Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality
Abstract
:1. Introduction
2. Novel Technologies
2.1. Ozone
Treatment | Commodity | Treatment Parameters (Dose, Time, Temperature, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
Aqueous ozone | Raspberry | 8.9 mg/L 64 min, 20 °C | E. coli O157:H7 | 4.8 | [54] |
Salmonella spp. | 4.4 | [54] | |||
Strawberry | 8.9 mg/L, 64 min, 20 °C | E. coli O157:H7 | 2.9 | [54] | |
Salmonella spp. | 3.3 | [54] | |||
Fresh-cut apple | 1.4 mg/L, 10 min | Total bacteria | 0.87 | [55] | |
Gaseous ozone | Strawberry | 6% (wt/wt), 30 min | Salmonella spp. | 2.1 | [59] |
Enterococcus faecium | 1.5 | [59] | |||
Raspberry | 5%(wt/wt), 64 min | E. coli O157:H7 | 2.6 | [60] | |
Salmonella spp. | 1.6 | [60] | |||
Strawberry | 5%(wt/wt), 64 min | E. coli O157:H7 | 1.8 | [60] | |
Salmonella spp. | 0.9 | [60] | |||
Ultrasound, chlorine, and ozone (aqueous) | Lettuce leaves | Ultrasound (28 kHz)-chlorine (free chlorine 10 ppm), 40 s + aqueous ozone (1 ppm), 60 s | E. coli O157:H7 | >2 | [64] |
S. typhimurium | >2 | [64] | |||
Vacuum ozone (gaseous) | Spinach | 1.5 g/kg, 30 min, at 10 psig | E. coli O157:H7 | 1.8 | [65] |
Pressured ozone (gaseous) | Raspberry | 5%(wt/wt), 64 min, at 83 kPa | E. coli O157:H7 | 2.8 | [60] |
Salmonella spp. | 2.0 | [60] | |||
Strawberry | 5%(wt/wt), 64 min, at 83 kPa | E. coli O157:H7 | 2.3 | [60] | |
Salmonella spp. | 2.2 | [60] | |||
Continuous ozone, pressurized ozone | Raspberry | 5%(wt/wt), 64 min + 83 kPa, 64 min | E. coli O157:H7 | 3.8 | [60] |
Salmonella spp. | 3.6 | [60] | |||
Strawberry | 5%(wt/wt), 64 min + 83 kPa, 64 min | E. coli O157:H7 | 2.9 | [60] | |
Salmonella spp. | 2.6 | [60] | |||
Sanitizer and ozone (gaseous) | Baby spinach | 0.66% citric acid, 0.036% sodium dodecyl sulfate, spray 32 times + vacuum cooling (4 °C) + gaseous ozone (1.5 g/m3), 30 min | E. coli O157:H7 | 3.9 | [66] |
2.2. Ultraviolet (UV)
Treatment | Commodity | Treatment Parameters (Dose, Time, Temperature, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
UV-C light | Apple | 0.92 kJ/m2, 60 s, 23 °C | E. coli O157:H7 | 2.9 | [81] |
3.75 kJ/m2, 5 min, 23 °C | L. monocytogenes | 1.6 | [81] | ||
Pear | 0.92 kJ/m2, 60 s, 23 °C | E. coli O157:H7 | 2.1 | [81] | |
11.9 kJ/m2, 14 min, 23 °C | L. monocytogenes | 1.7 | [81] | ||
Strawberry | 7.2 kJ/m2, 8 min, 23 °C | E. coli O157:H7 | 2.0 | [81] | |
11.9 kJ/m2, 14 min, 23 °C | L. monocytogenes | 1.0 | [81] | ||
Raspberry | 10.5 kJ/m2, 12 min, 23 °C | E. coli O157:H7 | 1.1 | [81] | |
Cantaloupe | 11.9 kJ/m2, 14 min, 23 °C | L. monocytogenes | 1.0 | [81] | |
Fresh-cut carambola | 12.5 kJ/m2 | Aerobic mesophilic bacteria | 2.5 | [86] | |
Yeast and mold | 1.9 | [86] | |||
Broccoli | 7.5 kJ/m2 | E. coli | 1.3–1.4 | [88] | |
S. enteritidis | 2.1–2.2 | [88] | |||
Calyx of blueberry | 7.95 mW/m2, 2 min | E. coli O157:H7 | 1.96 | [90] | |
Skin of blueberry | 7.95 mW/m2, 2 min | E. coli O157:H7 | 4.09 | [90] | |
Peroxyacetic acid and UV-C | Broccoli | Peroxyacetic acid, 100 mg/L, pH 5.3, 5 °C + UV-C, 7.5 kJ/m2 | E. coli | ~3 | [88] |
S. enteritidis | ~3 | [88] | |||
Neutral electrolyzed water and UV-C | Broccoli | Neutral electrolyzed water, 100 mg/L, pH 7, 5 °C + UV-C, 7.5 kJ/m2 | E. coli | ~3 | [88] |
S. enteritidis | ~3 | [88] | |||
ozone and UV-C | Calyx of blueberry | Ozone 4000 mg/L, 1 min + UV-C 7.95 mW/m2, 2 min | E. coli O157:H7 | 3.05 | [90] |
2.3. Cold Plasma
Treatment | Commodity | Treatment Parameters (Pulse Frequency, Voltage, Time, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
Cold plasma | Mixed salad (lettuce inoculated) | 35 kV, 3 min | Salmonella spp. | 0.29 | [106] |
Mixed salad (tomato inoculated) | 35 kV, 3 min | Salmonella spp. | 0.54 | [106] | |
Fresh-cut melon | 12.5 kHz, 15 kV, 15 + 15 min | Mesophilic bacteria | 1.88 | [110] | |
Psychrophilic bacteria | 0.40 | [110] | |||
12.5 kHz, 15 kV, 30 + 30 min | Psychrophilic bacteria | 1.00 | [110] | ||
Cold atmospheric pressure plasma | Apple peel | 22.5 kHz, 295 V, 492 s, at 199 kPa | Enterobacter aerogenes | 1.86 1 | [102] |
Orange peel | 22.5 kHz, 295 V, 492 s, at 199 kPa | Enterobacter aerogenes | 0.77 1 | [102] | |
Cantaloupe peel | 22.5 kHz, 295 V, 492 s, at 199 kPa | Enterobacter aerogenes | 0.61 1 | [102] | |
Cold plasma-activated hydrogen peroxide aerosol | Tomato smooth surface | 17 kV, H2O2 7.8% concentration, 45 s treatment and 30 min dwell time | S. typhimurium | 5.0 2 | [112] |
Tomato stem scar | 17 kV, H2O2 7.8% concentration, 45 s treatment and 30 min dwell time | S. typhimurium | 1.3 2 | [112] | |
L. innocua | 1.3 2 | [112] | |||
[112] | |||||
Spinach | 17 kV, H2O2 7.8% concentration, 45 s treatment and 30 min dwell time | S. typhimurium | 4.2 2 | [112] | |
L. innocua | 4.0 2 | [112] | |||
E. coli O157:H7 | 1.5 2 | [112] | |||
Cantaloupe rind | 17 kV, H2O2 7.8% concentration, 45 s treatment and 30 min dwell time | S. typhimurium | 1.3 2 | [112] | |
L. innocua | 3.0 2 | [112] | |||
E. coli O157:H7 | 4.9 2 | [112] |
2.4. Pulsed Light
Treatment | Commodity | Treatment Parameters (Dose, Pulse, Time, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
Pulsed light | Tomato (surface) | 2.2 J/cm2 | Saccharomyces cerevisiae | 2.3 | [137] |
Fresh-cut avocado | 0.4 J/cm2, 30 pulses | L. innocua | 2.97 | [138] | |
E. coli | 3.33 | [138] | |||
Skin of blueberry | 5 J/cm2, 5 s | E. coli O157:H7 | 3.8 | [142] | |
56.1 J/cm2, 60 s | Salmonella spp. | 5.7 | [142] | ||
Fresh-cut avocado | 12 J/cm2 | E. coli | 2.58 | [134] | |
Fresh-cut watermelon | 12 J/cm2 | E. coli | 2.88 | [134] | |
Fresh-cut mushroom | 12 J/cm2 | E. coli | 2.97 | [134] | |
Water-assisted pulsed light | Skin of blueberry | 5 J/cm2, 5 s | E. coli O157:H7 | 4.5 | [142] |
56.1 J/cm2, 60 s | Salmonella spp. | >5.9 | [142] | ||
Malic acid and pulsed light | Fresh-cut avocado | 12 J/cm2, malic acid (2% w/v), 2 min | E. coli | 3.14 | [134] |
Fresh-cut watermelon | 12 J/cm2, malic acid (2% w/v), 2 min | E. coli | 3.48 | [134] | |
Fresh-cut mushroom | 12 J/cm2, malic acid (2% w/v), 2 min | E. coli | 3.43 | [134] |
2.5. Ultrasound
Treatment | Commodity | Treatment Parameters (Frequency, Time, Temperature, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
Ultrasound with water | Iceberg lettuce | 32–40 kHz, 10 min | S. typhimurium | 1.5 | [158] |
Fresh-cut cucumber | 20 kHz, 5 min | Yeast and mold | 0.41 | [150] | |
20 kHz, 15 min | Yeast and mold | 0.84 | [150] | ||
Spinach | 21.2 kHz, 2 min | E. coli O157:H7 | 2.1 | [160] | |
Ultrasound with PBS | Spinach | 35 kHz, 2 min, 20 °C | E. coli biofilm | 1.02 1 | [152] |
Ultrasound with chlorinated water | Iceberg lettuce | 32–40 kHz, 10 min, chlorinated water (25 ppm) | S. typhimurium | 2.7 | [158] |
Spinach | 21.2 kHz, 2 min, chlorinated water (200 mg/L) | E. coli O157:H7 | 3.1 | [160] | |
Ultrasound with sodium chlorite | Spinach | 21.2 kHz, 2 min, acidified sodium chlorite (200 mg/L) | E. coli O157:H7 | 4.0 | [160] |
Arugula | 40 kHz, 5 min, sodium hypochlorite (100 mg/L), 25 °C | Aerobic mesophiles | 1.46 | [159] | |
Ultrasound with peroxyacetic acid | Spinach | 21.2 kHz, 2 min, peroxyacetic acid (80 mg/L) | E. coli O157:H7 | 2.9 | [160] |
Ultrasound with acidic electrolyzed water | Spinach | 21.2 kHz, 2 min, acidic electrolyzed water (80 mg/L) | E. coli O157:H7 | 3.1 | [160] |
Ultrasound with citral nanoemulsion | Fresh-cut carrot | 20 kHz, 9 min, citral nanoemulsion (0.15 mg/mL) | Shigella flexneri | 8.55 2 | [162] |
Thermosonication | Spinach | 35 kHz, 5 min, 50 °C | E. coli biofilm | 4.19 1 | [152] |
Thermosonication with acetic acid | Spinach | 35 kHz, 5 min, acetic acid (20 mL/L), 50 °C | E. coli biofilm | 5.94 1 | [152] |
Thermosonication with lactic acid | Spinach | 35 kHz, 5 min, lactic acid (20 mL/L), 50 °C | E. coli biofilm | 6.03 1 | [152] |
2.6. High-Pressure Processing
2.7. Microbubbles and Nanobubbles
2.8. Electrolyzed Water
2.9. Chlorine Dioxide Gas
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Beuchat, L.R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef]
- Warriner, K.; Huber, A.; Namvar, A.; Fan, W.; Dunfield, K. Recent advances in the microbial safety of fresh fruits and vegetables. Adv. Food Nutr. Res. 2009, 57, 155–208. [Google Scholar]
- CDC. E. coli Outbreak Linked to Packaged Salads. 2022. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/ecoli/2021/o157h7-12-21/index.html (accessed on 5 April 2025).
- CDC. Listeria Outbreak Linked to Packaged Salads Produced by Fresh Express. 2022. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/listeria/outbreaks/packaged-salad-12-21-b/index.html (accessed on 5 April 2025).
- CDC. Listeria Outbreak Linked to Packaged Salads Produced by Dole. 2022. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/listeria/outbreaks/packaged-salad-mix-12-21/index.html (accessed on 5 April 2025).
- CDC. Listeria Outbreak Linked to Enoki Mushrooms. 2023. Available online: https://www.cdc.gov/listeria/outbreaks/enoki-11-22/index.html (accessed on 5 April 2025).
- CDC. Salmonella Outbreak Linked to Cantaloupes. 2024. Available online: https://www.cdc.gov/salmonella/outbreaks/cantaloupes-11-23/?CDC_AAref_Val=https://www.cdc.gov/salmonella/sundsvall-11-23/index.html (accessed on 5 April 2025).
- CDC. Listeria Outbreak Linked to Peaches, Nectarines, and Plums. 2024. Available online: https://www.cdc.gov/listeria/outbreaks/peaches-11-23/index.html (accessed on 5 April 2025).
- CDC. Salmonella Outbreak Linked to Fresh Basil. 2024. Available online: https://www.cdc.gov/salmonella/outbreaks/basil-04-24/?CDC_AAref_Val=https://www.cdc.gov/salmonella/basil-04-24/index.html (accessed on 6 April 2025).
- CDC. Salmonella Outbreak Linked to Cucumbers. 2025. Available online: https://www.cdc.gov/salmonella/outbreaks/cucumbers-11-24/index.html (accessed on 6 April 2025).
- Aziz, K.M.; Ding, P. Ozone application in fresh fruits and vegetables. Pertanika J. Sch. Res. Rev. 2018, 4, 29–35. [Google Scholar]
- Danyluk, M.D.; Schaffner, D.W. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: Preliminary framework, data, and risk estimates. J. Food Prot. 2011, 74, 700–708. [Google Scholar] [CrossRef]
- Han, Y.; Sherman, D.M.; Linton, R.H.; Nielsen, S.S.; Nelson, P.E. The effects of washing and chlorine dioxide gas on survival and attachment of Escherichia coli O157:H7 to green pepper surface. Food Microbiol. 2000, 17, 521–533. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Fukumoto, L.R.; Toivonen, P.M.A.; Cliff, M.A. Implications of wash water chlorination and temperature for the microbiological and sensory properties of fresh-cut iceberg lettuce. Postharvest Biol. Technol. 2004, 31, 81–91. [Google Scholar] [CrossRef]
- Bhilwadikar, T.; Pounraj, S.; Manivannan, S.; Rastogi, N.K.; Negi, P.S. Decontamination of microorganisms and pesticides from fresh fruits and vegetables: A comprehensive review from common household processes to modern techniques. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1003–1038. [Google Scholar] [CrossRef]
- Shang, C.; Blatchley, E.R. Differentiation and quantification of free chlorine and inorganic chloramines in aqueous solution by MIMS. Environ. Sci. Technol. 1999, 33, 2218–2223. [Google Scholar] [CrossRef]
- Aruscavage, D.; Lee, K.; Miller, S.; LeJeune, J.T. Interactions affecting the proliferation and control of human pathogens on edible plants. J. Food Sci. 2006, 71, 89–99. [Google Scholar] [CrossRef]
- Behrsing, J.; Winkler, S.; Franz, P.; Premier, R. Efficacy of chlorine for inactivation of Escherichia coli on vegetables. Postharvest Biol. Technol. 2000, 19, 187–192. [Google Scholar] [CrossRef]
- Karaca, H.; Velioglu, Y.S. Ozone applications in fruit and vegetable processing. Food Rev. Int. 2007, 23, 91–106. [Google Scholar] [CrossRef]
- Chhetri, S.V.; Han, Y.; Marlene, J.; Adhikari, A. Evaluation of viability of E. coli O157:H7 on chlorine and lactic acid treated spinach leaves using combined propidium monoazide staining and real-time PCR. LWT-Food Sci. Technol. 2020, 125, 109259. [Google Scholar] [CrossRef]
- Keskinen, L.A.; Burke, A.; Annous, B.A. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. Int. J. Food Microbiol. 2009, 132, 134–140. [Google Scholar] [CrossRef]
- Mathew, E.N.; Muyyarikkandy, M.S.; Bedell, C.; Amalaradjou, M.A. Efficacy of chlorine, chlorine dioxide, and peroxyacetic acid in reducing Salmonella contamination in wash water and on mangoes under simulated mango packinghouse washing operations. Front. Sustain. Food Syst. 2018, 76, 386–393. [Google Scholar] [CrossRef]
- Shen, C.; Luo, Y.; Nou, X.; Wang, Q.; Millner, P. Dynamic effects of free chlorine concentration, organic load, and exposure time on the inactivation of Salmonella, Escherichia coli O157:H7, and non-O157 Shiga toxin-producing E. coli. J. Food Prot. 2013, 76, 386–393. [Google Scholar] [CrossRef]
- Luu, P.; Janes, M.; King, J.; Adhikari, A. Effectiveness of aqueous chlorine dioxide in minimizing food safety risk associated with Salmonella, E. coli O157:H7, and Listeria monocytogenes on sweet potatoes. Foods 2020, 9, 1259. [Google Scholar] [CrossRef]
- Hassenberg, K.; Praeger, U.; Herppich, W.B. Effect of chlorine dioxide treatment on human pathogens on iceberg lettuce. Foods 2021, 10, 574. [Google Scholar] [CrossRef]
- Singh, P.; Hung, Y.; Qi, H. Efficacy of peracetic acid in inactivating foodborne pathogens on fresh produce surface. J. Food Sci. 2018, 83, 432–439. [Google Scholar] [CrossRef]
- Lineback, C.B.; Nkemngong, C.A.; Wu, S.T.; Li, X.; Teska, P.J.; Oliver, H.F. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob. Resist. Infect. Control 2018, 7, 154. [Google Scholar] [CrossRef]
- Bollen, C.M.; Papaioanno, W.; Van Eldere, J.; Schepers, E.; Quirynen, M.; van Steenberghe, D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin. Oral Implant. Res. 1996, 7, 201–211. [Google Scholar] [CrossRef]
- Yoda, I.; Koseki, H.; Tomita, M.; Shida, T.; Horiuchi, H.; Sakoda, H.; Osaki, M. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol. 2014, 14, 234. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.; He, L.; Heo, J.; Hwang, G. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Jefferson, K.K. What drives bacteria to produce a biofilm. FEMS Microbiol. Lett. 2004, 236, 163–173. [Google Scholar] [CrossRef]
- Morris, C.E.; Monier, J. The ecological significance of biofilm formation by plant-associated bacteria. Annu. Rev. Phytopathol. 2003, 41, 429–453. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef]
- Joseph, B.; Otta, S.K.; Karunasagar, I. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int. J. Food Microbiol. 2001, 64, 367–372. [Google Scholar] [CrossRef]
- Pan, Y.; Breidt, F., Jr.; Kathariou, S. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl. Environ. Microbiol. 2006, 72, 7711–7717. [Google Scholar] [CrossRef]
- Amy, G.; Bull, R.; Craun, G.F.; Pegram, R.A.; Siddiqui, M.; World Health Organization. Disinfectants and Disinfectant By-Products. 2000. Available online: http://apps.who.int/iris/bitstream/handle/10665/42274/WHO_EHC_216.pdf?sequence=1 (accessed on 5 May 2024).
- Aslam, R.; Alam, M.S.; Saeed, P.A. Sanitization potential of ozone and its role in postharvest quality management of fruits and vegetables. Food Eng. Rev. 2020, 12, 48–67. [Google Scholar] [CrossRef]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone treatments for preserving fresh vegetables quality: A critical review. Foods 2021, 10, 605. [Google Scholar] [CrossRef]
- Suslow, T.V. Ozone Applications for Postharvest Disinfection of Edible Horticultural Crops; UC Davis Extension Publication: Los Angeles, CA, USA, 2004; Volume 8113, pp. 1–8. [Google Scholar] [CrossRef]
- Xu, L. Use of ozone to improve the safety of fresh fruits and vegetables. Food Technol. 1999, 53, 58–62. [Google Scholar]
- Palou, L.; Smilanick, J.L.; Margosan, D.A. Ozone applications for sanitation and control of postharvest diseases of fresh fruits and vegetables. In Recent Advances in Alternative Postharvest Technologies to Control Fungal Diseases in Fruits and Vegetables; Troncoso-Rojas, R., Tiznado-Hernández, M.E., González-León, A., Eds.; Transworld Research Network: Trivandrum, India, 2007; pp. 39–70. [Google Scholar]
- Zhang, Y.Q.; Wu, Q.P.; Zhang, J.M.; Yang, X.H. Effects of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J. Appl. Microbiol. 2011, 111, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, D.; Cho, S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 2003, 52, 277–281. [Google Scholar] [CrossRef]
- Selma, M.V.; Beltrán, D.; Chacón-Vera, E.; Gil, M.I. Effect of ozone on the inactivation of Yersinia enterocolitica and reduction of natural flora on potatoes. J. Food Prot. 2006, 69, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Beltrán, D.; Allende, A.; Chacón-Vera, E.; Gil, M.I. Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiol. 2007, 24, 492–499. [Google Scholar] [CrossRef]
- Vorontsov, A.V.; Savinov, E.N.; Barannik, G.B.; Troitsky, V.N.; Parmon, V.N. Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2. Catal. Today 1997, 39, 207–218. [Google Scholar] [CrossRef]
- FDA. Ozone. CFR—Code of Federal Regulations Title 21, Part 173.368. 2021. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=173.368 (accessed on 27 April 2024).
- Restaino, L.; Frampton, E.W.; Hemphill, J.B.; Palnikar, P. Efficacy of ozonated water against various food-related microorganisms. Appl. Environ. Microbiol. 1995, 61, 3471–3475. [Google Scholar] [CrossRef]
- O’Donnell, C.P.; Tiwari, B.K.; Cullen, P.J.; Rice, R.G. Ozone in Food Processing; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar]
- Remondino, M.; Valdenassi, L. Different uses of ozone: Environmental and corporate sustainability. Literature review and case study. Sustainability 2018, 10, 4783. [Google Scholar] [CrossRef]
- Bialka, K.L.; Demirci, A. Efficacy of aqueous ozone for the decontamination of Escherichia coli O157:H7 and Salmonella on raspberries and strawberries. J. Food Prot. 2007, 70, 1088–1092. [Google Scholar] [CrossRef]
- Liu, C.; Ma, T.; Hu, W.; Tian, M.; Sun, L. Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh-cut apple. Int. J. Food Sci. Technol. 2016, 51, 1099–1109. [Google Scholar] [CrossRef]
- Liu, C.; Chen, C.; Jiang, A.; Zhang, Y.; Zhao, Q.; Hu, W. Effects of aqueous ozone treatment on microbial growth, quality, and pesticide residue of fresh--cut cabbage. Food Sci. Nutr. 2021, 9, 52–61. [Google Scholar] [CrossRef]
- Ikeura, H.; Kobayashi, F.; Tamaki, M. Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. J. Food Eng. 2011, 103, 345–349. [Google Scholar] [CrossRef]
- Jian, F.; Jayas, D.S.; White, N.D.G. Can ozone be a new control strategy for pests of stored grain. Agric. Res. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Zhou, Z.; Zuber, S.; Cantergiani, F.; Samapundo, S.; Devlieghere, F.; Uyttendaele, M. Inactivation of foodborne pathogens and their surrogates on fresh and frozen strawberries using gaseous ozone. Front. Sustain. Food Syst. 2018, 2, 51. [Google Scholar] [CrossRef]
- Bialka, K.L.; Demirci, A. Utilization of gaseous ozone for the decontamination of Escherichia coli O157:H7 and Salmonella on raspberries and strawberries. J. Food Prot. 2007, 70, 1093–1098. [Google Scholar] [CrossRef]
- Skog, L.J.; Chu, C.L. Effect of ozone on qualities of fruits and vegetables in cold storage. Can. J. Plant Sci. 2001, 81, 773–778. [Google Scholar] [CrossRef]
- Maduwanthi, S.D.T.; Marapana, R.A.U.J. Induced ripening agents and their effect on fruit quality of banana. Int. J. Food Sci. 2019, 2019, 2520179. [Google Scholar] [CrossRef]
- Rice, R.G.; Farquhar, W.; Bollyky, L.J. Review of the application of ozone for increasing storage time for perishable foods. Ozone Sci. Eng. 1982, 4, 147–163. [Google Scholar]
- Sun, Y.; Wu, Z.; Zhang, Y.; Wang, J. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce. Ultrason. Sonochem. 2022, 83, 105931. [Google Scholar] [CrossRef] [PubMed]
- Vurma, M.; Pandit, R.B.; Sastry, S.K.; Yousef, A.E. Inactivation of Escherichia coli O157:H7 and natural microbiota on spinach leaves using gaseous ozone during vacuum cooling and simulated transportation. J. Food Prot. 2009, 72, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Pyatkovskyy, T.; Shynkaryk, M.; Yousef, A.; Sastry, S.K. Fresh produce sanitization by combination of gaseous ozone and liquid sanitizer. J. Food Eng. 2017, 210, 19–26. [Google Scholar] [CrossRef]
- Chee, F.P.; Zainuddin, N.S.; Ha, H.L.; Dayou, J. Analysis and characterization of enhanced kinetic reaction on ozone generation using negative corona discharge. J. Phys. Commun. 2020, 4, 075001. [Google Scholar] [CrossRef]
- Sharma, R.R.; Demirci, A.; Beuchat, L.R.; Fett, W.F. Application of ozone for inactivation of Escherichia coli O157:H7 on inoculated alfalfa sprouts. J. Food Process. Preserv. 2003, 27, 51–64. [Google Scholar] [CrossRef]
- Cuong, L.C.; Nghi, N.H.; Dieu, T.V.; Oanh, D.T.Y.; Vuong, D.D. Influence of oxygen concentration, feed gas flow rate and air humidity on the output of ozone produced by corona discharge. Vietnam J. Chem. 2019, 57, 604–608. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone pollution: A major health hazard worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- Botondi, R.; Barone, M.; Grasso, C. A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The use of ozone technology to control microorganism growth, enhance food safety and extend shelf life: A promising food decontamination technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef]
- Vanhaelewyn, L.; Van Der Straeten, D.; De Coninck, B.; Vandenbussche, F. Ultraviolet radiation from a plant perspective: The plant-microorganism context. Front. Plant Sci. 2020, 11, 597642. [Google Scholar] [CrossRef]
- Chang, J.C.H.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D. UV inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 1985, 49, 1361–1365. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V.; Swanson, B.G. High hydrostatic pressure processing of fruit and vegetable products. Food Rev. Int. 2005, 21, 411–425. [Google Scholar] [CrossRef]
- Escalona, V.H.; Aguayo, E.; Martínez-Hernández, G.B.; Artés, F. UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol. Technol. 2010, 56, 223–231. [Google Scholar] [CrossRef]
- Lado, B.H.; Yousef, A.E. Alternative food preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440. [Google Scholar] [CrossRef]
- Turtoi, M. Ultraviolet light treatment of fresh fruits and vegetables surface: A review. J. Agroaliment. Process. Technol. 2013, 19, 325–337. [Google Scholar]
- Graça, A.; Salazar, M.; Quintas, C.; Nunes, C. Low dose UV-C illumination as an eco-innovative disinfection system on minimally processed apples. Postharvest Biol. Technol. 2013, 85, 1–7. [Google Scholar] [CrossRef]
- FDA. Ultraviolet Radiation for the Processing and Treatment of Food. CFR—Code of Federal Regulations Title 21, Part 179.39. 2021. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-179/subpart-B/section-179.39# (accessed on 27 April 2025).
- Adhikari, A.; Syamaladevi, R.M.; Killinger, K.; Sablani, S.S. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. Int. J. Food Microbiol. 2015, 210, 136–142. [Google Scholar] [CrossRef]
- Esua, O.J.; Chin, N.L.; Yusof, Y.A.; Sukor, R. A review on individual and combination technologies of UV-C radiation and ultrasound in postharvest handling of fruits and vegetables. Processes 2020, 8, 1433. [Google Scholar] [CrossRef]
- Yaun, B.R.; Sumner, S.S.; Eifert, J.D.; Marcy, J.E. Inhibition of pathogens on fresh produce by ultraviolet energy. Int. J. Food Microbiol. 2004, 90, 1–8. [Google Scholar] [CrossRef]
- Gabriel, A.A.; Linton, R.H. Inactivation of Salmonella, E. coli and Listeria monocytogenes in phosphate-buffered saline and apple juice by ultraviolet and heat treatments. Food Control 2009, 20, 443–446. [Google Scholar] [CrossRef]
- Setlow, P. Resistance of spores of Bacillus species to ultraviolet light. Environ. Mol. Mutagen. 2001, 38, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Andrade-Cuvi, M.J.; Zaro, M.J.; Darre, M.; Vicente, A.R.; Concellón, A. Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut carambola. J. Food Qual. 2017, 2017, 2548791. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Navarro-Rico, J.; Gómez, P.A.; Otón, M.; Artés, F.; Artés-Hernández, F. Combined sustainable sanitizing treatments to reduce Escherichia coli and Salmonella enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control 2015, 47, 312–317. [Google Scholar] [CrossRef]
- Murray, K.; Wu, F.; Shi, J.; Xue, S.J.; Warriner, K. Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Qual. Saf. 2017, 1, 289–301. [Google Scholar] [CrossRef]
- Kim, C.; Hung, Y. Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone. J. Food Sci. 2012, 77, M206–M211. [Google Scholar] [CrossRef]
- Singh, H.; Bhardwaj, S.K.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chem. Eng. J. 2021, 417, 128084. [Google Scholar] [CrossRef]
- Calle, A.; Fernandez, M.; Montoya, B.; Schmidt, M.; Thompson, J. UV-C LED irradiation reduces Salmonella on chicken and food contact surfaces. Foods 2021, 10, 1459. [Google Scholar] [CrossRef]
- Koutchma, T. UV light for processing foods. Ozone Sci. Eng. 2008, 30, 93–98. [Google Scholar] [CrossRef]
- Pinheiro, J.; Alegria, C.; Abreu, M.; Gonçalves, E.M.; Silva, C.L.M. Use of UV-C postharvest treatment for extending fresh whole tomato (Solanum lycopersicum, cv. Zinac) shelf-life. J. Food Sci. Technol. 2015, 52, 5066–5074. [Google Scholar] [CrossRef]
- Raeiszadeh, M.; Adeli, B. A critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations. ACS Photonics 2020, 7, 2941–2951. [Google Scholar] [CrossRef]
- Vecchia, P.; Hietanen, M.; Stuck, B.E.; van Deventer, E.; Niu, S. Protecting Workers from Ultraviolet Radiation. International Commission on Non-Ionizing Radiation Protection. 2007. Available online: https://www.icnirp.org/cms/upload/publications/ICNIRPUVWorkers.pdf (accessed on 27 April 2025).
- Bogaerts, A.; Neyts, E.C. Plasma technology: An emerging technology for energy storage. ACS Energy Lett. 2018, 3, 1013–1027. [Google Scholar] [CrossRef]
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Compton, K.T.; Langmuir, I. Electrical discharges in gases. I. Survey of fundamental processes. Rev. Mod. Phys. 1930, 2, 123. [Google Scholar] [CrossRef]
- López, M.; Calvo, T.; Prieto, M.; Múgica-Vidal, R.; Muro-Fraguas, I.; Alba-Elías, F.; Alvarez-Ordóñez, A. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microbiol. 2019, 10, 622. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Zhou, R.; Zhang, T.; Ostrikov, K.; Mugunthan, S.; Rice, S.A.; Cullen, P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes 2021, 7, 11. [Google Scholar] [CrossRef]
- Bhide, S.; Salvi, D.; Schaffner, D.W.; Karwe, M.V. Effect of surface roughness in model and fresh fruit systems on microbial inactivation efficacy of cold atmospheric pressure plasma. J. Food Prot. 2017, 80, 1337–1346. [Google Scholar] [CrossRef]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020, 11, 77. [Google Scholar] [CrossRef]
- Choi, E.H.; Uhm, H.S.; Kaushik, N.K. Plasma bioscience and its application to medicine. AAPPS Bull. 2021, 31, 10. [Google Scholar] [CrossRef]
- Bagheri, H.; Abbaszadeh, S. Effect of cold plasma on quality retention of fresh-cut produce. J. Food Qual. 2020, 2020, 8866369. [Google Scholar] [CrossRef]
- Hertrich, S.M.; Boyd, G.; Sites, J.; Niemira, B.A. Cold plasma inactivation of Salmonella in prepackaged, mixed salads is influenced by cross-contamination sequence. J. Food Prot. 2017, 80, 2132–2136. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Colligon, J.S.; Verran, J. The production of surfaces of defined topography and chemistry for microbial retention studies, using ion beam sputtering technology. Int. Biodeterior. Biodegrad. 2004, 54, 143–151. [Google Scholar] [CrossRef]
- Asghar, A.; Rashid, M.H.; Ahmed, W.; Roobab, U.; Inam-ur-Raheem, M.; Shahid, A.; Kafeel, S.; Akram, M.S.; Anwar, R.; Aadil, R.M. An in-depth review of novel cold plasma technology for fresh-cut produce. J. Food Process. Preserv. 2022, 46, e16560. [Google Scholar] [CrossRef]
- Bußler, S.; Schnabel, U.; Ehlbeck, J.; Schlüter, O. Effect of indirect plasma treatment on enzyme activity and quality of fresh cut and freeze-dried apple tissue. In Proceedings of the EFFoST 2013 Annual Meeting, Bologna, Italy, 13–15 November 2013; p. 064. [Google Scholar]
- Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P. Cold plasma treatment for fresh-cut melon stabilization. Innov. Food Sci. Emerg. Technol. 2016, 33, 225–233. [Google Scholar] [CrossRef]
- Lee, H.W.; Oh, Y.J.; Min, S.C. Microbial inhibition in mixed vegetables packaged in plastic. Food Control 2024, 161, 110107. [Google Scholar] [CrossRef]
- Jiang, Y.; Sokorai, K.; Pyrgiotakis, G.; Demokritou, P.; Li, X.; Mukhopadhyay, S.; Jin, T.; Fan, X. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. Int. J. Food Microbiol. 2017, 249, 53–60. [Google Scholar] [CrossRef]
- Fan, X.; Sokorai, K.J.B.; Engemann, J.; Gurtler, J.; Liu, Y. Inactivation of L. innocua, S. typhimurium, and E. coli O157:H7 on surface and stem scar areas of tomatoes using in-package ozonation. J. Food Prot. 2012, 75, 1611–1618. [Google Scholar] [CrossRef]
- Hernández-Torres, C.J.; Reyes-Acosta, Y.K.; Chávez-González, M.L.; Dávila-Medina, M.D.; Kumar Verma, D.; Martínez-Hernández, J.L.; Narro-Céspedes, R.I.; Aguilar, C.N. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J. Biol. Sci. 2021, 29, 1957–1980. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 2016, 9, 734–750. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Hebbar, H.U. Pulsed light processing of foods for microbial safety. Food Qual. Saf. 2017, 1, 187–201. [Google Scholar] [CrossRef]
- Elmnasser, N.; Guillou, S.; Leroi, F.; Orange, N.; Bakhrouf, A.; Federighi, M. Pulsed-light system as a novel food decontamination technology: A review. Can. J. Microbiol. 2007, 53, 813–821. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Devlieghere, F.; Bonduelle, V.; Debevere, J. Factors affecting the inactivation of micro-organisms by intense light pulses. J. Appl. Microbiol. 2005, 99, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Oms-Oliu, G.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed light treatments for food preservation: A review. Food Bioprocess Technol. 2010, 3, 13–23. [Google Scholar] [CrossRef]
- Palgan, I.; Caminiti, I.M.; Muñoz, A.; Noci, F.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. Effectiveness of high intensity light pulses (HILP) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiol. 2011, 28, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Rowan, N.J.; Valdramidis, V.P.; Gómez-López, V.M. A review of quantitative methods to describe efficacy of pulsed light generated inactivation data that embraces the occurrence of viable but non-culturable state microorganisms. Trends Food Sci. Technol. 2015, 44, 79–92. [Google Scholar] [CrossRef]
- Dunn, J.; Ott, T.; Clark, W. Pulsed light treatment of food and packaging. Food Technol. 1995, 49, 95–98. [Google Scholar]
- Barbosa-Cánovas, G.V.; Pothakamury, U.R.; Palou, E.; Swanson, B.G. Nonthermal Preservation of Foods; Marcel Dekker: New York, NY, USA, 1998; pp. 139–161. [Google Scholar]
- Condón, S.; Álvarez, I.; Gayán, E. Non-thermal processing—Pulsed UV light. In Encyclopedia of Food Microbiology; Robinson, R.K., Batt, C.A., Patel, P.D., Eds.; Elsevier: London, UK, 2014; pp. 974–981. [Google Scholar]
- Chen, B.; Lung, H.; Yang, B.B.; Wang, C. Pulsed light sterilization of packaging materials. Food Packag. Shelf Life 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Tewari, J.C.; Irudayaraj, J.; Demirci, A. Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food Bioprocess Technol. 2010, 3, 93–104. [Google Scholar] [CrossRef]
- Dunn, J. Pulsed light and pulsed electric field for foods and eggs. Poult. Sci. 1996, 75, 1133–1136. [Google Scholar] [CrossRef]
- Dunn, J.; Bushnell, A.; Ott, T.; Clark, W. Pulsed white light food processing. Cereal Foods World 1997, 42, 510–515. [Google Scholar]
- Fine, F.; Gervais, P. Efficiency of pulsed UV light for microbial decontamination of food powders. J. Food Prot. 2004, 67, 787–792. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, S.J.; Rowan, N.J.; McIlvaney, L.; Anderson, J.G.; Fouracre, R.A.; Farish, O. Light inactivation of food-related pathogenic bacteria using a pulsed power source. Lett. Appl. Microbiol. 1998, 27, 67–70. [Google Scholar] [CrossRef] [PubMed]
- FDA. Pulsed Light for the Treatment of Food. CFR—Code of Federal Regulations Title 21, Part 179.41. 2024. Available online: https://www.govinfo.gov/app/details/CFR-2024-title21-vol3/CFR-2024-title21-vol3-sec179-41 (accessed on 27 April 2025).
- FDA. Code of Federal Regulations. 21 CFR 179.41; United States Food and Drug Administration: Silver Spring, MD, USA, 1996; p. 443.
- Ramos-Villarroel, A.Y.; Martín-Belloso, O.; Soliva-Fortuny, R. Combined effects of malic acid dip and pulsed light treatments on the inactivation of Listeria innocua and Escherichia coli on fresh-cut. Food Control 2015, 52, 112–118. [Google Scholar] [CrossRef]
- Fang, W.; Xue, S.; Yue, Y. Progress of pulsed light sterilization technology in the food field. E3S Web Conf. 2020, 185, 04072. [Google Scholar] [CrossRef]
- Salehi, F. Application of pulsed light technology for fruits and vegetables disinfection: A review. J. Appl. Microbiol. 2021, 132, 2521–2530. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Charles, F.; Renard, C.M.G.C.; Page, D.; Carlin, F. Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biol. Technol. 2013, 86, 29–36. [Google Scholar] [CrossRef]
- Ramos-Villarroel, A.Y.; Martín-Belloso, O.; Soliva-Fortuny, R. Bacterial inactivation and quality changes in fresh-cut avocado treated with intense light pulses. Eur. Food Res. Technol. 2011, 233, 395–402. [Google Scholar] [CrossRef]
- Huang, H.; Lung, H.; Yang, B.B.; Wang, C. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Kramer, B.; Wunderlich, J.; Muranyi, P. Recent findings in pulsed light disinfection. J. Appl. Microbiol. 2017, 122, 830–856. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Gavahian, M.; Franco, D.; Wang, W.; Khaneghah, A.M.; Guerrero-Sánchez, Y.; Lorenzo, J.M. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci. Technol. 2021, 115, 1–11. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol. 2014, 40, 1–8. [Google Scholar] [CrossRef]
- Heinrich, V.; Zunabovic, M.; Bergmair, J.; Kneifel, W.; Jäger, H. Post-packaging application of pulsed light for microbial decontamination of solid foods: A review. Innov. Food Sci. Emerg. Technol. 2015, 30, 145–156. [Google Scholar] [CrossRef]
- Mandal, R.; Mohammadi, R.; Wiktor, A.; Singh, A.; Singh, A.P. Applications of pulsed light decontamination technology in food processing: An overview. Appl. Sci. 2020, 10, 3606. [Google Scholar] [CrossRef]
- Bilek, S.E.; Turantaş, F. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry: A review. Int. J. Food Microbiol. 2013, 166, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, M.; Xu, B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. Ultrason. Sonochem. 2020, 69, 105261. [Google Scholar] [CrossRef]
- Leong, T.; Ashokkumar, M.; Kentish, S. The fundamentals of power ultrasound—A review. Acoust. Aust. 2011, 39, 54–63. [Google Scholar]
- Leong, T.; Knoerzer, K.; Juliano, P. Advances in ultrasonic and megasonic processing of foods. Food Eng. Rev. 2017, 9, 237–256. [Google Scholar] [CrossRef]
- Piyasena, P.; Mohareb, E.; McKellar, R.C. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Jiang, F. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: Influence on microbial inhibition and storage quality. Ultrason. Sonochem. 2019, 54, 162–170. [Google Scholar] [CrossRef]
- São José, J.F.B.; Andrade, N.J.; Ramos, A.M.; Vanetti, M.C.D.; Stringheta, P.C.; Chaves, J.B.P. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 2014, 45, 36–50. [Google Scholar] [CrossRef]
- Turhan, E.U.; Koca, M.; Buyukkurt, O.K. Combined effect of thermosonication and organic acids against Escherichia coli biofilms on spinach leaves. LWT 2025, 218, 117498. [Google Scholar] [CrossRef]
- Zupanc, M.; Pandur, Ž.; Stepišnik Perdih, T.; Stopar, D.; Petkovšek, M.; Dular, M. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrason. Sonochem. 2019, 57, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, M.; Suthar, H.; Desai, C.; Gowda, S.A.J. Ultrasonication: An advanced technology for food preservation. Int. J. Pure Appl. Biosci. 2017, 5, 363–371. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods 2022, 11, 122. [Google Scholar] [CrossRef]
- Astráin-Redín, L.; Ciudad-Hidalgo, S.; Raso, J.; Condón, S.; Cebrián, G.; Álvarez, I. Application of high-power ultrasound in the food industry. In Sonochemical Reactions; Karakuş, S., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef]
- Seymour, I.J.; Burfoot, D.; Smith, R.L.; Cox, L.A.; Lockwood, A. Ultrasound decontamination of minimally processed fruits and vegetables. Int. J. Food Sci. Technol. 2002, 37, 547–557. [Google Scholar] [CrossRef]
- Francisco, C.A.I.; Araújo Naves, E.A.; Ferreira, D.C.; Rosário, D.K.A.D.; Cunha, M.F.; Bernardes, P.C. Synergistic effect of sodium hypochlorite and ultrasound bath in the decontamination of fresh arugulas. J. Food Saf. 2018, 38, e12391. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, H.; Luo, Y. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves. J. Food Sci. 2009, 74, M308–M313. [Google Scholar] [CrossRef]
- Turhan, E.U.; Polat, S.; Erginkaya, Z.; Konuray, G. Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. Food Biosci. 2022, 47, 101643. [Google Scholar]
- Song, L.; Yang, H.; Cheng, S.; Zhang, Z.; Zhang, L.; Su, R.; Li, Y.; Zhan, X.; Yang, B.; Lin, L.; et al. Combination effects of ultrasound and citral nanoemulsion against Shigella flexneri and the preservation effect on fresh-cut carrots. Food Control 2024, 155, 110069. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Unal Turhan, E.; Koca, E.E. Predictive modeling for inactivation of Escherichia coli biofilm with combined treatment of thermosonication and organic acid on polystyrene surface. Foods 2024, 13, 4002. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, M.; Yang, C. Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.P.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci. Technol. 2010, 21, 358–367. [Google Scholar] [CrossRef]
- Onyeaka, H.; Miri, T.; Hart, A.; Anumudu, C.; Nwabor, O.F. Application of ultrasound technology in food processing with emphasis on bacterial spores. Food Rev. Int. 2021, 39, 3663–3675. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto-Leppälä, A.; Rantamäki, P.; Tupasela, T. Impact of processing on bioactive proteins and peptides. Trends Food Sci. Technol. 1998, 9, 307–319. [Google Scholar] [CrossRef]
- Huang, H.; Hsu, C.; Wang, C. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J. Food Drug Anal. 2020, 28, 1–13. [Google Scholar] [CrossRef]
- de Oliveira, A.A.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of high hydrostatic pressure processing on the anthocyanins content, antioxidant activity, sensorial acceptance and stability of jussara (Euterpe edulis) juice. Foods 2021, 10, 2246. [Google Scholar] [CrossRef]
- Gopal, K.R.; Kalla, A.M.; Srikanth, K. High pressure processing of fruits and vegetables products: A review. Int. J. Pure Appl. Biosci. 2017, 5, 680–692. [Google Scholar] [CrossRef]
- Deng, L.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on color, texture and flavor of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of high pressure processing on the microbial inactivation in fruit preparations and other vegetable-based beverages. Agriculture 2017, 7, 72. [Google Scholar] [CrossRef]
- Alemán, G.; Farkas, D.F.; Torres, J.A.; Wilhelmsen, E.; McIntyre, S. Ultra-high pressure pasteurization of fresh-cut pineapple. J. Food Prot. 1994, 57, 931–934. [Google Scholar] [CrossRef]
- Krebbers, B.; Matser, A.M.; Koets, M.; Van den Berg, R.W. Quality and storage-stability of high-pressure preserved green beans. J. Food Eng. 2002, 54, 27–33. [Google Scholar] [CrossRef]
- Fernández, M.V.; Denoya, G.I.; Agüero, M.V.; Jagus, R.J.; Vaudagna, S.R. Optimization of high pressure processing parameters to preserve quality attributes of a mixed fruit and vegetable smoothie. Innov. Food Sci. Emerg. Technol. 2018, 47, 170–179. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaushik, N.; Rao, P.S.; Mishra, H.N. High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Compr. Rev. Food Sci. Food Saf. 2014, 13, 578–596. [Google Scholar] [CrossRef]
- Vercammen, A.; Vanoirbeek, K.G.A.; Lemmens, L.; Lurquin, I.; Hendrickx, M.E.G.; Michiels, C.W. High pressure pasteurization of apple pieces in syrup: Microbiological shelf-life and quality evolution during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2012, 16, 259–266. [Google Scholar] [CrossRef]
- Tola, Y.B.; Ramaswamy, H.S. Microbiological design and validation of thermal and high pressure processing of acidified carrots and assessment of product quality. J. Food Process. Preserv. 2015, 39, 2991–3004. [Google Scholar] [CrossRef]
- Torres, J.A.; Velazquez, G. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 2005, 67, 95–112. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-pressure processing for sustainable food supply. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Archana, A.K.; Lekshmi, G.P.R. High pressure processing of fruits and vegetables: A review. Agric. Rev. 2020, 41, 347–355. [Google Scholar] [CrossRef]
- Marangoni Júnior, L.; Alves, R.M.V.; Moreira, C.Q.; Cristianini, M.; Padula, M.; Anjos, C.A.R. High-pressure processing effects on the barrier properties of flexible packaging materials. J. Food Process. Preserv. 2020, 44, e14865. [Google Scholar] [CrossRef]
- Azevedo, A.; Oliveira, H.; Rubio, J. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications. Adv. Colloid Interface Sci. 2019, 271, 101992. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Zhu, W.; Huang, F.; Gao, W.; Khan, N.A. Micro–nanobubble technology and water-related application. Water Supply 2020, 20, 2060–2066. [Google Scholar] [CrossRef]
- Takahashi, M.; Chiba, K.; Li, P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 2007, 111, 1343–1347. [Google Scholar] [CrossRef]
- Ushikubo, F.Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf. A Physicochem. Eng. Asp. 2010, 361, 31–37. [Google Scholar] [CrossRef]
- Zhu, J.; An, H.; Alheshibri, M.; Liu, L.; Terpstra, P.M.J.; Liu, G.; Craig, V.S.J. Cleaning with bulk nanobubbles. Langmuir 2016, 32, 11202–11211. [Google Scholar] [CrossRef]
- Phaephiphat, A.; Mahakarnchanakul, W. Surface decontamination of Salmonella typhimurium and Escherichia coli on sweet basil by ozone microbubbles. Cogent Food Agric. 2018, 4, 1558496. [Google Scholar] [CrossRef]
- Lee, J.J.; Eifert, J.D.; Jung, S.; Strawn, L.K. Cavitation bubbles remove and inactivate Listeria and Salmonella on the surface of fresh Roma tomatoes and cantaloupes. Front. Sustain. Food Syst. 2018, 2, 61. [Google Scholar] [CrossRef]
- Chahine, G.L.; Kapahi, A.; Choi, J.-K.; Hsiao, C.T. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 2016, 29, 528–549. [Google Scholar] [CrossRef] [PubMed]
- Rafeeq, S.; Ovissipour, R. The effect of ultrasound and surfactants on nanobubbles efficacy against Listeria innocua and Escherichia coli O157:H7, in cell suspension and on fresh produce surfaces. Foods 2021, 10, 2154. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, H.; Dong, Y.; Mao, H.; Sun, J.; Chen, S.; Craig, V.S.J.; Hu, J. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J. Colloid. Interface Sci. 2008, 328, 10–14. [Google Scholar] [CrossRef]
- Shiroodi, S.; Schwarz, M.H.; Nitin, N.; Ovissipour, R. Efficacy of nanobubbles alone or in combination with neutral electrolyzed water in removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua biofilms. Food Bioprocess Technol. 2021, 14, 287–297. [Google Scholar] [CrossRef]
- Klintham, P.; Tongchitpakdee, S.; Chinsirikul, W.; Mahakarnchanakul, W. Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella typhimurium on Thai leafy vegetables. Food Control 2017, 77, 260–269. [Google Scholar] [CrossRef]
- Chuajedton, A.; Aoyagi, H.; Uthaibutra, J.; Whangchai, K. Effect of micro-bubbles ozone for inactivation of Escherichia coli O157:H7 on fresh-cut pineapple cv. Phu Lae. Asian J. Appl. Sci. 2016, 4, 198–202. [Google Scholar]
- Singh, B.; Shukla, N.; Cho, C.; Kim, B.S.; Park, M.; Kim, K. Effect and application of micro- and nanobubbles in water purification. Toxicol. Environ. Health Sci. 2021, 13, 9–16. [Google Scholar] [CrossRef]
- Benitez, J.A.; Aryal, J.; Lituma, I.; Moreira, J.; Adhikari, A. Evaluation of the effectiveness of aeration and chlorination during washing to reduce E. coli O157:H7, Salmonella enterica, and L. innocua on cucumbers and bell peppers. Foods 2023, 13, 146. [Google Scholar] [CrossRef]
- Malahlela, H.K.; Belay, Z.A.; Mphahlele, R.R.; Caleb, O.J. Micro-nano bubble water technology: Sustainable solution for the postharvest quality and safety management of fresh fruits and vegetables—A review. Innov. Food Sci. Emerg. Technol. 2024, 94, 103665. [Google Scholar] [CrossRef]
- Guan, N.; Wang, Y.; Hu, J.; Zhang, L. Micro-nano bubbles: A new field of eco-friendly cleaning. Nanomaterials 2025, 15, 480. [Google Scholar] [CrossRef]
- Gil, M.I.; Gómez-López, V.M.; Hung, Y.-C.; Allende, A. Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food Bioprocess Technol. 2015, 8, 1336–1348. [Google Scholar] [CrossRef]
- Lopes, M.M.A.; Lucena, H.H.; Silveira, M.R.S.; Garruti, D.S.; Machado, T.F.; Aragão, F.A.S.; Silva, E.O. The use of electrolyzed water as a disinfectant for fresh-cut mango. Sci. Hortic. 2021, 287, 110227. [Google Scholar] [CrossRef]
- Ngnitcho, P.K.; Khan, I.; Tango, C.N.; Hussain, M.S.; Oh, D.H. Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov. Food Sci. Emerg. Technol. 2017, 43, 68–76. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, I.; Oh, D. Electrolyzed water as a novel sanitizer in the food industry: Current trends and future perspectives. Compr. Rev. Food Sci. Food Saf. 2016, 15, 471–490. [Google Scholar] [CrossRef] [PubMed]
- Oomori, T.; Oka, T.; Inuta, T.; Arata, Y. The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal. Sci. 2000, 16, 365–369. [Google Scholar] [CrossRef]
- Cao, W.; Zhu, Z.W.; Shi, Z.X.; Wang, C.Y.; Li, B.M. Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int. J. Food Microbiol. 2009, 130, 88–93. [Google Scholar] [CrossRef]
- Santo, D.; Graça, A.; Nunes, C.; Quintas, C. Escherichia coli and Cronobacter sakazakii in ‘Tommy Atkins’ minimally processed mangos: Survival, growth and effect of UV-C and electrolyzed water. Food Microbiol. 2018, 70, 49–54. [Google Scholar] [CrossRef]
- Ding, T.; Ge, Z.; Shi, J.; Xu, Y.; Jones, C.L.; Liu, D. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT-Food Sci. Technol. 2015, 60, 1195–1199. [Google Scholar] [CrossRef]
- Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res. Int. 2016, 82, 71–85. [Google Scholar] [CrossRef]
- Ding, X.; Ma, J.; Liu, S.; Dong, X.; Pan, X.; Dong, B. Acid electrolytic water treatment improves the quality of fresh-cut red pitaya fruit by regulating ROS metabolism and phenylpropanoid pathway. Postharvest Biol. Technol. 2024, 207, 112636. [Google Scholar] [CrossRef]
- Tango, C.N.; Khan, I.; Ngnitcho Kounkeu, P.F.; Momna, R.; Hussain, M.S.; Oh, D.H. Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits. Food Microbiol. 2017, 67, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, V.M.; Gil, M.I.; Allende, A. A novel electrochemical device as a disinfection system to maintain water quality during washing of ready-to-eat fresh produce. Food Control 2017, 71, 242–247. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Chan, J.Z.Y. Development of portable flow-through electrochemical sanitizing unit to generate near neutral electrolyzed water. J. Food Sci. 2018, 83, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Huang, H.; Liu, R.; Wang, S.; Huang, C. Antimicrobial mechanism of chlorine dioxide and its impacts on postharvest management in horticultural produce: A review. Postharvest Biol. Technol. 2024, 213, 112921. [Google Scholar] [CrossRef]
- Benarde, M.A.; Israel, B.M.; Olivieri, V.P.; Granstrom, M.L. Efficiency of chlorine dioxide as a bactericide. Appl. Microbiol. 1965, 13, 776–780. [Google Scholar] [CrossRef]
- Malka, S.K.; Park, M. Fresh produce safety and quality: Chlorine dioxide’s role. Front. Plant Sci. 2022, 12, 775629. [Google Scholar] [CrossRef]
- Praeger, U.; Herppich, W.B.; Hassenberg, K. Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality—A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 318–333. [Google Scholar] [CrossRef]
- Luu, P.; Janes, M.; King, J.; Adhikari, A. Efficacy of gaseous chlorine dioxide in reducing Salmonella enterica, E. coli O157:H7, and Listeria monocytogenes on strawberries and blueberries. LWT-Food Sci. Technol. 2021, 141, 110906. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables. 1998. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-fruits-and-vegetables (accessed on 27 April 2025).
- Han, Y.; Linton, R.H.; Nielsen, S.S.; Nelson, P.E. Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7 °C. J. Food Prot. 2001, 64, 1730–1738. [Google Scholar] [CrossRef]
- Mahovic, M.J.; Tenney, J.D.; Bartz, J.A. Applications of chlorine dioxide gas for control of bacterial soft rot in tomatoes. Plant Dis. 2007, 91, 1316–1320. [Google Scholar] [CrossRef]
- Trinetta, V.; Vaidya, N.; Linton, R.; Morgan, M. Evaluation of chlorine dioxide gas residues on selected food produce. J. Food Sci. 2011, 76, T11–T15. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, J.; Kang, D. Inactivation of foodborne pathogens on fresh produce by combined treatment with UV-C radiation and chlorine dioxide gas, and mechanisms of synergistic inactivation. Food Control 2018, 92, 331–340. [Google Scholar] [CrossRef]
- Vaid, R.; Linton, R.H.; Morgan, M.T. Comparison of inactivation of Listeria monocytogenes within a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments. Food Microbiol. 2010, 27, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Maji, P.K.; Maji, S.; Lee, Y.S.; Gaikwad, K.K. Applications of gaseous chlorine dioxide for antimicrobial food packaging: A review. Environ. Chem. Lett. 2020, 19, 253–270. [Google Scholar] [CrossRef]
- EPA. Alternative Disinfectants and Oxidants, Guidance Manual. 1999. Available online: https://eec.ky.gov/Environmental-Protection/Water/Drinking/DWProfessionals/ComplianceDocuments/Alternative%20Disinfection%20and%20Oxidants%20Guidance%20Manual.pdf (accessed on 27 April 2025).
- Netramai, S.; Rubino, M.; Auras, R. Compatibility of chlorine dioxide as antimicrobial gas for food packaging application. Ital. J. Food Sci. 2012, 24, 59–62. [Google Scholar]
Treatment | Commodity | Treatment Parameters (Pressure, Time, Temperature, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
High-pressure processing (HPP) | Fresh-cut pineapple | 270 MPa, 15 min, 38 °C | Viable bacteria on PCA | >2 | [175] |
340 MPa, 15 min, 4 °C | Viable bacteria on PCA | 3.0 | [175] | ||
Green bean | 500 MPa, 60 s, 20 °C | Vegetative bacteria | 4.4 | [176] | |
500 MPa, 60 s, 20 °C | Spore | 1.8 | [176] | ||
HPP and acidified glucose solutions | Apple cube | 400 MPa, 10 min, 25 °C, acidified glucose solution (12.5 or 25.0% D-glucose) | C. lipolytica | ~6 | [179] |
E. coli | ~6 | [179] | |||
600 MPa, 10 min, 25 °C, acidified glucose solution (12.5 or 25.0% D-glucose) | C. lipolytica | ~6 | [179] | ||
E. coli | ~6 | [179] |
Treatment | Commodity | Treatment Parameters (Bubble Size, Time, Temperature, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
Microbubble | Sweet basil | 1.23–3.41 μm, 7 min, 30 °C | S. typhimurium | 1.3–1.8 | [190] |
Microbubble and ozone | Sweet basil | 1.23–3.41 μm, 7 min, 30 °C, ozone (1.0 mg/L) | S. typhimurium | 2.6 | [190] |
Microbubble and ozone | Sweet basil | 1.23–3.41 μm, 7 min, 10 °C, ozone (2.0 mg/L) | S. typhimurium | 2.2 | [190] |
Nanobubble and ultrasound | Spinach | 20 min, Ultrasound (40 Hz) | L. innocua | >2 1 | [193] |
E. coli O157:H7 | >4 1 | [193] |
Treatment | Commodity | Treatment Parameters (Concentration, Time, Temperature, etc.) | Microorganism | Results | Ref. |
---|---|---|---|---|---|
Electrolyzed water | Fresh-cut mango | 150 mg free active chlorine/L | Coliform | <3.0 MPN 100/g 1 | [203] |
Psychrotrophic bacteria | <10 CFU/g 1 | [203] | |||
Yeast and mold | <10 CFU/g 1 | [203] | |||
Slightly acidic electrolyzed water | Apple | 3 min, 23 °C | E. coli O157:H7 | 2.28 log10 CFU/fruit 2 | [212] |
L. monocytogenes | 2.30 log10 CFU/fruit 2 | [212] | |||
Tomato | 3 min, 23 °C | E. coli O157:H7 | 2.73 log10 CFU/fruit 2 | [212] | |
L. monocytogenes | 2.35 log10 CFU/fruit 2 | [212] | |||
Calcium oxide, fumaric acid, slightly acidic electrolyzed water, ultrasound | Apple | Calcium oxide (3 min) + mixture of fumaric acid and slightly acidic electrolyzed water in the ultrasound bath (40 Hz), 3 min, 23 °C | E. coli O157:H7 | >5 log10 CFU/fruit 2 | [212] |
L. monocytogenes | >5 log10 CFU/fruit 2 | [212] | |||
Tomato | Calcium oxide (3 min) + mixture of fumaric acid and slightly acidic electrolyzed water in the ultrasound bath (40 Hz), 3 min, 23 °C | E. coli O157:H7 | >5 log10 CFU/fruit 2 | [212] | |
L. monocytogenes | >5 log CFU/fruit 2 | [212] |
Treatment | Commodity | Treatment Parameters (Concentration, Time, Temperature, etc.) | Microorganism | Reduction (log10 CFU/g) | Ref. |
---|---|---|---|---|---|
Gaseous chlorine dioxide | Green pepper (uninjured surface) | 3 mg/L, 10 min, 20 °C | L. monocytogenes | 7.39 1 | [221] |
Green pepper (injured surface) | 3 mg/L, 10 min, 20 °C | L. monocytogenes | 3.60 1 | [221] | |
Spinach | 10 ppmv, 20 min | E. coli O157:H7 | 3.56 | [224] | |
S. typhimurium | 3.61 | [224] | |||
L. monocytogenes | 3.23 | [224] | |||
Tomato | 5 ppmv, 20 min | E. coli O157:H7 | 2.34 | [224] | |
S. typhimurium | 2.24 | [224] | |||
L. monocytogenes | 1.57 | [224] | |||
UV-C and chlorine dioxide gas | Spinach | 10 ppmv, UV-C (70.68 μW/cm2), 20 min | E. coli O157:H7 | 5.17 | [224] |
S. typhimurium | 5.47 | [224] | |||
L. monocytogenes | 4.32 | [224] | |||
Tomato | 5 ppmv, UV-C (70.68 μW/cm2), 20 min | E. coli O157:H7 | 4.80 | [224] | |
S. typhimurium | 4.28 | [224] | |||
L. monocytogenes | 2.70 | [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Adhikari, A. Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality. Foods 2025, 14, 1924. https://doi.org/10.3390/foods14111924
Jin Y, Adhikari A. Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality. Foods. 2025; 14(11):1924. https://doi.org/10.3390/foods14111924
Chicago/Turabian StyleJin, Yuqiao, and Achyut Adhikari. 2025. "Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality" Foods 14, no. 11: 1924. https://doi.org/10.3390/foods14111924
APA StyleJin, Y., & Adhikari, A. (2025). Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality. Foods, 14(11), 1924. https://doi.org/10.3390/foods14111924