Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (447)

Search Parameters:
Keywords = vehicle MPC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 (registering DOI) - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

21 pages, 2441 KiB  
Article
Reliability Enhancement of Puducherry Smart Grid System Through Optimal Integration of Electric Vehicle Charging Station–Photovoltaic System
by M. A. Sasi Bhushan, M. Sudhakaran, Sattianadan Dasarathan and V. Sowmya Sree
World Electr. Veh. J. 2025, 16(8), 443; https://doi.org/10.3390/wevj16080443 - 6 Aug 2025
Abstract
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) [...] Read more.
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) units in the Puducherry smart grid system to obtain optimized locations and enhance their reliability. To determine the right nodes for DGs and EVCSs in an uneven distribution network, the modified decision-making (MDM) algorithm and the model predictive control (MPC) approach are used. The Indian utility 29-node distribution network (IN29NDN), which is an unbalanced network, is used for testing. The effects of PV systems and EVCS units are studied in several settings and at various saturation levels. This study validates the correctness of its findings by evaluating the outcomes of proposed methodological approaches. DIgSILENT Power Factory is used to conduct the simulation experiments. The results show that optimizing the location of the DG unit and the size of the PV system can significantly minimize power losses and make a distribution network (DN) more reliable. Full article
Show Figures

Figure 1

31 pages, 1737 KiB  
Article
Trajectory Optimization for Autonomous Highway Driving Using Quintic Splines
by Wael A. Farag and Morsi M. Mahmoud
World Electr. Veh. J. 2025, 16(8), 434; https://doi.org/10.3390/wevj16080434 - 3 Aug 2025
Viewed by 156
Abstract
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using [...] Read more.
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using quintic spline functions and a dynamic speed profile. Leveraging real-time data from the vehicle’s sensor fusion module, the LSPP algorithm accurately interprets the positions of surrounding vehicles and obstacles, creating a safe, dynamically feasible path that is relayed to the Model Predictive Control (MPC) track-following module for precise execution. The theoretical distinction of LSPP lies in its modular integration of: (1) a finite state machine (FSM)-based decision-making layer that selects maneuver-specific goal states (e.g., keep lane, change lane left/right); (2) quintic spline optimization to generate smooth, jerk-minimized, and kinematically consistent trajectories; (3) a multi-objective cost evaluation framework that ranks competing paths according to safety, comfort, and efficiency; and (4) a closed-loop MPC controller to ensure real-time trajectory execution with robustness. Extensive simulations conducted in diverse highway scenarios and traffic conditions demonstrate LSPP’s effectiveness in delivering smooth, safe, and computationally efficient trajectories. Results show consistent improvements in lane-keeping accuracy, collision avoidance, enhanced materials wear performance, and planning responsiveness compared to traditional path-planning methods. These findings confirm LSPP’s potential as a practical and high-performance solution for autonomous highway driving. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 - 1 Aug 2025
Viewed by 216
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

26 pages, 4302 KiB  
Article
Acceleration Command Tracking via Hierarchical Neural Predictive Control for the Effectiveness of Unknown Control
by Zhengpeng Yang, Chao Ming, Huaiyan Wang and Tongxing Peng
Aerospace 2025, 12(8), 689; https://doi.org/10.3390/aerospace12080689 - 31 Jul 2025
Viewed by 80
Abstract
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and [...] Read more.
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and real-time performance requirements. Initially, a dynamic model is developed through a comprehensive analysis of the vehicle’s dynamic characteristics, incorporating strong cross-coupling effects and disturbance influences. Subsequently, a predictive mechanism is employed to forecast future states and generate virtual control commands, effectively resolving the issue of sluggish responses under rapidly changing commands. Furthermore, the approximation capability of neural networks is leveraged to optimize the control strategy in real time, ensuring that rudder deflection commands adapt to disturbance variations, thus overcoming the robustness limitations inherent in fixed-parameter control approaches. Within the proposed framework, the ultimate uniform bounded stability of the control system is rigorously established using the Lyapunov method. Simulation results demonstrate that the method exhibits exceptional performance under conditions of system state uncertainty and unknown external disturbances, confirming its effectiveness and reliability. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 2420 KiB  
Article
Hybrid Obstacle Avoidance Algorithm Based on IAPF and MPC for Underactuated Multi-USV Formation
by Hui Sun, Qing Xue, Mingyang Pan, Zongying Liu and Hangqi Li
J. Mar. Sci. Eng. 2025, 13(8), 1436; https://doi.org/10.3390/jmse13081436 - 27 Jul 2025
Viewed by 277
Abstract
In this paper, we propose a hybrid algorithm that integrates an improved artificial potential field method (IAPF), model predictive control (MPC), and an extended state observer (ESO) to address the obstacle avoidance problem in multi-unmanned surface vehicle (Multi-USV) formations, including both dynamic and [...] Read more.
In this paper, we propose a hybrid algorithm that integrates an improved artificial potential field method (IAPF), model predictive control (MPC), and an extended state observer (ESO) to address the obstacle avoidance problem in multi-unmanned surface vehicle (Multi-USV) formations, including both dynamic and static obstacles, as well as navigation through narrow waterways. Initially, the virtual structure method was applied for formation control. Next, the traditional potential field method was enhanced by employing a saturated attractive potential field and a partitioned repulsive potential field, which improve formation stability and obstacle avoidance accuracy in complex environments. The extended state observer was then employed to estimate and compensate for unknown system dynamics and external disturbances from the marine environment in real time, improving system robustness. On this basis, by leveraging the multi-step predictive optimization capabilities of model predictive control, the proposed algorithm dynamically adjusts control inputs based on the desired trajectories generated from potential field forces, which ensures the stability of formation control and effective obstacle avoidance. The simulation results demonstrate that the proposed algorithm effectively avoids both dynamic and static obstacles in multi-unmanned surface vehicle formations and enables successful navigation through narrow waterways by altering the formation. Full article
Show Figures

Figure 1

19 pages, 3090 KiB  
Article
Motion Sickness Suppression Strategy Based on Dynamic Coordination Control of Active Suspension and ACC
by Fang Zhou, Dengfeng Zhao, Yudong Zhong, Pengpeng Wang, Junjie Jiang, Zhenwei Wang and Zhijun Fu
Machines 2025, 13(8), 650; https://doi.org/10.3390/machines13080650 - 24 Jul 2025
Viewed by 192
Abstract
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in [...] Read more.
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in the longitudinal, lateral, and vertical directions, involving ACC, LKA, active suspension, etc. Existing motion sickness control method focuses on optimizing the longitudinal, lateral, and vertical directions separately, or coordinating the optimization control of the longitudinal and lateral directions, while there is relatively little research on the coupling effect and coupled optimization of the longitudinal and vertical directions. This study proposes a coupled framework of ACC and active suspension control system based on MPC. By adding pitch angle changes caused by longitudinal acceleration to the suspension model, a coupled state equation of half-car vertical dynamics and ACC longitudinal dynamics is constructed to achieve integrated optimization of ACC and suspension for motion suppression. The suspension active forces and vehicle acceleration are regulated coordinately to optimize vehicle vertical, longitudinal, and pitch dynamics simultaneously. Simulation experiments show that compared to decoupled control of ACC and suspension, the integrated control framework can be more effective. The research results confirm that the dynamic coordination between the suspension and ACC system can effectively suppress the motion sickness, providing a new idea for solving the comfort conflict in the human vehicle environment coupling system. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 7392 KiB  
Article
Model Predictive Control for Charging Management Considering Mobile Charging Robots
by Max Faßbender, Nicolas Rößler, Christoph Wellmann, Markus Eisenbarth and Jakob Andert
Energies 2025, 18(15), 3948; https://doi.org/10.3390/en18153948 - 24 Jul 2025
Viewed by 232
Abstract
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to [...] Read more.
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to maximize operational efficiency and revenue. This study investigates a Model Predictive Control (MPC) approach using Mixed-Integer Linear Programming (MILP) to coordinate MCR charging and movement, accounting for the additional complexity that EVs can park at arbitrary locations. The performance impact of EV arrival and demand forecasts is evaluated, comparing perfect foresight with data-driven predictions using long short-term memory (LSTM) networks. A slack variable method is also introduced to ensure timely recharging of the MCRs. Results show that incorporating forecasts significantly improves performance compared to no prediction, with perfect forecasts outperforming LSTM-based ones due to better-timed recharging decisions. The study highlights that inaccurate forecasts—especially in the evening—can lead to suboptimal MCR utilization and reduced profitability. These findings demonstrate that combining MPC with predictive models enhances MCR-based EV charging strategies and underlines the importance of accurate forecasting for future smart charging systems. Full article
Show Figures

Figure 1

21 pages, 3005 KiB  
Article
Convex Optimization-Based Constrained Trajectory Planning for Autonomous Vehicles
by Xiaoxiao Song, Songming Chen and Qiang Liu
Electronics 2025, 14(15), 2929; https://doi.org/10.3390/electronics14152929 - 22 Jul 2025
Viewed by 327
Abstract
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed [...] Read more.
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed into convex formulations using free-space corridor methods. The trajectory planning process is further optimized through a linearized model predictive control (MPC) scheme, which considers both vehicle dynamics and environmental safety. The resulting formulation enables efficient convex optimization suitable for real-time implementation. Experimental results in various scenarios demonstrate improvements in both trajectory smoothness and safety. Furthermore, the proposed optimization method reduces the average execution time by nearly 70% compared to the nonlinear alternative, validating its computational efficiency and practical applicability. Full article
Show Figures

Figure 1

18 pages, 6362 KiB  
Article
Active Neutral-Point Voltage Balancing Strategy for Single-Phase Three-Level Converters in On-Board V2G Chargers
by Qiubo Chen, Zefu Tan, Boyu Xiang, Le Qin, Zhengyang Zhou and Shukun Gao
World Electr. Veh. J. 2025, 16(7), 406; https://doi.org/10.3390/wevj16070406 - 21 Jul 2025
Viewed by 179
Abstract
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage [...] Read more.
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage Balancing (ANPVB) in a single-phase three-level converter used in on-board V2G chargers. Traditional converters rely on passive balancing using redundant vectors, which cannot ensure neutral-point (NP) voltage stability under sudden load changes or frequent power fluctuations. To solve this issue, an auxiliary leg is introduced into the converter topology to actively regulate the NP voltage. The proposed method avoids complex algorithm design and weighting factor tuning, simplifying control implementation while improving voltage balancing and dynamic response. The results show that the proposed Model Predictive Current Control-based ANPVB (MPCC-ANPVB) and Model Predictive Direct Power Control-based ANPVB (MPDPC-ANPVB) strategies maintain the NP voltage within ±0.7 V, achieve accurate power tracking within 50 ms, and reduce the total harmonic distortion of current (THDi) to below 1.89%. The proposed strategies are tested in both V2G and G2V modes, confirming improved power quality, better voltage balance, and enhanced dynamic response. Full article
Show Figures

Figure 1

22 pages, 2113 KiB  
Article
Tracking Control of Quadrotor Micro Aerial Vehicles Using Efficient Nonlinear Model Predictive Control with C/GMRES Optimization on Resource-Constrained Microcontrollers
by Dong-Min Lee, Jae-Hong Jung, Yeon-Su Sim and Gi-Woo Kim
Electronics 2025, 14(14), 2775; https://doi.org/10.3390/electronics14142775 - 10 Jul 2025
Viewed by 245
Abstract
This study investigates the tracking control of quadrotor micro aerial vehicles using nonlinear model predictive control (NMPC), with primary emphasis on the implementation of a real-time embedded control system. Apart from the limited memory size, one of the critical challenges is the limited [...] Read more.
This study investigates the tracking control of quadrotor micro aerial vehicles using nonlinear model predictive control (NMPC), with primary emphasis on the implementation of a real-time embedded control system. Apart from the limited memory size, one of the critical challenges is the limited processor speed on resource-constrained microcontroller units (MCUs). This technical issue becomes critical particularly when the maximum allowed computation time for real-time control exceeds 0.01 s, which is the typical sampling time required to ensure reliable control performance. To reduce the computational burden for NMPC, we first derive a nonlinear quadrotor model based on the quaternion number system rather than formulating nonlinear equations using conventional Euler angles. In addition, an implicit continuation generalized minimum residual optimization algorithm is designed for the fast computation of the optimal receding horizon control input. The proposed NMPC is extensively validated through rigorous simulations and experimental trials using Crazyflie 2.1®, an open-source flying development platform. Owing to the more precise prediction of the highly nonlinear quadrotor model, the proposed NMPC demonstrates that the tracking performance outperforms that of conventional linear MPCs. This study provides a basis and comprehensive guidelines for implementing the NMPC of nonlinear quadrotors on resource-constrained MCUs, with potential extensions to applications such as autonomous flight and obstacle avoidance. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

23 pages, 4420 KiB  
Article
A Control Strategy for Autonomous Approaching and Coordinated Landing of UAV and USV
by Yongguo Li, Ruiqing Lv and Jiangdong Wang
Drones 2025, 9(7), 480; https://doi.org/10.3390/drones9070480 - 7 Jul 2025
Viewed by 420
Abstract
Unmanned aerial vehicles (UAVs) autonomous landing plays a key role in cooperative work with other heterogeneous agents. A neglected aspect of UAV autonomous landing on a moving platform is addressed in this study. The landing process is divided into three stages: positioning, tracking, [...] Read more.
Unmanned aerial vehicles (UAVs) autonomous landing plays a key role in cooperative work with other heterogeneous agents. A neglected aspect of UAV autonomous landing on a moving platform is addressed in this study. The landing process is divided into three stages: positioning, tracking, and landing. In the tracking phase, MPCs are designed to implement tracking of the target landing platform. In the landing phase, we adopt a nested Apriltags collaboration identifier combined with the Aprilatags algorithm to design a PID speed controller, thereby improving the dynamic tracking accuracy of UAVs and completing the landing. The experimental data suggested that the method enables the UAV to perform dynamic tracking and autonomous landing on a moving platform. The experimental results show that the success rate of UAV autonomous landing is as high as 90%, providing a highly feasible solution for UAV autonomous landing. Full article
Show Figures

Figure 1

22 pages, 4476 KiB  
Article
Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency
by Ariel Villalón, Claudio Burgos-Mellado, Marco Rivera, Rodrigo Zuloaga, Héctor Levis, Patrick Wheeler and Leidy Y. García
Appl. Sci. 2025, 15(13), 7365; https://doi.org/10.3390/app15137365 - 30 Jun 2025
Viewed by 393
Abstract
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), [...] Read more.
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), incorporating a secondary objective for switching frequency minimization. Unlike conventional MPC approaches, the proposed method optimally balances control performance and efficiency trade-offs by adjusting the weighting factor (λmin). Real-time implementation using the OPAL-RT platform validates the effectiveness of the approach under both linear and non-linear load conditions. Results demonstrate a significant reduction in switching losses, accompanied by improved waveform tracking; however, trade-offs in distortion are observed under non-linear load scenarios. These findings provide insights into the practical implementation of real-time predictive control strategies for high-performance power converters. Full article
(This article belongs to the Special Issue New Trends in Grid-Forming Inverters for the Power Grid)
Show Figures

Figure 1

24 pages, 4516 KiB  
Article
Real-Time Energy-Efficient Control Strategy for Distributed Drive Electric Tractor Based on Operational Speed Prediction
by Xiaoting Deng, Zheng Wang, Zhixiong Lu, Kai Zhang, Xiaoxu Sun and Xuekai Huang
Agriculture 2025, 15(13), 1398; https://doi.org/10.3390/agriculture15131398 - 29 Jun 2025
Viewed by 260
Abstract
This study develops a real-time energy-efficient control strategy for distributed-drive electric tractors (DDETs) to minimize electrical energy consumption during traction operations. Taking a four-wheel independently driven DDET as the research object, we conduct dynamic analysis of draft operations and establish dynamic models of [...] Read more.
This study develops a real-time energy-efficient control strategy for distributed-drive electric tractors (DDETs) to minimize electrical energy consumption during traction operations. Taking a four-wheel independently driven DDET as the research object, we conduct dynamic analysis of draft operations and establish dynamic models of individual components in the tractor’s drive and transmission system. A backpropagation (BP) neural network-based operational speed prediction model is constructed to forecast operational speed within a finite prediction horizon. Within the model predictive control (MPC) framework, a real-time energy-efficient control strategy is formulated, employing a dynamic programming algorithm for receding horizon optimization of energy consumption minimization. Through plowing operation simulation with comparative analysis against a conventional equal torque distribution strategy, the results indicate that the proposed real-time energy-efficient control strategy exhibits superior performance across all evaluation metrics, providing valuable technical guidance for future research on energy-efficient control strategies in agricultural electric vehicles. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 7170 KiB  
Article
Hierarchical Torque Vectoring Control Strategy of Distributed Driving Electric Vehicles Considering Stability and Economy
by Shuiku Liu, Haichuan Zhang, Shu Wang and Xuan Zhao
Sensors 2025, 25(13), 3933; https://doi.org/10.3390/s25133933 - 24 Jun 2025
Viewed by 381
Abstract
Coordinating vehicle handling stability and energy consumption remains a key challenge for distributed driving electric vehicles (DDEVs). In this paper, a hierarchical torque vectoring control strategy is proposed to address this issue. First, a tire road friction coefficient (TRFC) estimator based on the [...] Read more.
Coordinating vehicle handling stability and energy consumption remains a key challenge for distributed driving electric vehicles (DDEVs). In this paper, a hierarchical torque vectoring control strategy is proposed to address this issue. First, a tire road friction coefficient (TRFC) estimator based on the fusion of vision and dynamic is developed to accurately and promptly obtain the TRFC in the upper layer. Second, a direct yaw moment control (DYC) strategy based on the adaptive model predictive control (MPC) is designed to ensure vehicle stability in the middle layer, where tire cornering stiffness is updated dynamically based on the estimated TRFC. Then, the lower layer develops the torque vectoring allocation controller, which comprehensively considers handling stability and energy consumption and distributes the driving torques among the wheels. The weight between stability and economy is coordinated according to the stability boundaries derived from an extended phase-plane correlated with the TRFC. Finally, Hardware-in-the-Loop (HIL) simulations are conducted to validate the effectiveness of the proposed strategy. The results demonstrate that compared with the conventional stability torque distribution strategy, the proposed control strategy not only reduces the RMSE of sideslip angle by 44.88% but also decreases the motor power consumption by 24.45% under DLC conditions, which indicates that the proposed method can significantly enhance vehicle handling stability while reducing energy consumption. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

Back to TopTop