed by complex dynamic backgrounds and blurred road boundaries in suburban road scenarios. To address the lack of feature correlation in the traditional Atrous Spatial Pyramid Pooling (ASPP) module of the DeepLabV3+ model, we propose an improved LC-DenseASPP module. First, inspired by DenseASPP, the number of dilated convolution layers is reduced from six to three by adopting a dense connection to enhance feature reuse, significantly reducing computational complexity. Second, the convolutional block attention module (CBAM) attention mechanism is embedded after the LC-DenseASPP dilated convolution operation. This effectively improves the model’s ability to focus on key features through the adaptive refinement of channel and spatial attention features. Finally, an image-pooling operation is introduced in the last layer of the LC-DenseASPP to further enhance the ability to capture global context information. DySample is introduced to replace bilinear upsampling in the decoder, ensuring model performance while reducing computational resource consumption. The experimental results show that the model achieves a good balance between segmentation accuracy and computational efficiency, with a mean intersection over union (mIoU) of 95.48% and an inference speed of 128 frames per second (FPS). Additionally, a new lane-detection dataset, SubLane, is constructed to fill the gap in the research field of lane detection in suburban road scenarios. Full article
Show Figures

Figure 1

29 pages, 4633 KiB  
Article
Failure Detection of Laser Welding Seam for Electric Automotive Brake Joints Based on Image Feature Extraction
by Diqing Fan, Chenjiang Yu, Ling Sha, Haifeng Zhang and Xintian Liu
Machines 2025, 13(7), 616; https://doi.org/10.3390/machines13070616 - 17 Jul 2025
Abstract
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the [...] Read more.
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the welding material and welding process, the weld seam is prone to various defects such as cracks, pores, undercutting, and incomplete fusion, which can weaken the joint and even lead to product failure. Traditional weld seam detection methods include destructive testing and non-destructive testing; however, destructive testing has high costs and long cycles, and non-destructive testing, such as radiographic testing and ultrasonic testing, also have problems such as high consumable costs, slow detection speed, or high requirements for operator experience. In response to these challenges, this article proposes a defect detection and classification method for laser welding seams of automotive brake joints based on machine vision inspection technology. Laser-welded automotive brake joints are subjected to weld defect detection and classification, and image processing algorithms are optimized to improve the accuracy of detection and failure analysis by utilizing the high efficiency, low cost, flexibility, and automation advantages of machine vision technology. This article first analyzes the common types of weld defects in laser welding of automotive brake joints, including craters, holes, and nibbling, and explores the causes and characteristics of these defects. Then, an image processing algorithm suitable for laser welding of automotive brake joints was studied, including pre-processing steps such as image smoothing, image enhancement, threshold segmentation, and morphological processing, to extract feature parameters of weld defects. On this basis, a welding seam defect detection and classification system based on the cascade classifier and AdaBoost algorithm was designed, and efficient recognition and classification of welding seam defects were achieved by training the cascade classifier. The results show that the system can accurately identify and distinguish pits, holes, and undercutting defects in welds, with an average classification accuracy of over 90%. The detection and recognition rate of pit defects reaches 100%, and the detection accuracy of undercutting defects is 92.6%. And the overall missed detection rate is less than 3%, with both the missed detection rate and false detection rate for pit defects being 0%. The average detection time for each image is 0.24 s, meeting the real-time requirements of industrial automation. Compared with infrared and ultrasonic detection methods, the proposed machine-vision-based detection system has significant advantages in detection speed, surface defect recognition accuracy, and industrial adaptability. This provides an efficient and accurate solution for laser welding defect detection of automotive brake joints. Full article
Show Figures

Figure 1

22 pages, 6134 KiB  
Article
The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model
by Xiaofei Yang, Zhitao Zhang, Qi Xu, Ning Dong, Xuqian Bai and Yanfu Liu
Plants 2025, 14(14), 2209; https://doi.org/10.3390/plants14142209 - 17 Jul 2025
Abstract
Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid [...] Read more.
Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid estimation of transpiration rates, but its application to low-altitude remote sensing has not yet been further investigated. To evaluate the performance of 3T model based on land surface temperature (LST) and canopy temperature (TC) in estimating transpiration rate, this study utilized an unmanned aerial vehicle (UAV) equipped with a thermal infrared (TIR) camera to capture TIR images of summer maize during the nodulation-irrigation stage under four different moisture treatments, from which LST was extracted. The Gaussian Hidden Markov Random Field (GHMRF) model was applied to segment the TIR images, facilitating the extraction of TC. Finally, an improved 3T model incorporating fractional vegetation coverage (FVC) was proposed. The findings of the study demonstrate that: (1) The GHMRF model offers an effective approach for TIR image segmentation. The mechanism of thermal TIR segmentation implemented by the GHMRF model is explored. The results indicate that when the potential energy function parameter β value is 0.1, the optimal performance is provided. (2) The feasibility of utilizing UAV-based TIR remote sensing in conjunction with the 3T model for estimating Tr has been demonstrated, showing a significant correlation between the measured and the estimated transpiration rate (Tr-3TC), derived from TC data obtained through the segmentation and processing of TIR imagery. The correlation coefficients (r) were 0.946 in 2022 and 0.872 in 2023. (3) The improved 3T model has demonstrated its ability to enhance the estimation accuracy of crop Tr rapidly and effectively, exhibiting a robust correlation with Tr-3TC. The correlation coefficients for the two observed years are 0.991 and 0.989, respectively, while the model maintains low RMSE of 0.756 mmol H2O m−2 s−1 and 0.555 mmol H2O m−2 s−1 for the respective years, indicating strong interannual stability. Full article
Show Figures

Figure 1

20 pages, 5767 KiB  
Article
Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs
by Chaoyang Zhai, Yiteng Zhang, Yifan Wu and Xiaoxue Shen
Forests 2025, 16(7), 1168; https://doi.org/10.3390/f16071168 - 16 Jul 2025
Viewed by 137
Abstract
Stand structural configuration dictates ecosystem functional performance. Mangrove ecosystems, located in ecologically sensitive coastal ecotones, require efficient acquisition of stand structure parameters and health assessments based on these parameters for practical applications. Effective assessment of mangrove ecosystem health, crucial for their functional performance [...] Read more.
Stand structural configuration dictates ecosystem functional performance. Mangrove ecosystems, located in ecologically sensitive coastal ecotones, require efficient acquisition of stand structure parameters and health assessments based on these parameters for practical applications. Effective assessment of mangrove ecosystem health, crucial for their functional performance in ecologically sensitive coastal ecotones, relies on efficient acquisition of stand structure parameters. This study developed a UAV (Unmanned Aerial Vehicle)-based framework for mangrove health evaluation integrating stand structure parameters, utilizing UAV visible-light imagery, field plot surveys, and computer vision techniques, and applied it to the assessment of a national nature reserve. We obtained the following results: (1) A deep neural network, combining UAV visible-light data with tree height constraints, achieved 88.29% overall accuracy in simultaneously identifying six dominant mangrove species; (2) Stand structure parameters were derived based on individual tree extraction results in seedling zones along forest edges (with canopy individual tree segmentation accuracy ≥ 78.57%), and a stand health evaluation model was constructed; (3) Health assessment revealed that the core zone exhibited significantly superior stand health compared to non-core zones. This method demonstrates high efficiency, significantly reducing the time and effort for monitoring, and offers robust support for future mangrove forest health assessments and adaptive conservation strategies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 1987 KiB  
Article
A Sustainable Approach to Modeling Human-Centric and Energy-Efficient Vehicle Acceleration Profiles in Non-Car-Following Scenarios
by Wei Deng, Yi Luo, Shaopeng Yang, Yini Ren, Dongyi Hu and Yong Shi
Sustainability 2025, 17(14), 6481; https://doi.org/10.3390/su17146481 - 15 Jul 2025
Viewed by 93
Abstract
Previous studies have described vehicle acceleration profiles in non-car-following scenarios; however, the underlying mechanisms governing these profiles remain incompletely understood. This study aims to enhance the understanding of these mechanisms by proposing an improved model based on an optimal control problem with two [...] Read more.
Previous studies have described vehicle acceleration profiles in non-car-following scenarios; however, the underlying mechanisms governing these profiles remain incompletely understood. This study aims to enhance the understanding of these mechanisms by proposing an improved model based on an optimal control problem with two bounded conditions (OCP2B), segmenting vehicle acceleration curves into three distinct phases. Specifically, the proposed model imposes constraints on acceleration through maximum jerk and maximum acceleration functions, thereby capturing essential dynamics previously unexplained by conventional models. Our key contributions include establishing a comprehensive analytical framework for accurately describing vehicle acceleration profiles and elucidating critical characteristics overlooked in the prior literature. Our findings demonstrate that incorporating human-centric considerations, such as driving comfort, significantly enhances the model’s practical applicability. Moreover, the proposed approach provides crucial insights for designing autonomous vehicle (CAV) trajectories consistent with human driving behaviors and effectively predicts the movements of human-driven vehicles (HVs), thus facilitating smoother interactions and potentially reducing conflicts between CAVs and HVs. Full article
Show Figures

Figure 1

39 pages, 7470 KiB  
Article
Estimation of Fractal Dimension and Semantic Segmentation of Motion-Blurred Images by Knowledge Distillation in Autonomous Vehicle
by Seong In Jeong, Min Su Jeong and Kang Ryoung Park
Fractal Fract. 2025, 9(7), 460; https://doi.org/10.3390/fractalfract9070460 - 15 Jul 2025
Viewed by 184
Abstract
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust [...] Read more.
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust to motion blur, eliminating the need for image restoration networks. KDS-Net leverages innovative knowledge distillation techniques and edge-enhanced segmentation loss to refine edge regions and improve segmentation precision across various receptive fields. To enhance the interpretability of segmentation quality under motion blur, we incorporate fractal dimension estimation to quantify the geometric complexity of class-specific regions, allowing for a structural assessment of predictions generated by the proposed knowledge distillation framework for autonomous driving. Experiments on well-known motion-blurred remote sensing road scene datasets (CamVid and KITTI) demonstrate mean IoU scores of 72.42% and 59.29%, respectively, surpassing state-of-the-art methods. Additionally, the lightweight KDS-Net (21.44 M parameters) enables real-time edge computing, mitigating data privacy concerns and communication overheads in internet of vehicles scenarios. Full article
Show Figures

Figure 1

19 pages, 1906 KiB  
Article
LADOS: Aerial Imagery Dataset for Oil Spill Detection, Classification, and Localization Using Semantic Segmentation
by Konstantinos Gkountakos, Maria Melitou, Konstantinos Ioannidis, Konstantinos Demestichas, Stefanos Vrochidis and Ioannis Kompatsiaris
Data 2025, 10(7), 117; https://doi.org/10.3390/data10070117 - 14 Jul 2025
Viewed by 165
Abstract
Oil spills on the water surface pose a significant environmental hazard, underscoring the critical need for developing Artificial Intelligence (AI) detection methods. Utilizing Unmanned Aerial Vehicles (UAVs) can significantly improve the efficiency of oil spill detection at early stages, reducing environmental damage; however, [...] Read more.
Oil spills on the water surface pose a significant environmental hazard, underscoring the critical need for developing Artificial Intelligence (AI) detection methods. Utilizing Unmanned Aerial Vehicles (UAVs) can significantly improve the efficiency of oil spill detection at early stages, reducing environmental damage; however, there is a lack of training datasets in the domain. In this paper, LADOS is introduced, an aeriaL imAgery Dataset for Oil Spill detection, classification, and localization by incorporating both liquid and solid classes of low-altitude images. LADOS comprises 3388 images annotated at the pixel level across six distinct classes, including the background. In addition to including a general oil class describing various oil spill appearances, LADOS provides a detailed categorization by including emulsions and sheens. Detailed examination of both instance and semantic segmentation approaches is illustrated to validate the dataset’s performance and significance to the domain. The results on the test set demonstrate an overall performance exceeding 66% mean Intersection over Union (mIoU), with specific classes such as oil and emulsion to surpass 74% of IoU part of the experiments. Full article
Show Figures

Figure 1

24 pages, 17098 KiB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Viewed by 139
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

23 pages, 10698 KiB  
Article
Unmanned Aerial Vehicle-Based RGB Imaging and Lightweight Deep Learning for Downy Mildew Detection in Kimchi Cabbage
by Yang Lyu, Xiongzhe Han, Pingan Wang, Jae-Yeong Shin and Min-Woong Ju
Remote Sens. 2025, 17(14), 2388; https://doi.org/10.3390/rs17142388 - 10 Jul 2025
Viewed by 269
Abstract
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery [...] Read more.
Downy mildew is a highly destructive fungal disease that significantly reduces both the yield and quality of kimchi cabbage. Conventional detection methods rely on manual scouting, which is labor-intensive and prone to subjectivity. This study proposes an automated detection approach using RGB imagery acquired by an unmanned aerial vehicle (UAV), integrated with lightweight deep learning models for leaf-level identification of downy mildew. To improve disease feature extraction, Simple Linear Iterative Clustering (SLIC) segmentation was applied to the images. Among the evaluated models, Vision Transformer (ViT)-based architectures outperformed Convolutional Neural Network (CNN)-based models in terms of classification accuracy and generalization capability. For late-stage disease detection, DeiT-Tiny recorded the highest test accuracy (0.948) and macro F1-score (0.913), while MobileViT-S achieved the highest diseased recall (0.931). In early-stage detection, TinyViT-5M achieved the highest test accuracy (0.970) and macro F1-score (0.918); however, all models demonstrated reduced diseased recall under early-stage conditions, with DeiT-Tiny achieving the highest recall at 0.774. These findings underscore the challenges of identifying early symptoms using RGB imagery. Based on the classification results, prescription maps were generated to facilitate variable-rate pesticide application. Overall, this study demonstrates the potential of UAV-based RGB imaging for precision agriculture, while highlighting the importance of integrating multispectral data and utilizing domain adaptation techniques to enhance early-stage disease detection. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

27 pages, 27475 KiB  
Article
LiGenCam: Reconstruction of Color Camera Images from Multimodal LiDAR Data for Autonomous Driving
by Minghao Xu, Yanlei Gu, Igor Goncharenko and Shunsuke Kamijo
Sensors 2025, 25(14), 4295; https://doi.org/10.3390/s25144295 - 10 Jul 2025
Viewed by 199
Abstract
The automotive industry is advancing toward fully automated driving, where perception systems rely on complementary sensors such as LiDAR and cameras to interpret the vehicle’s surroundings. For Level 4 and higher vehicles, redundancy is vital to prevent safety-critical failures. One way to achieve [...] Read more.
The automotive industry is advancing toward fully automated driving, where perception systems rely on complementary sensors such as LiDAR and cameras to interpret the vehicle’s surroundings. For Level 4 and higher vehicles, redundancy is vital to prevent safety-critical failures. One way to achieve this is by using data from one sensor type to support another. While much research has focused on reconstructing LiDAR point cloud data using camera images, limited work has been conducted on the reverse process—reconstructing image data from LiDAR. This paper proposes a deep learning model, named LiDAR Generative Camera (LiGenCam), to fill this gap. The model reconstructs camera images by utilizing multimodal LiDAR data, including reflectance, ambient light, and range information. LiGenCam is developed based on the Generative Adversarial Network framework, incorporating pixel-wise loss and semantic segmentation loss to guide reconstruction, ensuring both pixel-level similarity and semantic coherence. Experiments on the DurLAR dataset demonstrate that multimodal LiDAR data enhances the realism and semantic consistency of reconstructed images, and adding segmentation loss further improves semantic consistency. Ablation studies confirm these findings. Full article
(This article belongs to the Special Issue Recent Advances in LiDAR Sensing Technology for Autonomous Vehicles)
Show Figures

Figure 1

17 pages, 4316 KiB  
Article
A Coverage Path Planning Method with Energy Optimization for UAV Monitoring Tasks
by Zhengqiang Xiong, Chang Han, Xiaoliang Wang and Li Gao
J. Low Power Electron. Appl. 2025, 15(3), 39; https://doi.org/10.3390/jlpea15030039 - 9 Jul 2025
Viewed by 172
Abstract
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper [...] Read more.
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper proposes a coverage path planning algorithm for Unmanned Aerial Vehicles (UAVs) that minimizes energy consumption while satisfying a set of other requirements, such as coverage and observation resolution. To deal with these issues, we propose a novel energy-optimal coverage path planning framework for monitoring tasks. Firstly, the 3D terrain’s spatial characteristics are digitized through a combination of parametric modeling and meshing techniques. To accurately estimate actual energy expenditure along a segmented trajectory, a power estimation module is introduced, which integrates dynamic feasibility constraints into the energy computation. Utilizing a Digital Surface Model (DSM), a global energy consumption map is generated by constructing a weighted directed graph over the terrain. Subsequently, an energy-optimal coverage path is derived by applying a Genetic Algorithm (GA) to traverse this map. Extensive simulation results validate the superiority of the proposed approach compared to existing methods. Full article
Show Figures

Figure 1

26 pages, 3670 KiB  
Article
Video Instance Segmentation Through Hierarchical Offset Compensation and Temporal Memory Update for UAV Aerial Images
by Ying Huang, Yinhui Zhang, Zifen He and Yunnan Deng
Sensors 2025, 25(14), 4274; https://doi.org/10.3390/s25144274 - 9 Jul 2025
Viewed by 164
Abstract
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we [...] Read more.
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we propose a hierarchical offset compensation and temporal memory update method for video instance segmentation (HT-VIS) with a high generalization ability. Firstly, a hierarchical offset compensation (HOC) module in the form of a sequential and parallel connection is designed to perform deformable offset for the same flexible target across frames, which benefits from compensating for spatial motion features at the time sequence. Next, the temporal memory update (TMU) module is developed by employing convolutional long-short-term memory (ConvLSTM) between the current and adjacent frames to establish the temporal dynamic context correlation and update the current frame feature effectively. Finally, extensive experimental results demonstrate the superiority of the proposed HDNet method when applied to the public YouTubeVIS-2019 dataset and a self-built UAV-Seg segmentation dataset. On four typical datasets (i.e., Zoo, Street, Vehicle, and Sport) extracted from YoutubeVIS-2019 according to category characteristics, the proposed HT-VIS outperforms the state-of-the-art CNN-based VIS methods CrossVIS by 3.9%, 2.0%, 0.3%, and 3.8% in average segmentation accuracy, respectively. On the self-built UAV-VIS dataset, our HT-VIS with PHOC surpasses the baseline SipMask by 2.1% and achieves the highest average segmentation accuracy of 37.4% in the CNN-based methods, demonstrating the effectiveness and robustness of our proposed framework. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 5148 KiB  
Article
Research on Buckwheat Weed Recognition in Multispectral UAV Images Based on MSU-Net
by Jinlong Wu, Xin Wu and Ronghui Miao
Agriculture 2025, 15(14), 1471; https://doi.org/10.3390/agriculture15141471 - 9 Jul 2025
Viewed by 203
Abstract
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition [...] Read more.
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition of minor grain based on unmanned aerial vehicles (UAVs), a semantic segmentation model for buckwheat weeds based on MSU-Net (multispectral U-shaped network) was proposed to explore the influence of different band optimizations on recognition accuracy. Five spectral features—red (R), blue (B), green (G), red edge (REdge), and near-infrared (NIR)—were collected in August when the weeds were more prominent. Based on the U-net image semantic segmentation model, the input module was improved to adaptively adjust the input bands. The neuron death caused by the original ReLU activation function may lead to misidentification, so it was replaced by the Swish function to improve the adaptability to complex inputs. Five single-band multispectral datasets and nine groups of multi-band combined data were, respectively, input into the improved MSU-Net model to verify the performance of our method. Experimental results show that in the single-band recognition results, the B band performs better than other bands, with mean pixel accuracy (mPA), mean intersection over union (mIoU), Dice, and F1 values of 0.75, 0.61, 0.87, and 0.80, respectively. In the multi-band recognition results, the R+G+B+NIR band performs better than other combined bands, with mPA, mIoU, Dice, and F1 values of 0.76, 0.65, 0.85, and 0.78, respectively. Compared with U-Net, DenseASPP, PSPNet, and DeepLabv3, our method achieved a preferable balance between model accuracy and resource consumption. These results indicate that our method can adapt to multispectral input bands and achieve good results in weed segmentation tasks. It can also provide reference for multispectral data analysis and semantic segmentation in the field of minor grain crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

Back to TopTop