The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area
2.2. Data Collection
2.2.1. Thermal Infrared Data
2.2.2. Meteorological Data
2.2.3. Ground Temperature Data
2.2.4. Crop Physiological Indicator Data
2.3. Thermal Infrared Data Processing
2.3.1. Data Pre-Processing
2.3.2. Segmentation of Image Features
2.3.3. Fractional Vegetation Coverage
2.4. Crop Transpiration Rate
2.5. Accuracy Evaluation
2.5.1. Evaluation of Image Segmentation Accuracy
2.5.2. Evaluation of Model Accuracy
3. Results and Analysis
3.1. Results of the Field Measurements
3.1.1. Basic Meteorological Characteristics
3.1.2. Measured Canopy Temperature and Transpiration Rate
3.2. Evaluation of Segmentation Accuracy of TIR Images
3.3. Spatial and Temporal Distribution of LST and TC
3.4. Estimation of Transpiration Rate by the 3T Model Based on Thermal Infrared Remote Sensing from UAV
3.5. Improved 3T Model Based on Fractional Vegetation Coverage (FVC)
4. Discussion
4.1. Performance Analysis of the Improved 3T Model
4.2. Analysis of GHMRF Model Application in Thermal Infrared Images
4.3. The Spatial Heterogeneity of Summer Maize Tr
4.4. Shortcomings and Prospects
5. Conclusions
- (1)
- The GHMRF model is an appropriate tool for processing TIR images, and the optimal value for the potential energy parameter β is 0.1, which produces the most effective results for TIR image segmentation.
- (2)
- The combination of UAV-based TIR remote sensing with a 3T model to estimate crop transpiration rates (Tr-3TC) is a viable approach, although it necessitates the processing of TIR images.
- (3)
- The introduction of FVC into the 3T model has led to the development of an improved model (Tr-3TL-FVC) for estimating transpiration rates. This improved model exhibits comparable performance to the original Tr-3TC model and offers broader applicability and enhanced inter-annual stability. This novel approach provides a technological framework for the monitoring of crop Trs over extensive areas in a convenient, rapid, and efficient manner.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agr. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Lamsal, K.; Paudyal, G.N.; Saeed, M. Model for assessing impact of salinity on soil water availability and crop yield. Agr. Water Manag. 1999, 41, 57–70. [Google Scholar] [CrossRef]
- Momii, K.; Hiyama, H.; Takeuchi, S. Field sugarcane transpiration based on sap flow measurements and root water uptake simulations: Case study on Tanegashima Island, Japan. Agr. Water Manag. 2021, 250, 106836. [Google Scholar] [CrossRef]
- Levy, D.; Pehu, E.; Veilleux, R.E. Variability of diffusive leaf resistance and transpiration rates of various potato genotypes and its possible contribution to water economy. Potato Res. 1989, 32, 275–282. [Google Scholar] [CrossRef]
- Poss, J.A.; Russell, W.B.; Shouse, P.J.; Austin, R.S.; Grattan, S.R.; Grieve, C.M.; Lieth, J.H.; Zeng, L. A volumetric lysimeter system (VLS): An alternative to weighing lysimeters for plant–water relations studies. Comput. Electron. Agric. 2004, 43, 55–68. [Google Scholar] [CrossRef]
- Garen, J.C.; Branch, H.A.; Borrego, I.; Blonder, B.; Stinziano, J.R.; Michaletz, S.T. Gas exchange analysers exhibit large measurement error driven by internal thermal gradients. New Phytol. 2022, 236, 369–384. [Google Scholar] [CrossRef]
- Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Jackson, R.D.; Hatfield, J.L.; Reginato, R.J.; Idso, S.B.; Pinter, P.J. Estimation of daily evapotranspiration from one time-of-day measurements. Agr. Water Manag. 1983, 7, 351–362. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Luvall, J.C. Thermal infrared remote sensing for analysis of landscape ecological processes: Methods and applications. Landsc. Ecol. 1999, 14, 577–598. [Google Scholar] [CrossRef]
- Mangus, D.L.; Sharda, A.; Zhang, N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Comput. Electron. Agric. 2016, 121, 149–159. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Zhong, X.; Jiang, M.; Jin, X.; Zhou, P.; Liu, S.; Sun, C.; Guo, W. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agr. For. Meteorol. 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.Z.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Awada, H.; Di Prima, S.; Sirca, C.; Giadrossich, F.; Marras, S.; Spano, D.; Pirastru, M. A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration. Agr. Water Manag. 2022, 260, 107320. [Google Scholar] [CrossRef]
- Loheide, S.P.; Butler, J.J.; Gorelick, S.M. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Tian, F.; Qiu, G.Y.; Lu, Y.H.; Yang, Y.H.; Xiong, Y.J. Use of high-resolution thermal infrared remote sensing and “three-temperature model” for transpiration monitoring in arid inland river catchment. J. Hydrol. 2014, 515, 307–315. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Zhang, J.; Guo, Y.; Yang, X.; Yu, G.; Bai, X.; Chen, J.; Chen, Y.; Shi, L.; et al. Improving estimation of maize leaf area index by combining of UAV-based multispectral and thermal infrared data: The potential of new texture index. Comput. Electron. Agric. 2023, 214, 108294. [Google Scholar] [CrossRef]
- Du, R.; Xiang, Y.; Zhang, F.; Chen, J.; Shi, H.; Liu, H.; Yang, X.; Yang, N.; Yang, X.; Wang, T.; et al. Combing transfer learning with the OPtical TRApezoid Model (OPTRAM) to diagnosis small-scale field soil moisture from hyperspectral data. Agr. Water Manag. 2024, 298, 108856. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Liu, S.; Li, M.; Zhang, X.; Huang, Z.; Dong, W.; Ma, J.; Ai, L. A Land Surface Temperature Retrieval Method for UAV Broadband Thermal Imager Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Meron, M.; Tsipris, J.; Orlov, V.; Alchanatis, V.; Cohen, Y. Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis. Agric. 2010, 11, 148–162. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef]
- Liu, L.; Xie, Y.; Gao, X.; Cheng, X.; Huang, H.; Zhang, J. A New Threshold-Based Method for Extracting Canopy Temperature from Thermal Infrared Images of Cork Oak Plantations. Remote Sens. 2021, 13, 5028. [Google Scholar] [CrossRef]
- Lu, Y.; Duanmu, L.; Zhai, Z.; Wang, Z. Application and improvement of Canny edge-detection algorithm for exterior wall hollowing detection using infrared thermal images. Energy Build. 2022, 274, 112421. [Google Scholar] [CrossRef]
- Rud, R.; Cohen, Y.; Alchanatis, V.; Levi, A.; Brikman, R.; Shenderey, C.; Heuer, B.; Markovitch, T.; Dar, Z.; Rosen, C.; et al. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric. 2014, 15, 273–289. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef]
- Ajadi, O.A.; Liao, H.M.; Jaacks, J.; Santos, A.D.; Kumpatla, S.P.; Patel, R.; Swatantran, A. Landscape-Scale Crop Lodging Assessment across Iowa and Illinois Using Synthetic Aperture Radar (SAR) Images. Remote Sens. 2020, 12, 3885. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Momii, K.; Yano, T. Estimation of Plant Transpiration by Imitation Leaf Temperature. Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng. 1996, 1996, 401–410,a1. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Ortega-Farias, S.; Riveros-Burgos, C.; Zhang, T.; Lin, A. Estimation of crop transpiration and its scale effect based on ground and UAV thermal infrared remote sensing images. Eur. J. Agron. 2021, 131, 126389. [Google Scholar] [CrossRef]
- Han, M.; Zhang, H.H.; DeJonge, K.C.; Comas, L.H.; Trout, T.J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agr. Water Manag. 2016, 177, 400–409. [Google Scholar] [CrossRef]
- Chang, C.-I. Statistical Detection Theory Approach to Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2057–2074. [Google Scholar] [CrossRef]
- Kumar, S.; Mahadevappa, M.; Dutta, P.K. Compressive Holography From Poisson Noise Plagued Holograms Using Expectation-Maximization. IEEE Trans. Comput. Imaging 2020, 6, 857–867. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Zhang, L.; Li, S.; Du, T.; Huang, M.; Yuan, Y. Estimating Crop Transpiration of Soybean under Different Irrigation Treatments Using Thermal Infrared Remote Sensing Imagery. Agronomy 2018, 9, 8. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Hanson, C.L.; Wight, J.R. Modeling evapotranspiration and surface energy budgets across a watershed. Water Resour. Res. 1996, 32, 2539–2548. [Google Scholar] [CrossRef]
- Kim, C.P.; Entekhabi, D. Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer. Hydrol. Sci. J. 1998, 43, 633–658. [Google Scholar] [CrossRef]
- Pei, D.; Wei, X.; Bai, Y.; Wang, C.; Liu, Y.; Jiang, S. Path Analysis of the Main Control Factors of Transpiration in Greenhouse, Drip-Irrigated Grapes in Cold Areas of Northeast China. Water 2022, 14, 3764. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Yu, X.H.; Wen, H.Y.; Yan, C.H. An advanced approach for measuring the transpiration rate of individual urban trees by the 3D three-temperature model and thermal infrared remote sensing. J. Hydrol. 2020, 587, 125034. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Zhou, Y.; Yang, S. A UAV-derived thermal infrared remote sensing three-temperature model and estimation of various vegetation evapotranspiration in urban micro-environments. Urban. For. Urban. Green. 2022, 69, 127495. [Google Scholar] [CrossRef]
- Segovia, F.; Górriz, J.; Ramírez, J.; Martínez-Murcia, F.J.; Salas-González, D. Preprocessing of 18F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution. Front. Aging Neurosci. 2017, 9, 326. [Google Scholar] [CrossRef]
- Habbouchi, A.; Boudaren, M.E.; Aissani, A.; Pieczynski, W. Unsupervised Segmentation of Markov Random Fields Corrupted by Nonstationary Noise. IEEE Signal Process. Lett. 2016, 23, 1607–1611. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, T.; Zheng, Y.; Xu, D.; Wang, D.; Nguyen, T.M.; Wu, Q.M.J. Two Fast and Robust Modified Gaussian Mixture Models Incorporating Local Spatial Information for Image Segmentation. J. Signal Process. Syst. 2014, 81, 45–58. [Google Scholar] [CrossRef]
- Zhai, L.; Yang, W.; Li, C.; Ma, C.; Wu, X.; Zhang, R. Extraction of maize canopy temperature and variation factor analysis based on multi-source unmanned aerial vehicle remote sensing data. Earth Sci. Inf. 2024, 17, 5079–5094. [Google Scholar] [CrossRef]
- Gadhwal, M.; Sharda, A.; Sangha, H.S.; Merwe, D.V.d. Spatial corn canopy temperature extraction: How focal length and sUAS flying altitude influence thermal infrared sensing accuracy. Comput. Electron. Agric. 2023, 209, 107812. [Google Scholar] [CrossRef]
- Banerjee, A.; Maji, P. Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images. Appl. Soft Comput. 2016, 46, 558–576. [Google Scholar] [CrossRef]
- Xie, F.; Shao, H.; Liu, Z.; Liu, C.; Zhang, C.; Yang, G.; Wang, J.; Cai, N. Retrieval of the pixel component temperatures from multi-band thermal infrared image using Bayesian inversion technique. In Proceedings of the Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI, New Delhi, India, 4–7 April 2016. [Google Scholar]
- Liu, M.; Guan, H.; Ma, X.; Yu, S.; Liu, G. Recognition method of thermal infrared images of plant canopies based on the characteristic registration of heterogeneous images. Comput. Electron. Agric. 2020, 177, 105678. [Google Scholar] [CrossRef]
- Nalevanková, P.; Ježík, M.; Sitková, Z.; Vido, J.; Leštianska, A.; Střelcová, K. Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology 2018, 11, e1958. [Google Scholar] [CrossRef]
- Montoro, A.; Mañas, F.; López-Urrea, R. Transpiration and evaporation of grapevine, two components related to irrigation strategy. Agr. Water Manag. 2016, 177, 193–200. [Google Scholar] [CrossRef]
- Sun, T.; Cheng, R.; Jiang, R.J.; Liu, Y.X.; Sun, Y.D.; Wang, Z.Y.; Fang, P.P.; Wu, X.Y.; Ning, K.; Xu, P. Combining functional physiological phenotyping and simulation model to estimate dynamic water use efficiency and infer transpiration sensitivity traits. Eur. J. Agron. 2023, 150, 126955. [Google Scholar] [CrossRef]
- Hwang, K.; Chandler, D.; Shaw, S. Patch scale evapotranspiration of wetland plant species by ground-based infrared thermometry. Agr. For. Meteorol. 2020, 287, 107948. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, Z.; Wu, L.; Fan, S.; Yu, X.; Liu, X.; Ba, Y.; Ma, H.; Wang, Y. High uncertainty of evapotranspiration products under extreme climatic conditions. J. Hydrol. 2023, 626, 130332. [Google Scholar] [CrossRef]
- Kattenborn, T.; Fassnacht, F.E.; Schmidtlein, S.; Nagendra, H.; He, K. Differentiating plant functional types using reflectance: Which traits make the difference? Remote Sens. Ecol. Conserv. 2018, 5, 5–19. [Google Scholar] [CrossRef]
- Turner, N.C.; Stern, W.R.; Evans, P. Water Relations and Osmotic Adjustment of Leaves and Roots of Lupins in Response to Water Deficits1. Crop Sci. 1987, 27, 977–983. [Google Scholar] [CrossRef]
- Riveros-Burgos, C.; Ortega-Farías, S.; Morales-Salinas, L.; Fuentes-Peñailillo, F.; Tian, F. Assessment of the clumped model to estimate olive orchard evapotranspiration using meteorological data and UAV-based thermal infrared imagery. Irrig. Sci. 2021, 39, 63–80. [Google Scholar] [CrossRef]
- Yue, J.; You, Y.; Zhang, L.; Fu, Z.; Wang, J.; Zhang, J.; Guy, R.D. Exogenous 24-Epibrassinolide Alleviates Effects of Salt Stress on Chloroplasts and Photosynthesis in Robinia pseudoacacia L. Seedlings. J. Plant Growth Regul. 2018, 38, 669–682. [Google Scholar] [CrossRef]
- Cotrim, M.F.; Gava, R.; Campos, C.N.S.; de David, C.H.O.; Reis, I.d.A.; Teodoro, L.P.R.; Teodoro, P.E. Physiological performance of soybean genotypes grown under irrigated and rainfed conditions. J. Agron. Crop Sci. 2020, 207, 34–43. [Google Scholar] [CrossRef]
Sensor Type | Meteorological Factor | Accurate | Unit |
---|---|---|---|
Apogee SN500 | Net radiation (Rn) | / | W/m2 |
HC2AS3 | Atmospheric temperature (Ta) Relative humidity (RH) | ±0.1 ±0.8 | °C % |
Lambrecht 14574 | Wind speed (WS) | ±1 | m/s |
β Value | Overall Accuracy | Kaapa | User’s Accuracy | Producer’s Accuracy |
---|---|---|---|---|
0.001 | 88.36% | 76.55% | 86.32% | 88.23% |
0.05 | 91.20% | 82.34% | 87.60% | 93.80% |
0.1 | 94.80% | 88.51% | 92.06% | 94.42% |
0.2 | 94.12% | 88.14% | 93.30% | 93.72% |
0.3 | 93.92% | 87.73% | 93.20% | 93.36% |
0.4 | 93.52% | 86.82% | 96.99% | 88.41% |
0.5 | 93.72% | 87.24% | 96.56% | 89.29% |
0.6 | 92.44% | 84.56% | 98.16% | 84.87% |
0.7 | 92.44% | 84.56% | 98.16% | 84.87% |
0.8 | 92.44% | 84.56% | 98.16% | 84.87% |
0.9 | 92.32% | 84.31% | 98.15% | 84.60% |
1.0 | 92.32% | 84.31% | 98.15% | 84.60% |
Water Treatments | Samples | Mean (mmol H2O m−2 s−1) | Minimum (mmol H2O m−2 s−1) | Maximum (mmol H2O m−2 s−1) | ||||
---|---|---|---|---|---|---|---|---|
Tr-3TL | Tr-3TC | Tr-3TL | Tr-3TC | Tr-3TL | Tr-3TC | Tr-3TL | Tr-3TC | |
W1-1 | 40804 | 22193 | 7.737 | 9.966 | −2.021 | 7.656 | 13.61 | 13.61 |
W1-2 | 40804 | 22005 | 7.325 | 9.625 | −2.379 | 7.078 | 13.60 | 13.60 |
W1-3 | 40804 | 21777 | 7.768 | 9.991 | −2.706 | 7.592 | 13.89 | 13.89 |
W2-1 | 40804 | 26983 | 9.821 | 11.18 | −2.634 | 7.749 | 12.94 | 12.94 |
W2-2 | 40804 | 21593 | 8.233 | 10.44 | −1.139 | 8.124 | 13.77 | 13.77 |
W2-3 | 40804 | 22606 | 8.737 | 10.95 | −2.716 | 8.425 | 14.55 | 14.55 |
W3-1 | 40804 | 29362 | 12.35 | 13.13 | 1.836 | 9.702 | 14.65 | 14.65 |
W3-2 | 40804 | 25539 | 12.54 | 13.61 | 0.761 | 12.59 | 14.86 | 14.86 |
W3-3 | 40804 | 24396 | 10.10 | 11.97 | −2.713 | 9.21 | 14.30 | 14.30 |
W4-1 | 40804 | 24792 | 11.87 | 13.37 | 0.116 | 11.74 | 15.42 | 15.42 |
W4-2 | 40804 | 30640 | 14.06 | 14.44 | 1.765 | 13.88 | 15.07 | 15.07 |
W4-3 | 40804 | 27944 | 13.87 | 14.28 | 4.206 | 13.77 | 14.88 | 14.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, Z.; Xu, Q.; Dong, N.; Bai, X.; Liu, Y. The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model. Plants 2025, 14, 2209. https://doi.org/10.3390/plants14142209
Yang X, Zhang Z, Xu Q, Dong N, Bai X, Liu Y. The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model. Plants. 2025; 14(14):2209. https://doi.org/10.3390/plants14142209
Chicago/Turabian StyleYang, Xiaofei, Zhitao Zhang, Qi Xu, Ning Dong, Xuqian Bai, and Yanfu Liu. 2025. "The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model" Plants 14, no. 14: 2209. https://doi.org/10.3390/plants14142209
APA StyleYang, X., Zhang, Z., Xu, Q., Dong, N., Bai, X., & Liu, Y. (2025). The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model. Plants, 14(14), 2209. https://doi.org/10.3390/plants14142209