Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = vehicle repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5929 KiB  
Article
Optimization of Operations in Bus Company Service Workshops Using Queueing Theory
by Sergej Težak and Drago Sever
Vehicles 2025, 7(3), 82; https://doi.org/10.3390/vehicles7030082 - 6 Aug 2025
Abstract
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization [...] Read more.
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization methods from the field of operations research to improve the efficiency of service workshops for bus maintenance and repair. Based on an analysis of collected data using queueing theory, the authors assessed the current system performance and found that the queueing system still has spare capacity and could be downsized, which aligns with the company’s management goals. Specifically, the company plans to reduce the number of bus repair service stations (servers in a queueing system). The main question is whether the system will continue to function effectively after this reduction. Three specific downsizing solutions were proposed and evaluated using queueing theory methods: extending the daily operating hours of the workshops, reducing the number of arriving buses, and increasing the productivity of a service station (server). The results show that, under high system load, only those solutions that increase the productivity of individual service stations (servers) in the queueing system provide optimal outcomes. Other solutions merely result in longer queues and associated losses due to buses waiting for service, preventing them from performing their intended function and causing financial loss to the company. Full article
Show Figures

Figure 1

23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 298
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 221
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

22 pages, 9978 KiB  
Article
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury
by Liancong Gao, Liu Han, Xiangyu Ma, Huiyan Wang, Mutan Li and Jianhui Cai
Metabolites 2025, 15(8), 512; https://doi.org/10.3390/metabo15080512 - 31 Jul 2025
Viewed by 229
Abstract
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene [...] Read more.
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition. Methods: Rats in each group, including the SD control group (SDCON), the SD blunt-trauma group (SDBT), the TRPV4 gene-knockout control group (KOCON), and the TRPV4 gene-knockout blunt-trauma group (KOBT), were all freely dropped from a fixed height with a weight of 200 g and struck in the left chest with a certain energy, causing BCI. After the experiment, the levels of serum IL-6 and IL-1β were detected to evaluate the inflammatory response. The myocardial tissue structure was observed by HE staining. In addition, cardiac transcriptome analysis was conducted to identify differentially expressed genes, and metabolomics studies were carried out using UHPLC-Q-TOF/MS technology to analyze metabolites. The results of transcriptomics and metabolomics were verified by qRT-PCR and Western blot analysis. Results: Compared with the SDCON group, the levels of serum IL-6 and IL-1β in the SDBT group were significantly increased (p < 0.001), while the levels of serum IL-6 and IL-1β in the KOBT group were significantly decreased (p < 0.001), indicating that the deletion of the TRPV4 gene alleviated the inflammation induced by BCI. HE staining showed that myocardial tissue injury was severe in the SDBT group, while myocardial tissue structure abnormalities were mild in the KOBT group. Transcriptome analysis revealed that there were 1045 upregulated genes and 643 downregulated genes in the KOBT group. These genes were enriched in pathways related to inflammation, apoptosis, and tissue repair, such as p53, apoptosis, AMPK, PPAR, and other signaling pathways. Metabolomics studies have found that TRPV4 regulates nucleotide metabolism, amino-acid metabolism, biotin metabolism, arginine and proline metabolism, pentose phosphate pathway, fructose and mannose metabolism, etc., in myocardial tissue. The combined analysis of metabolic and transcriptional data reveals that tryptophan metabolism and the protein digestion and absorption pathway may be the key mechanisms. The qRT-PCR results corroborated the expression of key genes identified in the transcriptome sequencing, while Western blot analysis validated the protein expression levels of pivotal regulators within the p53 and AMPK signaling pathways. Conclusions: Overall, the deletion of the TRPV4 gene effectively alleviates cardiac injury by reducing inflammation and tissue damage. These findings suggest that TRPV4 may become a new therapeutic target for BCI, providing new insights for future therapeutic strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

19 pages, 1658 KiB  
Article
Examples of Reliability Models of a Renewable Technical Object in Relation to Special Vehicles
by Michał Stawowiak, Aleksander Gwiazda, Santina Topolska and Małgorzata Olender-Skóra
Materials 2025, 18(15), 3552; https://doi.org/10.3390/ma18153552 - 29 Jul 2025
Viewed by 188
Abstract
The article describes examples of reliability models of a renewable technical object. The proposed models are mathematical models that, according to the author, are best suited to presenting problems resulting from the operation of the analyzed technical objects. These objects are special vehicles, [...] Read more.
The article describes examples of reliability models of a renewable technical object. The proposed models are mathematical models that, according to the author, are best suited to presenting problems resulting from the operation of the analyzed technical objects. These objects are special vehicles, in this case garbage trucks with plate compaction and rear loading of waste containers. The author described two models: one where a model was analyzed and the replacement of a worn part with a brand new part was assumed, and a model where the worn element was repaired (renewed), so that after the repair, the element showed features as if it were a brand new element. Each of the examples was considered based on operational data from city cleaning companies. Data obtained from service books was used for calculations. The analyzed examples are concluded with short conclusions. In turn, the entire article ends with a summary in the form of conclusions resulting from the use of these specific models. The author draws attention to the reasonableness of their use in the scope analyzed by him, and the benefits that result from the use of these models. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

26 pages, 4789 KiB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 281
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

15 pages, 1429 KiB  
Article
Extracellular Vesicles-Induced Cell Homing and Odontogenesis via microRNA Signaling for Dentin Regeneration
by Venkateswaran Ganesh, Douglas C. Fredericks, Emily B. Petersen, Henry L. Keen, Rui He, Jordon D. Turner, James A. Martin, Aliasger K. Salem, Kyungsup Shin, Abhishek Parolia and Dongrim Seol
Int. J. Mol. Sci. 2025, 26(15), 7182; https://doi.org/10.3390/ijms26157182 - 25 Jul 2025
Viewed by 190
Abstract
Reparative tertiary dentinogenesis requires the recruitment and odontogenic differentiation of dental pulp stem cells (DPSCs). Extracellular vesicles (EVs) as bioactive molecules have gained attention in regenerative medicine for their ability to mediate tissue repair through intercellular communication, influencing cell recruitment, proliferation, and differentiation. [...] Read more.
Reparative tertiary dentinogenesis requires the recruitment and odontogenic differentiation of dental pulp stem cells (DPSCs). Extracellular vesicles (EVs) as bioactive molecules have gained attention in regenerative medicine for their ability to mediate tissue repair through intercellular communication, influencing cell recruitment, proliferation, and differentiation. This study aimed to evaluate the effects of EVs on DPSC homing and odontogenic differentiation for dentin regeneration. DPSC-derived EVs were cultured in either growth (EV-G) or odontogenic differentiation (EV-O) conditions and isolated using a modified precipitation method. EVs were characterized by nanoparticle tracking analysis, scanning electron microscopy, antibody array, and cellular uptake assay. Treatment with 5 × 108 EVs/mL significantly enhanced DPSC chemotaxis and proliferation compared with a no-treatment control and a lower dosage of EV (5 × 107 EVs/mL). Gene expression and biochemical analyses revealed that EV-O up-regulated odontogenic markers including collagen type 1A1 (COL1A1), runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALP). EV-O enhanced dentin regeneration by approximately 55% over vehicle controls in a rabbit partial dentinotomy/pulpotomy model. We identified key microRNAs (miR-21-5p, miR-221-3p, and miR-708-3p) in EV-O involved in cell homing and odontogenesis. In conclusion, our EV-based cell homing and odontogenic differentiation strategy has significant therapeutic potential for dentin regeneration. Full article
Show Figures

Graphical abstract

20 pages, 5571 KiB  
Proceeding Paper
A Forecasting Method Based on a Dynamical Approach and Time Series Data for Vehicle Service Parts Demand
by Vinh Long Phan, Makoto Taniguchi and Hidenori Yabushita
Eng. Proc. 2025, 101(1), 3; https://doi.org/10.3390/engproc2025101003 - 21 Jul 2025
Viewed by 187
Abstract
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts [...] Read more.
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts while managing inventory efficiently. An excess of inventory can increase warehousing costs, while stock shortages can lead to supply delays. Accurate demand forecasting is essential to balance these factors, considering the changing demand characteristics over time, such as long-term trends, seasonal fluctuations, and irregular variations. This paper introduces a novel method for time series forecasting that employs Ensemble Empirical Mode Decomposition (EEMD) and Dynamic Mode Decomposition (DMD) to analyze service part demand. EEMD decomposes historical order data into multiple modes, and DMD is used to predict transitions within these modes. The proposed method demonstrated an approximately 30% reduction in forecasting error compared to comparative methods, showcasing its effectiveness in accurately predicting service parts demand across various patterns. Full article
Show Figures

Figure 1

18 pages, 10564 KiB  
Article
Handling Data Structure Issues with Machine Learning in a Connected and Autonomous Vehicle Communication System
by Pranav K. Jha and Manoj K. Jha
Vehicles 2025, 7(3), 73; https://doi.org/10.3390/vehicles7030073 - 11 Jul 2025
Viewed by 336
Abstract
Connected and Autonomous Vehicles (CAVs) remain vulnerable to cyberattacks due to inherent security gaps in the Controller Area Network (CAN) protocol. We present a structured Python (3.11.13) framework that repairs structural inconsistencies in a public CAV dataset to improve the reliability of machine [...] Read more.
Connected and Autonomous Vehicles (CAVs) remain vulnerable to cyberattacks due to inherent security gaps in the Controller Area Network (CAN) protocol. We present a structured Python (3.11.13) framework that repairs structural inconsistencies in a public CAV dataset to improve the reliability of machine learning-based intrusion detection. We assess the effect of training data volume and compare Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers across four attack types: DoS, Fuzzy, RPM spoofing, and GEAR spoofing. XGBoost outperforms RF, achieving 99.2 % accuracy on the DoS dataset and 100 % accuracy on the Fuzzy, RPM, and GEAR datasets. The Synthetic Minority Oversampling Technique (SMOTE) further enhances minority-class detection without compromising overall performance. This methodology provides a generalizable framework for anomaly detection in other connected systems, including smart grids, autonomous defense platforms, and industrial control networks. Full article
Show Figures

Figure 1

27 pages, 110289 KiB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 409
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

19 pages, 1034 KiB  
Article
Assessing Tractors’ Active Safety in Serbia: A Driving Simulator Study
by Sreten Simović, Aleksandar Trifunović, Tijana Ivanišević, Vaidas Lukoševičius and Larysa Neduzha
Sustainability 2025, 17(13), 6144; https://doi.org/10.3390/su17136144 - 4 Jul 2025
Viewed by 383
Abstract
The active safety of tractors remains a major concern in rural road environments, where tractor drivers face high crash risks due to limited vehicle visibility. In Serbia, 1.4% of crashes involve tractors, mainly due to poor visibility (64.3%), lack of beacon lights, unsafe [...] Read more.
The active safety of tractors remains a major concern in rural road environments, where tractor drivers face high crash risks due to limited vehicle visibility. In Serbia, 1.4% of crashes involve tractors, mainly due to poor visibility (64.3%), lack of beacon lights, unsafe overtaking, and unmarked stopped tractors (14.3% each). These issues reduce safety, increase fuel consumption and emissions, and cause economic losses. A driving simulator study with 117 drivers examined how visibility equipment affects speed perception. The results showed that 20 km/h was best estimated with all visibility aids, while 10 km/h was most accurately judged with only the slow-moving vehicle emblem. These findings emphasize the potential for simple, cost-effective visibility measures to enhance the active safety of tractors in mixed rural traffic conditions. By enhancing tractor visibility, these measures reduce crash risks, minimize unnecessary acceleration and deceleration, and lower fuel consumption and emissions associated with traffic disturbances. Furthermore, by preventing crashes, these solutions contribute to reducing resource consumption in crash-related medical care, vehicle repairs, and infrastructure damage. Integrating improved visibility equipment into rural traffic policy can significantly enhance tractors’ active safety and reduce the risk of crashes in agricultural regions. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

20 pages, 4048 KiB  
Article
Hydrodynamic Calculation and Analysis of a Complex-Shaped ROV Moving near the Wall Based on CFDs
by Mengjie Jiang, Chaohe Chen, Zhijia Suo and Yingkai Dong
J. Mar. Sci. Eng. 2025, 13(6), 1183; https://doi.org/10.3390/jmse13061183 - 17 Jun 2025
Viewed by 570
Abstract
Remotely operated vehicles (ROVs) face challenges in maneuvering and rapidly detecting and repairing large offshore platforms. The accurate research on the hydrodynamics of the ROV, which moves close to the wall, is of great significance for its maneuverability. This study uses computational fluid [...] Read more.
Remotely operated vehicles (ROVs) face challenges in maneuvering and rapidly detecting and repairing large offshore platforms. The accurate research on the hydrodynamics of the ROV, which moves close to the wall, is of great significance for its maneuverability. This study uses computational fluid dynamics (CFDs) to analyze the hydrodynamic characteristics of an ROV when it is moving near the wall, considering factors such as structural asymmetry, speed, and distance from the wall. This study applies multiple linear regression to extract relevant hydrodynamic coefficients and develops a mathematical model that simulates the impact of these factors on ROV performance. The results indicate that the wall’s influence on hydrodynamic forces is significant. Total resistance increases as the ROV moves closer to the wall, and the effect becomes more pronounced at higher speeds. Pressure differential resistance is the dominant factor affecting ROV performance, while viscous resistance remains low and is mostly unaffected by wall proximity. These findings provide valuable insights into calculating hydrodynamic coefficients and modeling the dynamics of ROVs with complex shapes operating near the wall. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1597
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

24 pages, 1331 KiB  
Article
Improved Adaptive Large Neighborhood Search Combined with Simulated Annealing (IALNS-SA) Algorithm for Vehicle Routing Problem with Simultaneous Delivery and Pickup and Time Windows
by Huan Ma and Tianbin Yang
Electronics 2025, 14(12), 2375; https://doi.org/10.3390/electronics14122375 - 10 Jun 2025
Viewed by 705
Abstract
Adaptive Large Neighborhood Search (ALNS) represents a versatile and highly efficient optimization methodology that has demonstrated significant effectiveness in practical applications. This study introduces an enhanced ALNS approach integrated with Simulated Annealing (SA), termed IALNS-SA. The proposed algorithm incorporates supplementary destruction and repair [...] Read more.
Adaptive Large Neighborhood Search (ALNS) represents a versatile and highly efficient optimization methodology that has demonstrated significant effectiveness in practical applications. This study introduces an enhanced ALNS approach integrated with Simulated Annealing (SA), termed IALNS-SA. The proposed algorithm incorporates supplementary destruction and repair operators within the ALNS framework to augment its robustness and generalization capacity. Additionally, it adopts the SA acceptance criterion to mitigate local optima entrapment. The research investigates the applicability of IALNS-SA to the Vehicle Routing Problem with Simultaneous Delivery and Pickup and Time Windows (VRPSDPTWs), a pivotal challenge in logistics optimization. Through comprehensive evaluation across 56 large-scale benchmark instances, the algorithm’s performance is systematically compared against four established methods: p-SA, DCS, VNS-BSTS, and DGWO. Empirical results indicate that IALNS-SA achieves superior performance relative to DGWO in 69.64% of cases, surpasses VNS-BSTS in 94.64% of instances, and consistently outperforms both p-SA and DCS. The obtained optimal solutions exhibit reduced total vehicle routing distances, thereby substantiating the operational feasibility and algorithmic efficacy of the proposed methodology. Full article
Show Figures

Figure 1

26 pages, 7731 KiB  
Article
Semantic HBIM for Heritage Conservation: A Methodology for Mapping Deterioration and Structural Deformation in Historic Envelopes
by Enrique Nieto-Julián, María Dolores Robador, Juan Moyano and Silvana Bruno
Buildings 2025, 15(12), 1990; https://doi.org/10.3390/buildings15121990 - 10 Jun 2025
Viewed by 519
Abstract
The conservation and intervention of heritage structures require a flexible, interdisciplinary environment capable of managing data throughout the building’s life cycle. Historic building information modeling (HBIM) has emerged as an effective tool for supporting these processes. Originally conceived for parametric construction modeling, BIM [...] Read more.
The conservation and intervention of heritage structures require a flexible, interdisciplinary environment capable of managing data throughout the building’s life cycle. Historic building information modeling (HBIM) has emerged as an effective tool for supporting these processes. Originally conceived for parametric construction modeling, BIM can also integrate historical transformations, aiding in maintenance and preservation. Historic buildings often feature complex geometries and visible material traces of time, requiring detailed analysis. This research proposes a methodology for documenting and assessing the envelope of historic buildings by locating, classifying, and recording transformations, deterioration, and structural deformations. The approach is based on semantic segmentation and classification using data from terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs), applied to the Palace of Miguel de Mañara—an iconic 17th-century building in Seville. Archival images were integrated into the HBIM model to identify previous restoration interventions and assess current deterioration. The methodology included geometric characterization, material mapping, semantic segmentation, diagnostic input, and temporal analysis. The results validated a process for detecting pathological cracks in masonry facades, providing a collaborative HBIM framework enriched with expert-validated data to support repair decisions and guide conservation efforts. Full article
Show Figures

Figure 1

Back to TopTop