Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (475)

Search Parameters:
Keywords = vegetation water consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 (registering DOI) - 31 Jul 2025
Viewed by 193
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

22 pages, 826 KiB  
Review
Inactivation of Emerging Opportunistic Foodborne Pathogens Cronobacter spp. and Arcobacter spp. on Fresh Fruit and Vegetable Products: Effects of Emerging Chemical and Physical Methods in Model and Real Food Systems—A Review
by Junior Bernardo Molina-Hernandez, Beatrice Cellini, Fatemeh Shanbeh Zadeh, Lucia Vannini, Pietro Rocculi and Silvia Tappi
Foods 2025, 14(14), 2463; https://doi.org/10.3390/foods14142463 - 14 Jul 2025
Viewed by 711
Abstract
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and [...] Read more.
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and vegetables during processing and contact with wet equipment and utensil surfaces is an ideal environment for microbial contamination and foodborne illness. Nevertheless, less attention has been paid to some emerging pathogens that are now increasingly recognised as transmissible to humans through contaminated fruit and vegetables, such as Arcobacter and Cronobacter species in various products, which are the main risk in fruit and vegetables. Cronobacter and Arcobacter spp. are recognised food-safety hazards because they pose a risk of foodborne disease, especially in vulnerable groups such as newborns and immunocompromised individuals. Cronobacter spp. have been linked to severe infant conditions—notably meningitis and sepsis—most often traced to contaminated powdered infant formula. Although Arcobacter spp. have been less extensively studied, they have also been associated with foodborne disease, chiefly from dairy products and meat. With this in mind, this review provides an overview of the main chemical and physical sanitisation methods in terms of their ability to reduce the contamination of fresh fruit and vegetable products caused by two emerging pathogens: Arcobacter and Cronobacter. Emerging chemical (organic acid compounds, extracts, and essential oils) and physical methods (combination of UV-C with electrolysed water, ultrasound, and cold atmospheric plasma) offer innovative and environmentally friendly alternatives to traditional approaches. These methods often utilise natural materials, less toxic solvents, and novel techniques, resulting in more sustainable processes compared with traditional methods that may use harsh chemicals and environmentally harmful processes. This review provides the fruit and vegetable industry with a general overview of possible decontamination alternatives to develop optimal and efficient processes that ensure food safety. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

25 pages, 559 KiB  
Systematic Review
Were Our Grandmothers Right? Soup as Medicine—A Systematic Review of Preliminary Evidence for Managing Acute Respiratory Tract Infections
by Sandra Lucas, Matthew J. Leach, Rachel Kimble and Joshua Cheyne
Nutrients 2025, 17(13), 2247; https://doi.org/10.3390/nu17132247 - 7 Jul 2025
Viewed by 4755
Abstract
Background/Objectives: Acute respiratory tract infections (ARTIs) are a significant global health burden, contributing to increased healthcare use, absenteeism, and economic strain. While clinical treatments exist, many individuals use traditional dietary remedies such as soup to relieve symptoms. Soup is thought to support recovery [...] Read more.
Background/Objectives: Acute respiratory tract infections (ARTIs) are a significant global health burden, contributing to increased healthcare use, absenteeism, and economic strain. While clinical treatments exist, many individuals use traditional dietary remedies such as soup to relieve symptoms. Soup is thought to support recovery through hydration, warmth, nutritional content, and possible anti-inflammatory effects. This systematic review aimed to evaluate the therapeutic effects of soup consumption on adults with ARTIs, focusing on symptom severity, illness duration, absenteeism, immune response, inflammatory biomarkers, and overall well-being. Methods: A systematic literature search was conducted in February 2024 across MEDLINE, Scopus, CINAHL, the Cochrane Library, clinical trial registries, and supplementary sources. Eligible studies included randomized controlled trials, non-randomized trials, and controlled before-after studies evaluating soup as an intervention for ARTIs. Two reviewers independently screened studies, extracted data, and assessed risk of bias using the Cochrane Risk of Bias 2 tool. A narrative synthesis was undertaken due to heterogeneity in study design and outcome measures. The protocol was registered with PROSPERO (CRD42023481236). Results: Four studies (n = 342) met inclusion criteria. Interventions commonly included chicken-based soups with vegetables and herbs. Comparators varied (e.g., no treatment, water, or alternative soup). Findings showed modest reductions in symptom severity and illness duration (by 1–2.5 days). Two studies reported reductions in inflammatory biomarkers (IL-6, TNF-α, CRP). No studies reported on absenteeism or well-being. Conclusions: Soup may offer modest benefits for ARTIs, particularly for symptom relief and inflammation. Further well-designed studies are needed to evaluate its broader clinical and functional impacts. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

20 pages, 994 KiB  
Article
Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli
by Karlo Miškec, Marta Frlin and Ivana Šola
Appl. Sci. 2025, 15(13), 7469; https://doi.org/10.3390/app15137469 - 3 Jul 2025
Viewed by 428
Abstract
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) [...] Read more.
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) heads was investigated, including a comparative analysis of the tissue and the cooking water remaining after the treatments. Using spectrophotometric methods, AF broccoli was found to have the highest levels (p ≤ 0.05) of hydroxycinnamic acids (1.58 ± 0.71 mg CAE/g fw), total glucosinolates (3.76 ± 2.09 mg SinE/g fw), carotenoids (6.73 ± 2.89 mg/kg fw), and lycopene (0.91 ± 0.19 mg/kg fw). Steamed and AF broccoli had the highest total phenolics (0.72 ± 0.12 mg GAE/g fw and 0.65 ± 0.15 mg GAE/g fw, respectively; p ≤ 0.05). ST broccoli also had the highest levels of soluble sugars (11.04 ± 2.45 mg SucE/g fw) and total tannins (0.46 ± 0.19 mg GAE/g fw). The water remaining after cooking broccoli (BOW) had the highest total flavonoids (2.72 ± 0.59 mg QE/g fw) and antioxidant capacity (ABTS and FRAP, 57.57 ± 18.22% and 79.34 ± 3.28%, respectively; p ≤ 0.05). The DPPH assay showed that AF (36.12 ± 15.71%) and ST (35.48 ± 2.28%) had the strongest antioxidant potential. DNA nicking assay showed that BOW and BLW were the most effective in preserving plasmid DNA supercoiled form (99.51% and 94.81%, respectively; p ≤ 0.05). These results demonstrate that thermal processing significantly affects the phytochemical composition and functional properties of broccoli, with steaming and air-frying generally preserving the highest nutritional quality. Additionally, cooking water, often discarded, retains high levels of bioactive compounds and exhibits strong antioxidant and DNA-protective effects. To the best of our knowledge, this is the first study to investigate how different thermal processing techniques of vegetables influence their ability to protect plasmid DNA structure. Furthermore, this is the first study to compare the DNA-protective effects of broccoli tissue extracts and the water remaining after cooking broccoli. Full article
(This article belongs to the Special Issue New Trends in the Structure Characterization of Food)
Show Figures

Figure 1

16 pages, 3716 KiB  
Article
Water Demand and Photosynthetic Performance of Tomatoes Grown Hydroponically Under Increasing Nitrogen Concentrations
by Pablo Rugero Magalhães Dourado, Martha Katharinne Silva Souza Paulino, Lucas Yago de Carvalho Leal, Cicero Aparecido Ferreira Araújo, José Alfredo Nunes, Emidio Cantídio de Oliveira, José Amilton Santos Júnior, Aline de Camargo Santos, Diego Arruda Huggins de Sá Leitão, Márcio Renato Nunes, Bruce Schaffer and Edivan Rodrigues de Souza
Water 2025, 17(13), 1951; https://doi.org/10.3390/w17131951 - 29 Jun 2025
Viewed by 451
Abstract
Water and nitrogen (N) availability are among the primary limiting factors for the productivity of tomato (Solanum licopersicum L.). This study evaluated the interaction between these factors by assessing the effects of different N concentrations (85.5, 128.3, 171.0, 213.8, and 256.1 ppm [...] Read more.
Water and nitrogen (N) availability are among the primary limiting factors for the productivity of tomato (Solanum licopersicum L.). This study evaluated the interaction between these factors by assessing the effects of different N concentrations (85.5, 128.3, 171.0, 213.8, and 256.1 ppm N) on the water consumption, growth, and photosynthetic efficiency of hydroponically-grown tomato plants. The variables that were analyzed included the leaf N content, leaf chlorophyll index (LCI), maximum quantum efficiency of photosystem II (the ratio of variable to maximum chlorophyll fluorescence; Fv/Fm), non-photochemical quenching (NPQ), fresh mass (FM), dry mass (DM), cumulative water consumption, and water use efficiency (WUE). Increasing N concentrations led to higher water consumption and FM accumulation. Dry biomass was quadratically related to the N concentration, which peaked between doses of 213.8 and 256.1 ppm N. The LCI and Fv/Fm increased with the N supply, reaching a peak at N concentrations above 171 ppm, and then remained relatively constant. Conversely, the NPQ was reduced at the highest N level (256.1 ppm), which indicated diminished excess energy dissipation capacity. The highest WUE was observed at 213.8 ppm N, which was associated with greater DM and reduced water consumption compared to the highest N treatment. These findings suggest that the N concentration significantly affects the biomass production and water use in hydroponically-grown tomato plants, with 213.8 ppm N being the most efficient for vegetative growth under the studied conditions. Full article
(This article belongs to the Special Issue Soil Water Use and Irrigation Management)
Show Figures

Figure 1

27 pages, 2926 KiB  
Article
Research on Resilience Evaluation and Prediction of Urban Ecosystems in Plateau and Mountainous Area: Case Study of Kunming City
by Hui Li, Fucheng Liang, Jiaheng Du, Yang Liu, Junzhi Wang, Qing Xu, Liang Tang, Xinran Zhou, Han Sheng, Yueying Chen, Kaiyan Liu, Yuqing Li, Yanming Chen and Mengran Li
Sustainability 2025, 17(12), 5515; https://doi.org/10.3390/su17125515 - 15 Jun 2025
Viewed by 633
Abstract
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience [...] Read more.
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience (UER) assessment model based on the DPSIR (Driving forces, Pressures, States, Impacts, and Responses) framework. A total of 25 indicators were selected via questionnaire surveys, covering five dimensions: driving forces such as natural population growth, annual GDP growth, urbanization level, urban population density, and resident consumption price growth; pressures including per capita farmland, per capita urban construction land, land reclamation and cultivation rate, proportion of natural disaster-stricken areas, and unit GDP energy consumption; states measured by Evenness Index (EI), Shannon Diversity Index (SHDI), Aggregation Index (AI), Interspersion and Juxtaposition Index (IJI), Landscape Shape Index (LSI), and Normalized Vegetation Index (NDVI); impacts involving per capita GDP, economic density, per capita disposable income growth, per capita green space area, and per capita water resources; and responses including proportion of natural reserve areas, proportion of environmental protection investment to GDP, overall utilization of industrial solid waste, and afforestation area. Based on remote sensing and other data, indicator values were calculated for 2006, 2011, and 2016. The entire-array polygon indicator method was used to visualize indicator interactions and derive composite resilience index values, all of which remained below 0.25—indicating a persistent low-resilience state, marked by sustained economic growth, frequent natural disasters, and declining ecological self-recovery capacity. Forecasting results suggest that, under current development trajectories, Kunming’s UER will remain low over the next decade. This study is the first to integrate the DPSIR framework, entire-array polygon indicator method, and Grey System Forecasting Model into the evaluation and prediction of urban ecosystem resilience in plateau-mountainous cities. The findings highlight the ecosystem’s inherent capacities for self-organization, adaptation, learning, and innovation and reveal its nested, multi-scalar resilience structure. The DPSIR-based framework not only reflects the complex human–nature interactions in urban systems but also identifies key drivers and enables the prediction of future resilience patterns—providing valuable insights for sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable and Resilient Regional Development: A Spatial Perspective)
Show Figures

Figure 1

20 pages, 1582 KiB  
Article
Bioaccumulation, Distribution and Biotransformation of Cylindrospermopsin in Potato (Solanum tuberosum) After Exposure by Surface or Sprinkler Irrigation
by Fredy Duque, Ana Isabel Prieto, Antonio Cascajosa-Lira, Luis Carlos Montenegro, Alexandre Campos, Angeles Jos and Ana M. Cameán
Toxins 2025, 17(6), 301; https://doi.org/10.3390/toxins17060301 - 12 Jun 2025
Viewed by 528
Abstract
Cylindrospermopsin is an emerging cyanotoxin that can lead to phytotoxicity through different mechanisms. The presence of CYN in irrigation waters is of concern due to potential accumulation in plants, increasing the risk of human exposure by the consumption of vegetables. In this case, [...] Read more.
Cylindrospermopsin is an emerging cyanotoxin that can lead to phytotoxicity through different mechanisms. The presence of CYN in irrigation waters is of concern due to potential accumulation in plants, increasing the risk of human exposure by the consumption of vegetables. In this case, it is proposed to evaluate the effects of CYN on a crop considered staple food in Colombia, such as Solanum tuberosum, group Phureja var Criolla Colombia, known as “yellow potato”. This work evaluates for the first time the effects of CYN in potato plants exposed to this toxin using two different irrigation systems, surface and sprinkler irrigation. The parameters evaluated were CYN bioaccumulation and biotransformation in different parts of the potato plants irrigated with water containing CYN at environmentally relevant concentrations (84.65, 33.80, 3.05 and 3.05 µg/L after first, second, and third to fourth applications, respectively) and changes in nutritional mineral content in tubers. For this purpose, the concentrations of CYN and its potential metabolites in leaves, stem, roots, and tubbers of the plants exposed to the toxin were determined by Ultra-high Performance Liquid Chromatography–MS/MS (UHPLC-MS/MS). Mineral content was determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). CYN bioaccumulation was detected only in aerial parts of plants with sprinkler irrigation. A total of 57 CYN metabolites were found, and the main differences obtained in CYN biotransformation are linked to tissues and exposure conditions. There are significant differences in levels of Ca, K, Mg, Na, P, Cu, Fe, Mn, and Zn in tubers depending on CYN treatment, with higher contents after surface irrigation, and lower content with sprinkler application. These results demonstrate that the exposure conditions are an important factor for the potential presence and effects of CYN in potato plants. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

21 pages, 1993 KiB  
Article
Life Cycle Assessment on Osmotically Dehydrated Cut Potatoes: Effects of Shelf-Life Extension on Cultivation, Waste, and Environmental Impact Reduction
by Sotiris Kottaridis, Christina Drosou, Christos Boukouvalas, Magdalini Krokida, Maria Katsouli, Efimia Dermesonlouoglou and Katerina Valta
Waste 2025, 3(2), 20; https://doi.org/10.3390/waste3020020 - 11 Jun 2025
Viewed by 947
Abstract
In this study, a Life Cycle Assessment (LCA) was conducted to evaluate the environmental impact of osmotically dehydrated, fresh-cut, pre-packaged potatoes compared to conventional untreated ones. The case study focused on a small processing line in Naxos Island, Greece, aiming to extend shelf-life [...] Read more.
In this study, a Life Cycle Assessment (LCA) was conducted to evaluate the environmental impact of osmotically dehydrated, fresh-cut, pre-packaged potatoes compared to conventional untreated ones. The case study focused on a small processing line in Naxos Island, Greece, aiming to extend shelf-life by up to 5 days. The analysis covered the full value chain, from cultivation to household consumption, considering changes in energy and material use, transport volumes, waste generation, and cultivation demand. Three scenarios were assessed: (i) conventional untreated potatoes, (ii) dehydrated potatoes using market glycerol, and (iii) dehydrated potatoes using glycerol from vegetable oil treatment. Systems and life cycle inventories (LCI) were modelled in OpenLCA v2.4 software with the ecoinvent v3.11 database, applying the Environmental Footprint (EF) method, v3.1. The selected impact categories included the following: global warming potential, water use, freshwater ecotoxicity, freshwater and marine eutrophication, energy resource use, particulate matter formation, and acidification. Results showed that applying osmotic dehydration (OD) improved environmental performance in most, but not all, categories. When market glycerol was used, some burdens increased due to glycerol production. However, using glycerol from vegetable oil treatment resulted in reductions of 25.8% to 54.9% across all categories compared to the conventional scenario. Overall, OD with alternative glycerol proved to be the most environmentally beneficial approach. Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

23 pages, 1892 KiB  
Review
A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
by Gamal El Afandi, Muhammad Irfan, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Urban Sci. 2025, 9(6), 214; https://doi.org/10.3390/urbansci9060214 - 10 Jun 2025
Viewed by 1855
Abstract
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is [...] Read more.
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is further aggravated by the increasing utilization of available open spaces for residential and industrial development, leading to heightened energy consumption, elevated pollution levels, and increased carbon emissions, all of which negatively affect public health. The primary objective of this review article is to provide a comprehensive evaluation of current research, with a particular focus on the innovative use of residual biomass from urban vegetation for biochar production in the United States. This research entails an exhaustive review of existing literature to assess the implementation of a carbon-negative wood biomass biochar system as a strategic approach to sustainable urban management. By transforming urban wood waste—including tree trimmings, construction debris, and storm-damaged timber—into biochar through pyrolysis, a thermochemical process that sequesters carbon while generating renewable energy, we can leverage this valuable resource. The resulting biochar offers a range of co-benefits: it enhances soil health, improves water retention, reduces stormwater runoff, and lowers greenhouse gas emissions when applied in urban green spaces, agriculture, and land restoration projects. This review highlights the advantages and potential of converting urban wood waste into biochar while exploring how municipalities can strengthen their green ecosystems. Furthermore, it aims to provide a thorough understanding of how the utilization of woody biomass biochar can contribute to mitigating urban carbon emissions across the United States. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

15 pages, 268 KiB  
Article
Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary
by Battamir Ulambayar, Amr Sayed Ghanem and Attila Csaba Nagy
Nutrients 2025, 17(12), 1954; https://doi.org/10.3390/nu17121954 - 8 Jun 2025
Cited by 2 | Viewed by 612
Abstract
Background/Objectives: Overnutrition, leading to overweight and obesity, is a growing concern among the elderly, contributing to non-communicable diseases. This study examines socio-demographic, dietary, and lifestyle factors associated with overnutrition in Hungarian adults aged 65 and older. Methods: A cross-sectional analysis was conducted using [...] Read more.
Background/Objectives: Overnutrition, leading to overweight and obesity, is a growing concern among the elderly, contributing to non-communicable diseases. This study examines socio-demographic, dietary, and lifestyle factors associated with overnutrition in Hungarian adults aged 65 and older. Methods: A cross-sectional analysis was conducted using 2019 European Health Interview Survey data, including 1628 elderly participants. Body mass index (BMI ≥ 25 kg/m2) defined overnutrition. Socio-demographic (gender, income, urbanization, partner status), dietary (fruit, vegetable, water, sweetener, salt intake), and lifestyle (alcohol, smoking, physical activity) factors were analyzed. Chi-square tests and multivariate logistic regression identified associations, with odds ratios (ORs) and 95% confidence intervals (CIs) calculated. Results: Overnutrition prevalence was 72.7%, higher in males (77.8%) than females (69.1%). Urbanization, income, and partner status showed associations. Significant predictors included lower water intake (OR = 0.47, 95% CI: 0.33–0.65 for 1–1.5 L), artificial sweetener use (OR = 1.54, 95% CI: 1.13–2.11), moderate/high salt intake (OR = 1.45, 95% CI: 1.06–1.99), former/never smoking (OR = 2.56, 95% CI: 1.73–3.77), and heavy alcohol use (OR = 4.00, 95% CI: 1.33–12.50). Conclusions: Artificial sweetener use, high salt intake, smoking history, and heavy alcohol consumption are key modifiable predictors of overnutrition, informing targeted interventions for elderly Hungarians. Full article
(This article belongs to the Special Issue Addressing Malnutrition in the Aging Population)
Show Figures

Graphical abstract

18 pages, 4823 KiB  
Article
A New Approach to Expanding Interior Green Areas in Urban Buildings
by Chyi-Gang Kuo, Chien-Wei Chiu and Pei-Shan Chung
Buildings 2025, 15(12), 1965; https://doi.org/10.3390/buildings15121965 - 6 Jun 2025
Viewed by 514
Abstract
Countries worldwide have implemented regulations on the green coverage ratio of new buildings to address the urban heat island effect. For example, Taipei City mandates that the green coverage rate of new buildings must be between 40% and 70%, while Singapore requires a [...] Read more.
Countries worldwide have implemented regulations on the green coverage ratio of new buildings to address the urban heat island effect. For example, Taipei City mandates that the green coverage rate of new buildings must be between 40% and 70%, while Singapore requires a green coverage rate of 100% or higher. Consequently, building greening is now a regulatory requirement rather than a preference. This study focuses on developing an indoor light-emitting-diode (LED) hydroponic inverted planting system to utilize ceiling space for expanding green areas in buildings. The light source of this system is suitable for both plant growth and daily lighting, thereby reducing electricity costs. The watertight planting unit does not require replenishment of the nutrient solution during a planting cycle for small plants, which can reduce water consumption and prevent indoor humidity. The modular structure allows various combinations, enabling interior designers to create interior ceiling scapes. Additionally, it is possible to grow aromatic plants and edible vegetables, facilitating the creation of indoor farms. Consequently, this system is suitable for high-rise residential buildings, office buildings, underground shopping malls, and indoor areas with limited or no natural light. It is also applicable to hospitals, clinics, wards, and care centers, where indoor plants alleviate psychological stress and enhance mental and physical health. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

15 pages, 1866 KiB  
Article
Effects of Potassium Supply in Nutrient Solution on Water and Nutrient Absorption of Substrate-Grown Tomato Plants
by Jinxiu Song, Rong Zhang, Bingyan Fu, He Chen, Xiaoming Song, Gaoqiang Lv and Rongqiang Zhang
Horticulturae 2025, 11(6), 629; https://doi.org/10.3390/horticulturae11060629 - 4 Jun 2025
Viewed by 610
Abstract
Potassium (K+) functions as a critical “regulator” and “quality element” in plants, with its physiological roles varying across developmental stages. To clarify the effects of different K+ amounts in nutrient solution on water and nutrient absorption characteristics and potassium utilization [...] Read more.
Potassium (K+) functions as a critical “regulator” and “quality element” in plants, with its physiological roles varying across developmental stages. To clarify the effects of different K+ amounts in nutrient solution on water and nutrient absorption characteristics and potassium utilization efficiency in substrate-grown tomato, a controlled experiment was conducted in a climate-regulated solar greenhouse using “Saint Ness” tomato as the plant material. Four K+ supply levels (1, 4, 8, and 16 mmol/L, designated as K1, K4, K8, and K16 treatment, respectively) were tested to systematically evaluate the responses of tomato plants at different growth stages in terms of water and nutrient absorption capacity, potassium physiological efficiency (KPE), and potassium utilization efficiency (KUE). The results showed that water absorption capacity did not differ significantly among treatments during the vegetative growth stage. However, during the reproductive stage, the K8 treatment exhibited the highest water absorption capacity (47.05 kg/plant) and water absorption efficiency (84.6%). In addition, K8 significantly promoted the coordinated uptake of K+, nitrogen, phosphorus, calcium, and magnesium, with a total potassium absorption capacity of 7.2 g/plant and a potassium absorption efficiency of 79.1%. In contrast, excessive K+ supply (16 mmol/L) increased total potassium absorption capacity (5.09 g/plant) but led to a marked decline in physiological efficiency (by 27.9%) and water absorption efficiency (by 10.3%) due to luxury consumption and substrate-induced salt stress. Insufficient K+ levels (1–4 mmol/L) also restricted root-mediated water and nutrient flux. The study further revealed a dose-dependent and stage-specific pattern in water and potassium absorption. Therefore, an appropriate K+ supply of 8 mmol/L not only improved the plant’s absorption capacity for water and nutrients and potassium utilization efficiency but also maintained ionic balance among essential nutrients. These findings provide a theoretical basis for precision water and fertilizer integration strategies in substrate-cultivated tomato production under greenhouse conditions. Full article
(This article belongs to the Special Issue Soilless Culture in Vegetable Production)
Show Figures

Figure 1

18 pages, 670 KiB  
Article
Development and Characterization of Nutritious and Sustainable Canned Fish Meal Prototype for Different Population Segments
by Helena Oliveira, Maria Cristóvão, Alexandre Nabais, Carolina Camacho, Maria Sapatinha, Carla Pires, Helena M. Lourenço, Maria H. Fernandes, Maria J. Fernandes, Maria J. Fraqueza, Helga C. Augusto, Cláudia Viegas, Maria P. Duarte, António Marques, Amparo Gonçalves and Maria L. Nunes
Sustainability 2025, 17(11), 5050; https://doi.org/10.3390/su17115050 - 30 May 2025
Viewed by 560
Abstract
Canning is an excellent solution to provide convenient, affordable, nutritious, and safe seafood with a long shelf life. However, many canned products use tuna, sardines, and Atlantic chub mackerel, species that raise sustainability concerns and whose overuse can put additional pressure on them. [...] Read more.
Canning is an excellent solution to provide convenient, affordable, nutritious, and safe seafood with a long shelf life. However, many canned products use tuna, sardines, and Atlantic chub mackerel, species that raise sustainability concerns and whose overuse can put additional pressure on them. Hence, this study aimed to i) develop and assess a nutritious and sustainable canned meal prototype using the Atlantic horse mackerel (Trachurus trachurus) (whose EU allowable-catch amounts have increased, particularly, in Iberian waters) and vegetables in light brine in terms of stability, sterility, and physicochemical and sensory properties over a 4-month period at room temperature and ii) evaluate its nutritional contribution for different population groups. After preparation, the meal was stored for one month at ≈20 °C and ≈40 °C (to simulate the 4 months). Although the pH was not stable, the meal was considered commercially sterile according to the challenge accelerated tests. Moreover, aging did not significantly affect the meal’s physicochemical and sensory properties. This innovative meal prototype can be claimed to be “low-fat”, “reduced in NaCl/Na”, a “source of protein, phosphorus, iron, selenium and vitamin D”, and “high in vitamin B12”. It proved to be both nutritious and appealing for consumption, with potential to be scaled up. Full article
(This article belongs to the Special Issue Sustainability in the Seafood Chain and Impacts on Product Quality)
Show Figures

Figure 1

26 pages, 9884 KiB  
Article
Response of Water-Use Efficiency (WUE) in Alpine Grasslands to Hydrothermal and Radiative Factors Across Elevation Gradients
by Ye Tian, Wan Zhang, Xiao Xu, Bingrong Zhou, Xiaoyun Cao and Bin Qiao
Land 2025, 14(6), 1173; https://doi.org/10.3390/land14061173 - 29 May 2025
Viewed by 424
Abstract
Vegetation water-use efficiency (WUE), which represents the trade-off between carbon assimilation and water consumption, is a key indicator of ecosystem adaptation to environmental change. While previous studies have addressed the climatic controls on WUE in alpine ecosystems, the quantitative response mechanisms along elevation [...] Read more.
Vegetation water-use efficiency (WUE), which represents the trade-off between carbon assimilation and water consumption, is a key indicator of ecosystem adaptation to environmental change. While previous studies have addressed the climatic controls on WUE in alpine ecosystems, the quantitative response mechanisms along elevation gradients remain insufficiently explored. This study investigated the growing season WUE patterns of alpine grasslands across elevation zones on the Qinghai–Tibetan Plateau by integrating partial correlation analysis and structural equation modeling (SEM). The findings revealed a clear triphasic pattern in WUE variation: a modest increase below 3000 m, a pronounced peak near 3700 m, and a steady decline at higher elevations. The dominant hydrothermal drivers shift with elevation. At lower altitudes, WUE was primarily influenced by the vapor pressure deficit (VPD), whereas soil temperature (ST) and VPD jointly govern WUE at mid-to-high altitudes. The SEM results indicated that the total effect of temperature on WUE increased from 0.51 at low elevations to 0.95 at high elevations, while the total effect of precipitation rose from −0.36 to −0.18. ST and VPD mediate the effects of temperature and precipitation on WUE, reflecting indirect and nonlinear regulatory pathways. Moreover, contribution rate analysis showed an elevation-dependent shift in WUE control: evapotranspiration (ET) exerted a dominant influence at low elevations (contribution rate: −82.50%), while net primary productivity (NPP) became the primary driver at high elevations (contribution rate: 54.71%). These findings demonstrate that alpine vegetation’s carbon–water coupling exhibits threshold-like behavior along altitudinal gradients, governed by differentiated hydrothermal constraints, offering new insights into ecosystem resilience under climate change. Full article
Show Figures

Figure 1

29 pages, 466 KiB  
Review
Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality
by Yuqiao Jin and Achyut Adhikari
Foods 2025, 14(11), 1924; https://doi.org/10.3390/foods14111924 - 28 May 2025
Cited by 1 | Viewed by 1056
Abstract
The consumption of fresh produce has significantly increased in recent years, contributing to improved diets through the provision of essential nutrients, vitamins, and fiber. However, there has been a rise in foodborne illness outbreaks linked to fruits and vegetables, often caused by pathogens [...] Read more.
The consumption of fresh produce has significantly increased in recent years, contributing to improved diets through the provision of essential nutrients, vitamins, and fiber. However, there has been a rise in foodborne illness outbreaks linked to fruits and vegetables, often caused by pathogens such as Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes. These outbreaks have led to severe health consequences, including illnesses, hospitalizations, and even deaths. Once produce is contaminated by foodborne pathogens, these pathogens are difficult to eliminate. Traditional decontamination methods, such as water washes and chlorine-based sanitizers, have been widely used to address these microbial concerns. However, these methods may not be effective against pathogens in crevices or biofilms on the surface of produce, and their effectiveness varies depending on the type of produce and pathogens. Moreover, the chemicals used may raise health and environmental concerns. As a result, novel technologies for pathogen inactivation are gaining attention. These include ozone, ultraviolet light, cold plasma, pulsed light, ultrasound, microbubbles, nanobubbles, electrolyzed water, high-pressure processing, chlorine dioxide gas, and among others. This paper reviews a range of emerging and innovative technologies for the sanitization of fresh produce. The mechanisms, advancements, and practical applications of these technologies are examined with a focus on enhancing food safety and preserving produce quality. These innovative methods provide new opportunities for both research and industry to develop practical, affordable, and safe solutions for maintaining produce safety and quality. Recent studies highlight the effectiveness of combining methods, showing that using multiple sanitization techniques can significantly improve pathogen inactivation on fresh produce. For example, more than 5 log reductions of Listeria innocua and E. coli on avocado, watermelon, and mushroom can be achieved with the combined application of pulsed light and malic acid in previous research. In this review, we recommend the application of combined sanitization methods, emphasizing that integrating multiple techniques can provide a more effective and comprehensive approach to pathogen inactivation. This combined-method strategy has become a promising and innovative trend in the ongoing efforts to improve produce safety and quality. Full article
Back to TopTop