Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = vehicle–track coupled dynamics model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2797 KiB  
Article
Adaptive Integrated Navigation Algorithm Based on Interactive Filter
by Bin Zhao, Chunlei Gao, Hui Xia, Jinxia Han and Ying Zhu
Sensors 2025, 25(15), 4562; https://doi.org/10.3390/s25154562 - 23 Jul 2025
Abstract
To address the diverse requirements of accuracy and robustness in integrated navigation for unmanned aerial vehicles, an interactive robust filter algorithm that integrates the interactive multiple model concept and leverages the complementary applicability of the strong tracking filter and the smooth variable structure [...] Read more.
To address the diverse requirements of accuracy and robustness in integrated navigation for unmanned aerial vehicles, an interactive robust filter algorithm that integrates the interactive multiple model concept and leverages the complementary applicability of the strong tracking filter and the smooth variable structure filter is proposed. The algorithm operates as follows: the strong tracking filter, along with the smooth variable structure filter, operates side by side with distinct models. During the filter process, the likelihood function is utilized to update the filter probabilities and determine the weights for each one of the filters. Input interaction, coupled with output fusion, is then carried out. The results of the experiments validate that the presented interactive filter algorithm significantly reduces estimation errors. When confronted with complex, dynamic noise environments and system uncertainties, it retains high-precision state estimation while demonstrating markedly improved robustness. The proposed interactive robust filter algorithm is compared against the strong tracking filter, smooth variable structure filter, and strong tracking smooth filter. Taking the strong tracking smooth filter, which has the highest accuracy among the three, as the reference baseline, the presented interactive robust filter algorithm achieves over 16% improvement in velocity accuracy and over 40% improvement in position accuracy. Full article
Show Figures

Figure 1

15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 157
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

20 pages, 2381 KiB  
Article
Modeling and Analysis of Carbon Emissions Throughout Lifecycle of Electric Vehicles Considering Dynamic Carbon Emission Factors
by Yanhong Xiao, Bin Qian, Houpeng Hu, Mi Zhou, Zerui Chen, Xiaoming Lin, Peilin He and Jianlin Tang
Sustainability 2025, 17(14), 6357; https://doi.org/10.3390/su17146357 - 11 Jul 2025
Viewed by 216
Abstract
Amidst the global strategic transition towards low-carbon energy systems, electric vehicles (EVs) are pivotal for achieving deep decarbonization within the transportation sector. Consequently, enhancing the scientific rigor and precision of their life-cycle carbon footprint assessments is of paramount importance. Addressing the limitations of [...] Read more.
Amidst the global strategic transition towards low-carbon energy systems, electric vehicles (EVs) are pivotal for achieving deep decarbonization within the transportation sector. Consequently, enhancing the scientific rigor and precision of their life-cycle carbon footprint assessments is of paramount importance. Addressing the limitations of existing research, notably ambiguous assessment boundaries and the omission of dynamic coupling characteristics, this study develops a dynamic regional-level life-cycle carbon footprint assessment model for EVs that incorporates time-variant carbon emission factors. The methodology first delineates system boundaries based on established life-cycle assessment (LCA) principles, establishing a comprehensive analytical framework encompassing power battery production, vehicle manufacturing, operational use, and end-of-life recycling. Subsequently, inventory analysis is employed to model carbon emissions during the production and recycling phases. Crucially, for the operational phase, we introduce a novel source–load synergistic optimization approach integrating dynamic carbon intensity tracking. This is achieved by formulating a low-carbon dispatch model that accounts for power grid security constraints and the spatiotemporal distribution of EVs, thereby enabling the calculation of dynamic nodal carbon intensities and consequential EV emissions. Finally, data from these distinct stages are integrated to construct a holistic life-cycle carbon accounting system. Our results, based on a typical regional grid scenario, reveal that indirect carbon emissions during the operational phase contribute 75.1% of the total life-cycle emissions, substantially outweighing contributions from production (23.4%) and recycling (1.5%). This underscores the significant carbon mitigation leverage of the use phase and validates the efficacy of our dynamic carbon intensity model in improving the accuracy of regional-level EV carbon accounting. Full article
(This article belongs to the Special Issue Sustainable Management for Distributed Energy Resources)
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 335
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

20 pages, 2119 KiB  
Article
Robust Trajectory Tracking Fault-Tolerant Control for Quadrotor UAVs Based on Adaptive Sliding Mode and Fault Estimation
by Yukai Wu, Guobi Ling and Yaoke Shi
Computation 2025, 13(7), 162; https://doi.org/10.3390/computation13070162 - 7 Jul 2025
Viewed by 203
Abstract
This paper presents a composite disturbance-tolerant control framework for quadrotor unmanned aerial vehicles (UAVs). By constructing an enhanced dynamic model that incorporates parameter uncertainties, external disturbances, and actuator faults and considering the inherent underactuated and highly coupled characteristics of the UAV, a novel [...] Read more.
This paper presents a composite disturbance-tolerant control framework for quadrotor unmanned aerial vehicles (UAVs). By constructing an enhanced dynamic model that incorporates parameter uncertainties, external disturbances, and actuator faults and considering the inherent underactuated and highly coupled characteristics of the UAV, a novel robust adaptive sliding mode controller (RASMC) is designed. The controller adopts a hierarchical adaptive mechanism and utilizes a dual-loop composite adaptive law to achieve the online estimation of system parameters and fault information. Using the Lyapunov method, the asymptotic stability of the closed-loop system is rigorously proven. Simulation results demonstrate that, under the combined effects of external disturbances and actuator faults, the RASMC effectively suppresses position errors (<0.05 m) and attitude errors (<0.02 radians), significantly outperforming traditional ADRC and LQR control methods. Further analysis shows that the proposed adaptive law enables the precise online estimation of aerodynamic coefficients and disturbance boundaries during actual flights, with estimation errors controlled within ±10%. Moreover, compared to ADRC and LQR, RASMC reduces the settling time by more than 50% and the tracking overshoot by over 70% while using the (tanh(·)) approximation to eliminate chattering. Prototype experiments validate the fact that the method achieves centimeter-level trajectory tracking under real uncertainties, demonstrating the superior performance and robustness of the control framework in complex flight missions. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

33 pages, 4497 KiB  
Article
Tracking Control for Asymmetric Underactuated Sea Vehicles in Slow Horizontal Movement
by Przemyslaw Herman
Sensors 2025, 25(13), 4205; https://doi.org/10.3390/s25134205 - 5 Jul 2025
Viewed by 210
Abstract
In this paper, a robust tracking control problem for underactuated underwater vehicles in horizontal motion is investigated. The presented control scheme that performs the trajectory tracking task is a combination of the backstepping technique and the integral sliding mode control method using the [...] Read more.
In this paper, a robust tracking control problem for underactuated underwater vehicles in horizontal motion is investigated. The presented control scheme that performs the trajectory tracking task is a combination of the backstepping technique and the integral sliding mode control method using the inertial quasi velocities (IQVs) resulting from the inertia matrix decomposition. Unlike many known solutions, the proposed approach allows not only trajectory tracking, but also, due to the fact that IQV includes dynamic and geometric model parameters, allows us to obtain additional information about changes in vehicle behavior during movement. In this way, some insight into its dynamics is obtained. Moreover, the control strategy takes into account model inaccuracies and external disturbances, which makes it more useful from a technical point of view. Another advantage of this work is to indicate problems occurring during the implementation of trajectory tracking in algorithms with a dynamics model containing a diagonal inertia matrix, i.e., without inertial couplings. The theoretical results are illustrated by simulation tests conducted on two models of underwater vehicles with three degrees of freedom (DOF). Full article
(This article belongs to the Special Issue Sensing for Automatic Control and Measurement System)
Show Figures

Figure 1

22 pages, 2789 KiB  
Article
Longitudinal Tire Force Estimation Method for 4WIDEV Based on Data-Driven Modified Recursive Subspace Identification Algorithm
by Xiaoyu Wang, Te Chen and Jiankang Lu
Algorithms 2025, 18(7), 409; https://doi.org/10.3390/a18070409 - 3 Jul 2025
Viewed by 279
Abstract
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, [...] Read more.
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, this study proposes a joint estimation framework that integrates data-driven and modified recursive subspace identification algorithms. Firstly, based on the electromechanical coupling mechanism, an electric drive wheel dynamics model (EDWM) is constructed, and multidimensional driving data is collected through a chassis dynamometer experimental platform. Secondly, an improved proportional integral observer (PIO) is designed to decouple the longitudinal force from the system input into a state variable, and a subspace identification recursive algorithm based on correction term with forgetting factor (CFF-SIR) is introduced to suppress the residual influence of historical data and enhance the ability to track time-varying parameters. The simulation and experimental results show that under complex working conditions without noise and interference, with noise influence (5% white noise), and with interference (5% irregular signal), the mean and mean square error of longitudinal force estimation under the CFF-SIR algorithm are significantly reduced compared to the correction-based subspace identification recursive (C-SIR) algorithm, and the comprehensive estimation accuracy is improved by 8.37%. It can provide a high-precision and highly adaptive longitudinal force estimation solution for vehicle dynamics control and intelligent driving systems. Full article
Show Figures

Figure 1

15 pages, 5686 KiB  
Article
High-Order Model-Based Robust Control of a Dual-Motor Steer-by-Wire System with Disturbance Rejection
by Minhyung Kim, Insu Chung, Junghyun Choi and Kanghyun Nam
Actuators 2025, 14(7), 322; https://doi.org/10.3390/act14070322 - 30 Jun 2025
Viewed by 254
Abstract
This paper presents a high-order model-based robust control strategy for a dual-motor road wheel actuating system in a steer-by-wire (SbW) architecture. The system consists of a belt-driven and a pinion-driven motor collaboratively actuating the road wheels through mechanically coupled dynamics. To accurately capture [...] Read more.
This paper presents a high-order model-based robust control strategy for a dual-motor road wheel actuating system in a steer-by-wire (SbW) architecture. The system consists of a belt-driven and a pinion-driven motor collaboratively actuating the road wheels through mechanically coupled dynamics. To accurately capture the interaction between actuators, structural compliance, and road disturbances, a four-degree-of-freedom (4DOF) lumped-parameter model is developed. Leveraging this high-order dynamic model, a composite control framework is proposed, integrating feedforward model inversion, pole-zero feedback compensation, and a disturbance observer (DOB) to ensure precise trajectory tracking and disturbance rejection. High-fidelity co-simulations in MATLAB/Simulink and Siemens Amesim validate the effectiveness of the proposed control under various steering scenarios, including step and sine-sweep inputs. Compared to conventional low-order control methods, the proposed approach significantly reduces tracking error and demonstrates enhanced robustness and disturbance attenuation. These results highlight the critical role of high-order modeling in the precision control of dual-motor SbW systems and suggest its applicability in real-time, safety-critical vehicle steering applications. Full article
Show Figures

Figure 1

22 pages, 3922 KiB  
Article
Research on the Dynamic Characteristics of a Typical Medium–Low-Speed Maglev Train–Bridge System Influenced by the Transverse Stiffness of Pier Tops
by Yanghua Cui, Xiangrong Guo, Hongwei Mao and Jianghao Liu
Appl. Sci. 2025, 15(12), 6628; https://doi.org/10.3390/app15126628 - 12 Jun 2025
Viewed by 286
Abstract
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been [...] Read more.
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been unified. To address this issue, this study takes a specific bridge on a dedicated maglev line as an example and uses self-developed software to model the vehicle–bridge dynamic system. The natural vibration characteristics and vehicle–bridge coupling vibration response of the bridge are calculated and analyzed. Based on this, the influence of pier top stiffness on the dynamic characteristics of a typical medium–low-speed maglev train–bridge system under different working conditions is investigated, with a focus on the lateral line stiffness at the pier top. The results show that vehicle speed has no significant effect on the lateral displacement of the main girder, the lateral displacement of the pier top, the lateral acceleration of the pier top, and the transverse and longitudinal angles of the beam end, and no obvious regularity is observed. However, in the double-track operating condition, the vertical deflection of the main girder is significantly higher than that in the single-track operating condition. As the lateral linear stiffness at the pier top increases, the fundamental frequency of the bridge’s lateral bending vibration gradually increases, while the fundamental frequency of longitudinal floating gradually decreases. The lateral displacements, including those of the main girder, pier top, and beam ends, all decrease, whereas the lateral and vertical vibration accelerations of the main girder and the train are less affected by the lateral stiffness at the pier top. Full article
Show Figures

Figure 1

27 pages, 5300 KiB  
Article
Motion Control of a Flexible-Towed Underwater Vehicle Based on Dual-Winch Differential Tension Coordination Control
by Hongming Wu, Xiong Li, Kan Xu, Dong Song, Yingkai Xia and Guohua Xu
J. Mar. Sci. Eng. 2025, 13(6), 1120; https://doi.org/10.3390/jmse13061120 - 3 Jun 2025
Viewed by 442
Abstract
This paper focused on the motion control of an underwater vehicle installed on a linear guide system, which is driven by two electric winches with wire ropes. The vehicle is subject to complex nonlinear time-varying disturbances and actuator input saturation effects during motion. [...] Read more.
This paper focused on the motion control of an underwater vehicle installed on a linear guide system, which is driven by two electric winches with wire ropes. The vehicle is subject to complex nonlinear time-varying disturbances and actuator input saturation effects during motion. A coupled dynamic model, incorporating an underwater vehicle, winches, and wire ropes, was established. Particular attention was paid to the nonlinear time-varying hydrodynamic disturbances acting on the underwater vehicle. The Kelvin–Voigt model was introduced to characterize the nonlinear dynamic behavior of the wire ropes, enabling the model to capture the dynamic response characteristics of traction forces. To tackle cross-coupling within the towing system, a differential tension coordination control method was proposed that simultaneously regulates system tension during motion control. For the vehicle dynamics model, a nonsingular fast-terminal sliding-mode (NFTSM) controller was designed to achieve high-precision position tracking control. An auxiliary dynamic compensator was incorporated to mitigate the impact of actuator input saturation. To handle time-varying disturbances, a fuzzy adaptive nonlinear disturbance observer (FANDO) is developed to perform feedforward compensation. Stability proof of the proposed algorithms was provided. Extensive numerical simulations demonstrate the effectiveness of the control strategies. Compared to the NFTSM without the disturbance observer the absolute mean value of the tracking error decreased by 76%, the absolute maximum value of the tracking error decreased by 67%, and the mean square error decreased by 93.5%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4820 KiB  
Article
A Novel Overactuated Quadrotor: Prototype Design, Modeling, and Control
by Zhan Zhang, Yan Li, Hengzhi Jiang, Jieqi Li and Zhong Wang
Actuators 2025, 14(5), 223; https://doi.org/10.3390/act14050223 - 30 Apr 2025
Cited by 1 | Viewed by 543
Abstract
Traditional multirotor UAVs (unmanned aerial vehicles) are inherently underactuated, with coupled position and attitude control, which limits their maneuverability in specific applications. This paper presents a fully actuated quadrotor design based on a swashplateless rotor mechanism. Unlike existing fully actuated UAV designs that [...] Read more.
Traditional multirotor UAVs (unmanned aerial vehicles) are inherently underactuated, with coupled position and attitude control, which limits their maneuverability in specific applications. This paper presents a fully actuated quadrotor design based on a swashplateless rotor mechanism. Unlike existing fully actuated UAV designs that rely on servo-driven tilt mechanisms, this approach minimizes additional weight and simplifies the structure, resulting in a more maintainable system. The design, modeling, and control strategies for the quadrotor are presented. Furthermore, we propose a decoupled control method to address the need for both fully actuated and underactuated modes. The control architecture employs parallel attitude and position control structures and decouples the two subsystems using a nonlinear dynamic inversion (NDI) method. A compensation module is introduced to address the constraints imposed by the maximum rotor deflection angle and the corresponding feasible force set. This compensation module actively adjusts the attitude to mitigate the saturation of the required thrust, effectively overcoming the impact of rotor deflection angle limitations on trajectory tracking performance. The approach facilitates seamless switching between fully actuated and underactuated modes, enhancing the system’s flexibility and robustness. Simulation and flight experiments demonstrate the effectiveness and performance of the proposed design. Full article
(This article belongs to the Special Issue Actuation and Robust Control Technologies for Aerospace Applications)
Show Figures

Figure 1

11 pages, 3172 KiB  
Article
Self-Coupling PID Control with Adaptive Transition Function for Enhanced Electronic Throttle Position Tracking
by Cheng Liu, Peilin Liu and Yanming Cheng
Symmetry 2025, 17(5), 673; https://doi.org/10.3390/sym17050673 - 28 Apr 2025
Viewed by 350
Abstract
The objective of this study was to enhance the tracking effectiveness of the position adjustment for the electronic throttle in electric vehicles, as well as boost fuel efficiency and the dynamic performance of the vehicles. Firstly, a mathematical model, which pertains to the [...] Read more.
The objective of this study was to enhance the tracking effectiveness of the position adjustment for the electronic throttle in electric vehicles, as well as boost fuel efficiency and the dynamic performance of the vehicles. Firstly, a mathematical model, which pertains to the electronic throttle system, is established, and subsequently, the nonlinear uncertain system is made into a linear uncertain system. Subsequently, a self-coupling PID control law is designed, and an analysis is conducted on the system’s stability and its capacity to reject disturbances. Secondly, taking into consideration that the parameters of the PID controller with self-coupling mechanism are related to the system’s response speed, disturbance rejection capability, and overshoot, a self-adjusting speed factor transition function is put forward to address the conflict between speed and overshoot. Finally, numerical simulations and experimental tests are carried out. The results verify that, compared with the conventional PID controller, ADRC (Active Disturbance Rejection Control), and fuzzy PID, the proposed controller has a faster response speed, higher control accuracy, and better robustness. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry of Applications in Automation and Control Systems)
Show Figures

Figure 1

17 pages, 12087 KiB  
Article
Experimental and Numerical Study on Dynamic Response of High-Pier Ballastless Continuous Beam Bridge in Mountainous Area
by Wenshuo Liu, Qiong Luo, Gonglian Dai and Xin Tang
Appl. Sci. 2025, 15(8), 4341; https://doi.org/10.3390/app15084341 - 15 Apr 2025
Cited by 1 | Viewed by 432
Abstract
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled [...] Read more.
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled vibration response analysis of large-span continuous beam bridges for high-speed railways, especially high-pier bridges. Dynamic response tests with multiple measurement points installed on the rail, concrete slab, and bridge deck are conducted. This study investigates the dynamic characteristics of bridges with high piers under train loads. A dynamic system is built by the co-simulation platform of SIMPACK v9 and ANSYS v2022, consisting of several models, a coupling mechanism, etc. The vibration response of a train passing through the bridge at 300 km/h is analyzed, and the influence of operating speed on the motivation performance of the coupled system is further studied. The results indicate that the simulation results are validated against experimental data, showing good agreement; the train–track–continuous beam bridge coupling system meets the specification limits and has some margins for further optimization with an operating speed of 300 km/h. The refined model of train–rail–bridge coupling vibration established in this paper provides theoretical guidance for the design and application of high-speed railways. Full article
Show Figures

Figure 1

19 pages, 3334 KiB  
Article
A Robust Control Method for the Trajectory Tracking of Hypersonic Unmanned Flight Vehicles Based on Model Predictive Control
by Haixia Ding, Bowen Xu, Weiqi Yang, Yunfan Zhou and Xianyu Wu
Drones 2025, 9(3), 223; https://doi.org/10.3390/drones9030223 - 20 Mar 2025
Viewed by 617
Abstract
Hypersonic unmanned flight vehicles have complex dynamic characteristics, such as nonlinearity, strong coupling, multiple constraints, and uncertainty. Operating in highly complex flight environments, hypersonic unmanned flight vehicles must not only contend with uncertainties and disturbances such as parameter perturbations and noise but also [...] Read more.
Hypersonic unmanned flight vehicles have complex dynamic characteristics, such as nonlinearity, strong coupling, multiple constraints, and uncertainty. Operating in highly complex flight environments, hypersonic unmanned flight vehicles must not only contend with uncertainties and disturbances such as parameter perturbations and noise but also deal with complex task scenarios such as interception and no-fly zone avoidance. These factors collectively pose great challenges on the control performance of the vehicle. To address the challenges of trajectory tracking for the vehicles under complex constraints, this paper proposes a trajectory tracking control method based on model predictive control (MPC). Firstly, a nonlinear dynamic model for hypersonic unmanned flight vehicles is established. Then, a robust model predictive controller is designed and the optimal control law is derived to address the trajectory tracking control problem under complex constraints such as parameter perturbations. Finally, simulation experiments are designed under the conditions of aerodynamic parameter changes in the longitudinal plane and lateral no-fly zone avoidance. The simulation results demonstrate that the vehicle is capable of accurately and rapidly tracking the reference despite aerodynamic parameter perturbations and large-scale lateral maneuvers, thereby validating the effectiveness of the controller. Full article
Show Figures

Figure 1

17 pages, 8364 KiB  
Article
Research on UAV Trajectory Tracking Control System Based on Feedback Linearization Control–Fractional Order Model Predictive Control
by Keyong Shao, Wenjing Xia, Yujie Zhu, Chenjun Sun and Yang Liu
Processes 2025, 13(3), 801; https://doi.org/10.3390/pr13030801 - 9 Mar 2025
Cited by 1 | Viewed by 1216
Abstract
Aiming at the problem of the nonlinear, strongly coupled, and underdriven trajectory tracking instability of a quadrotor unmanned aerial vehicle (UAV), this thesis proposes a feedback linearization and fractional order model predictive control strategy based on feedback linearization by modeling the dynamics of [...] Read more.
Aiming at the problem of the nonlinear, strongly coupled, and underdriven trajectory tracking instability of a quadrotor unmanned aerial vehicle (UAV), this thesis proposes a feedback linearization and fractional order model predictive control strategy based on feedback linearization by modeling the dynamics of the UAV control system and linearizing the nonlinear model of attitude control. A dual closed-loop control structure, feedback linearization control (FLC) for a position loop, and fractional order model predictive control (FOMPC) for an attitude loop are adopted to realize fast position tracking and attitude response. In addition, considering that the fractional order method has the advantage of flexible regulation, the fractional order integral operator is added to the cost function of model predictive control. Finally, the simulation results and the calculation of the root mean square error verify that the proposed method has a fast response speed, small overshoot, stable flight, and good track tracking performance in UAV track tracking. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

Back to TopTop