Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs
Abstract
1. Introduction
2. Method and Materials
2.1. Study Site
2.2. Data Acquisition
2.2.1. UAV Data
2.2.2. Field Measurement
2.3. Method
2.3.1. Reconstruction of the Mangrove Forests
2.3.2. Classification of the Mangrove Forests
2.3.3. Crown Segmentation Method
2.3.4. Stand Structure Parameters of Mangrove Forests
2.3.5. Mangrove Forest Health Evaluation Model
3. Results
3.1. Classification Result of the Mangrove Forests
3.2. Crown Segmentation Results
3.3. Mangrove Forest Health Evaluation
4. Discussion
4.1. Accuracy of Mangrove Classification and Optimization Strategies
4.2. Stand Structure Parameters of Mangrove Forest in Different Habitats
4.3. Significance of Mangrove Forest Health Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle |
DSM | Digital surface model |
RGB | Red, green, blue |
GPS | Global positioning system |
CNN | Convolutional neural network |
References
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1986; 413p. [Google Scholar]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef]
- Del Valle, A.; Liu, J.; Farfan, L.M.; Ellison, J.C. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. USA 2020, 117, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Temmerman, S.; Zhu, Q.; Wang, X.; Chen, L.; Wang, C. Predicting nature-based coastal protection by mangroves under extreme waves. Proc. Natl. Acad. Sci. USA 2025, 122, e2410883122. [Google Scholar] [CrossRef] [PubMed]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the world’s threatened major tropical environments. BioScience 2001, 51, 807–815. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, L. Global declines in human-driven mangrove loss. Glob. Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Liu, H.; Ren, H.; Hui, D.; Wang, W.; Liao, B.; Cao, Q. Carbon stocks and potential carbon storage in the mangrove forests of China. J. Environ. Manag. 2014, 133, 86–93. [Google Scholar] [CrossRef]
- Li, M.S.; Lee, S.Y. Mangroves of China: A brief review. For. Ecol. Manag. 1997, 96, 241–259. [Google Scholar] [CrossRef]
- Jia, M.; Liu, M.; Wang, Z.; Mao, D.; Ren, C.; Cui, H. Evaluating the effectiveness of conservation on mangroves: A remote sensing-based comparison for two adjacent protected areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y. China’s conservation and restoration of coastal wetlands offset much of the reclamation-induced blue carbon losses. Glob. Change Biol. 2024, 30, e17039. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, Z.; Chen, K.; Zhang, Z.; Zhong, Y.; An, D.; Yang, X.; Liao, B. Ecological influence of exotic plants of Sonneratia apetala on understory macrofauna. Acta Oceanol. Sin. 2012, 31, 115–125. [Google Scholar] [CrossRef]
- Bosire, J.O.; Dahdouh-Guebas, F.; Walton, M.; Crona, B.I.; Lewis, R.R.; Field, C.; Kairo, J.G.; Koedam, N. Functionality of restored mangroves: A review. Aquat. Bot. 2008, 89, 251–259. [Google Scholar] [CrossRef]
- Iftekhar, M.S. Functions and development of reforested mangrove areas: A review. Int. J. Biodivers. Sci. Manag. 2008, 4, 1–14. [Google Scholar] [CrossRef]
- Kamali, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef]
- Ren, H.; Wu, X.; Ning, T.; Huang, G.; Wang, J.; Jian, S.; Lu, H. Wetland changes and mangrove restoration planning in Shenzhen Bay, Southern China. Landsc. Ecol. Eng. 2011, 7, 241–250. [Google Scholar]
- Ellison, A.M. Mangrove restoration: Do we know enough? Restor. Ecol. 2000, 8, 219–229. [Google Scholar] [CrossRef]
- Su, J.; Friess, D.A.; Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 2021, 12, 5050. [Google Scholar] [CrossRef] [PubMed]
- Hai, N.T.; Dell, B.; Phuong, V.T.; Harper, R.J. Towards a more robust approach for the restoration of mangroves in Vietnam. Ann. For. Sci. 2020, 77, 18. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hamilton, S.; Barbier, E.B.; Primavera, J.; Lewis, R.R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 2019, 3, 870–872. [Google Scholar] [CrossRef]
- Hui, G. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees. J. Beijing For. Univ. 2013, 35, 1–8. [Google Scholar]
- Hui, G.; Zhang, G.; Zhao, Z.; Yang, A. Methods of forest structure research: A review. Curr. For. Rep. 2019, 5, 142–154. [Google Scholar] [CrossRef]
- Hui, G.; Zhao, Z.; Chen, M. Important variables for describing forest structure. Temp. For. Res. 2020, 3, 14–19. [Google Scholar]
- Hui, G.; Zhao, Z.; Hu, Y.; Liu, S.; Liu, J. Measuring stand spatial structure diversity based on the four-nearest-neighbor relationship. J. Beijing For. Univ. 2023, 45, 18–26. [Google Scholar]
- Liang, S.; Liang, M.; Wu, Y.; Zan, Q.; Wang, Y.; Xie, Q. Spatial structure analysis of Sonneratia caseolaris and Sonneratia apetala natural forests in Futian, Shenzhen. Guihaia 2005, 25, 393–398. [Google Scholar]
- Fu, C.; Liu, S. Study on spatial structure of mangrove forests in Leizhou Peninsula based on ecosystem management. For. Resour. Manag. 2009, 2, 55–59. [Google Scholar]
- Fu, C.; Liu, S. Analysis of the stand spatial structure of mangrove forest in Techeng Isle. Guangdong Agric. Sci. 2010, 2, 4–6, 27. [Google Scholar]
- Li, J.J.; Li, J.P.; Liu, S.Q.; Zhang, H.W.; Feng, X.L. Homogeneity index of mangrove stand spatial structure. For. Sci. 2010, 46, 6–14. [Google Scholar]
- Li, J. Study on Spatial Structure Optimization of Mangrove Ecosystem in Zhanjiang, Guangdong. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2010. [Google Scholar]
- Yue, T. Research on Landscape Dynamics, Structural Characteristics, and Health Management Techniques of Mangroves in the Zhangjiang Estuary. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2014. [Google Scholar]
- Azman, M.S.; Sharma, S.; Shaharudin, M.A.M.; Hamzah, M.L.; Adibah, S.N.; Zakaria, R.M.; MacKenzie, R.A. Stand structure, biomass and dynamics of naturally regenerated and restored mangroves in Malaysia. For. Ecol. Manag. 2021, 482, 118852. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Liu, S.; Han, W.; Zeng, Q. Comparative analysis of spatial structures of different Kandelia obovata communities in Techeng Isle. For. Resour. Manag. 2013, 6, 92–95, 101. [Google Scholar]
- Navarro, A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The application of unmanned aerial vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ. 2020, 242, 111747. [Google Scholar] [CrossRef]
- Pham, T.; Yokoya, N.; Bui, D.; Yoshino, K.; Friess, D. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T. Application of centimeter-scale remote sensing imagery in investigating the spatial structure of secondary forests in Yichun. J. Northeast For. Univ. 2013, 41, 139–143. [Google Scholar]
- Xiong, Y.; Dai, Z.; Long, C.; Liang, X.; Lou, Y.; Mei, X.; Nguyen, B.A.; Cheng, J. Machine Learning-Based Examination of Recent Mangrove Forest Changes in the Western Irrawaddy River Delta, Southeast Asia. Catena 2024, 234, 107601. [Google Scholar] [CrossRef]
- Wen, X.; Liu, K.; Cao, J.; Zhu, Y.; Wang, Z. Estimation of aboveground biomass of mangroves in China based on forest canopy height and allometric equations. Trop. Geogr. 2023, 43, 1–11. [Google Scholar]
- Li, X.; Yeh, A.G.O.; Wang, S.; Liu, K.; Liu, X.; Qian, J.; Chen, X.; He, Z.; Qin, C. Radar remote sensing estimation of vegetation biomass in mangrove wetlands. J. Remote Sens. 2006, 10, 387–396. [Google Scholar]
- Li, Z.; Zan, Q.; Yang, Q.; Zhu, D.; Chen, Y.; Yu, S. Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost unmanned aerial vehicle system. Remote Sens. 2019, 11, 1018. [Google Scholar] [CrossRef]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sens. Environ. 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Kharol, S.K.; Prapavessis, C.; Shephard, M.W.; McLinden, C.A.; Griffin, D. Cloud-based data mapper (CDM): Application for monitoring dry deposition of reactive nitrogen. Front. Environ. Sci. 2023, 11, 1172977. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Zhang, Y.; Lin, G. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Ren, H.; Chen, H.; Li, Z.A.; Han, W. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant Soil 2010, 327, 279–291. [Google Scholar] [CrossRef]
- Li, R.; Chai, M.; Li, R.; Xu, H.; He, B.; Qiu, G.Y. Influence of introduced Sonneratia apetala on nutrients and heavy metals in intertidal sediments, South China. Environ. Sci. Pollut. Res. 2017, 24, 2914–2927. [Google Scholar] [CrossRef] [PubMed]
- Zan, Q.; Wang, B.; Wang, Y.; Li, M. Ecological assessment on the introduced Sonneratia caseolaris and S. apetala at the mangrove forest of Shenzhen Bay, China. Acta Bot. Sin. 2003, 45, 544–551. [Google Scholar]
- Kauffman, J.B.; Donato, D. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Christin, S.; Hervet, É.; Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathe, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Z.; Cheng, S.; Yang, Z.; Akwensi, P.H. An individual tree segmentation method based on watershed algorithm and three-dimensional spatial distribution analysis from airborne LiDAR point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1055–1067. [Google Scholar] [CrossRef]
- Kolarik, N.E.; Gaughan, A.E.; Stevens, F.R.; Pricope, N.G.; Woodward, K.; Cassidy, L.; Salerno, J.; Hartter, J. A multi-plot assessment of vegetation structure using a micro-unmanned aerial system (UAS) in a semi-arid savanna environment. ISPRS J. Photogramm. Remote Sens. 2020, 164, 84–96. [Google Scholar] [CrossRef]
- Zhao, Z.; Hui, G. Forest management method originated by China since the 21st century. J. Beijing For. Univ. 2019, 41, 50–57. [Google Scholar]
- Sur, K.; Verma, V.K.; Panwar, P.; Shukla, G.; Chakravarty, S.; Nath, A.J. Monitoring vegetation degradation using remote sensing and machine learning over India—A multi-sensor, multi-temporal and multi-scale approach. Environ. Res. Commun. 2021, 3, 125007. [Google Scholar] [CrossRef]
- Li, Q.; Wong, F.K.K.; Fung, T. Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data. Remote Sens. Environ. 2021, 258, 112403. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; López-Portillo, J.; Day, R.H.; Suman, D.O.; Guzmán, D.A.; Cahoon, D.R. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. Glob. Change Biol. 2022, 28, 504–523. [Google Scholar] [CrossRef]
- Ying, L.; Wang, L. How to automate timely large-scale mangrove mapping with remote sensing. Remote Sens. Environ. 2021, 264, 112584. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Miyamoto, M.; Yoshino, K. UAV-Based Mangrove Forest Health Monitoring Using Spectral-Spatial Deep Features and Machine Learning. Remote Sens. 2022, 14, 2725. [Google Scholar]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
Species | Number of Test Images | Accuracy |
---|---|---|
Kandelia obovata | 500 | 96.33% |
Avicennia marina | 159 | 62.00% |
Acanthus ilicifolius | 104 | 84.49% |
Sonneratia caseolaris | 234 | 93.66% |
Sonneratia apetala | 217 | 91.04% |
Aegiceras corniculatum | 15 | 2.07% |
Total | 1229 | 88.29% |
Study Site | Sample Number | Stand Structure Index |
---|---|---|
Core Area | 1 | 0.939063 |
2 | 0.936688 | |
3 | 0.931548 | |
Non-core Area | 4 | 0.912698 |
5 | 0.862245 | |
6 | 0.890110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, C.; Zhang, Y.; Wu, Y.; Shen, X. Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs. Forests 2025, 16, 1168. https://doi.org/10.3390/f16071168
Zhai C, Zhang Y, Wu Y, Shen X. Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs. Forests. 2025; 16(7):1168. https://doi.org/10.3390/f16071168
Chicago/Turabian StyleZhai, Chaoyang, Yiteng Zhang, Yifan Wu, and Xiaoxue Shen. 2025. "Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs" Forests 16, no. 7: 1168. https://doi.org/10.3390/f16071168
APA StyleZhai, C., Zhang, Y., Wu, Y., & Shen, X. (2025). Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs. Forests, 16(7), 1168. https://doi.org/10.3390/f16071168