Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Thermal Processing Techniques of Broccoli Heads
2.3. Measurement of Polyphenolic Bioactive Compounds
2.4. Measurement of Soluble Sugars
2.5. Measurement of Total Intact Glucosinolates
2.6. Measurement of Hydrogen Peroxide Content
2.7. Determination of Chlorophyll, Carotenoids, and Porphyrins
2.8. Determination of Antioxidant Capacity
2.9. Extraction of Plasmid DNA
2.10. DNA Nicking Protection Assay Using Fenton’s Reagent
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effect of Thermal Processing on the Phytochemical Content of Broccoli Extracts
3.2. Effect of Thermal Processing on Hydrogen Peroxide Level in Broccoli
3.3. Effect of Thermal Processing on Total Glucosinolates in Broccoli
3.4. Effect of Thermal Processing on Soluble Sugars in Broccoli
3.5. Effect of Thermal Processing on Photosynthetic Pigments in Broccoli Extracts
3.6. Effect of Thermal Processing on the Antioxidant Capacity of Broccoli Extracts
3.7. Effect of Thermal Processing on the Potential of Broccoli Extracts to Preserve Plasmid DNA Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
DPPH | Ferric reducing antioxidant power |
FRAP | 2,2-diphenyl-1-picrylhydrazyl |
BO | Broccoli boiled (cooked) |
BOW | Water after boiling broccoli |
BL | Broccoli blanched |
BLW | Water after blanching broccoli |
ST | Broccoli steamed |
STW | Water after steaming broccoli |
AF | Broccoli air-fried |
PF | Broccoli blanched and then pan-fried |
TP | Total phenolics |
TF | Total flavonoids |
TPA | Total phenolic acids |
THCA | Total hydroxycinnamic acids |
TPAN | Total proanthocyanidins |
TT | Total tannins |
GAE | Gallic acid equivalents |
QE | Quercetin equivalents |
CAE | Caffeic acid equivalents |
CatE | Catechin equivalents |
SucE | Sucrose equivalents |
SinE | Sinigrin equivalents |
Chl a | Chlorophyll a |
Chl b | Chlorophyll b |
Car | Carotenoids |
References
- Kępka, A.; Ochocińska, A.; Borzym-Kluczyk, M.; Chojnowska, S.; Skorupa, E.; Przychodzeń, M.; Waszkiewicz, N. Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease. Nutrients 2022, 14, 1534. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Syed, R.U.; Moni, S.S.; Khaled Bin Break, M.; Khojali, W.M.A.; Jafar, M.; Alshammari, M.D.; Abdelsalam, K.; Taymour, S.; Saad, K.; et al. Broccoli: A Multi-Faceted Vegetable for Health: An In-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-inflammatory Properties. Antibiotics 2023, 12, 1157. [Google Scholar]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Nandini, D.B.; Rao, R.S.; Deepak, B.S.; Reddy, P.B. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J. Oral Maxillofac. 2020, 24, 405. [Google Scholar] [CrossRef] [PubMed]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef]
- Fiol, M.; Weckmüller, A.; Neugart, S.; Schreiner, M.; Rohn, S.; Krumbein, A.; Kroh, L.W. Thermal-induced changes of kale’s antioxidant activity analyzed by HPLC–UV/Vis-online-TEAC detection. Food Chem. 2013, 138, 857–865. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jelen, H.H. Volatile Compounds of Selected Raw and Cooked Brassica Vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef]
- Coria-Hernández, J.; Arjona-Román, J.L.; Meléndez-Pérez, R. Comparative Study of Conventional Frying and Air Frying on the Quality of Potatoes (Solanum tuberosum L.). Food Sci. Nutr. 2023, 11, 6676. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Jeong, H.S.; Lee, J.; Sung, J. Effect of Different Cooking Methods on the Content of Vitamins and True Retention in Selected Vegetables. Food Sci. Biotechnol. 2017, 27, 333. [Google Scholar] [CrossRef]
- Razzak, A.; Mahjabin, T.; Khan, M.R.M.; Hossain, M.; Sadia, U.; Zzaman, W. Effect of Cooking Methods on the Nutritional Quality of Selected Vegetables at Sylhet City. Heliyon 2023, 9, 21709. [Google Scholar] [CrossRef]
- Rennie, C.; Wise, A. Preferences for Steaming of Vegetables. J. Hum. Nutr. Diet. 2010, 23, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.F.; Sun, B.; Yuan, J.; Wang, Q.M. Effects of Different Cooking Methods on Health-Promoting Compounds of Broccoli. J. Zhejiang Univ. Sci. B 2009, 10, 580. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Ali, R.F.M. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower. Biomed. Res. Int. 2013, 2013, 367819. [Google Scholar] [CrossRef] [PubMed]
- Nandasiri, R.; Semenko, B.; Wijekoon, C.; Suh, M. Air-Frying Is a Better Thermal Processing Choice for Improving Antioxidant Properties of Brassica Vegetables. Antioxidants 2023, 12, 490. [Google Scholar] [CrossRef]
- Fadairo, O.; Nandasiri, R.; Alashi, A.M.; Eskin, N.A.M.; Thiyam-Höllander, U. Air Frying Pretreatment and the Recovery of Lipophilic Sinapates from the Oil Fraction of Mustard Samples. J. Food Sci. 2021, 86, 3810–3823. [Google Scholar] [CrossRef]
- Fadairo, O.S.; Nandasiri, R.; Nguyen, T.; Eskin, N.A.M.; Aluko, R.E.; Scanlon, M.G. Improved Extraction Efficiency and Antioxidant Activity of Defatted Canola Meal Extract Phenolic Compounds Obtained from Air-Fried Seeds. Antioxidants 2022, 11, 2411. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; De Luca, D.; O’Brien, N.; Menichini, F.; Tundis, R. Influence of Drying and Cooking Process on the Phytochemical Content, Antioxidant, and Hypoglycaemic Properties of Two Bell Capsicum annuum L. Cultivars. Food. Chem. Toxicol. 2013, 53, 392–401. [Google Scholar] [CrossRef]
- Ergüder, İ.B.; Avcı, A.; Devrim, E.; Durak, İ. Effects of Cooking Techniques on Antioxidant Enzyme Activities of Some Fruits and Vegetables. Turk. J. Med. Sci. 2007, 37, 151–156. [Google Scholar]
- Hwang, I.G.; Shin, Y.J.; Lee, S.; Lee, J.; Yoo, S.M. Effects of Different Cooking Methods on the Antioxidant Properties of Red Pepper (Capsicum annuum L.). Prev. Nutr. Food Sci. 2012, 17, 286–292. [Google Scholar] [CrossRef]
- Mwebi, O.N.; Ogendi, B.M.O. Effect of Boiling, Steaming, Stir-Frying, and Microwave Cooking on the Antioxidant Potential of Peppers of Varying Pungency. Cogent Food Agric. 2020, 6, 1834661. [Google Scholar] [CrossRef]
- Severini, C.; Giuliani, R.; De Filippis, A.; Derossi, A.; De Pilli, T. Influence of different blanching methods on colour, ascorbic acid and phenolics content of broccoli. J. Food Sci. Technol. 2016, 53, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, Y.; Haytowitz, D.B.; Chen, P.; Pehrsson, P.R. Effects of Domestic Cooking on Flavonoids in Broccoli and Calculation of Retention Factors. Heliyon 2019, 5, 01310. [Google Scholar] [CrossRef]
- Moreno, D.A.; López-Berenguer, C.; García-Viguera, C. Effects of stir-fry cooking with different edible oils on the phytochemical composition of broccoli. J. Food Sci. 2007, 72, S064–S068. [Google Scholar] [CrossRef] [PubMed]
- Šola, I.; Vujčić Bok, V.; Pinterić, M.; Auer, S.; Ludwig-Müller, J.; Rusak, G. Improving the Phytochemical Profile and Bioactivity of Chinese Cabbage Sprouts by Interspecific Transfer of Metabolites. Food Res. Int. 2020, 137, 109726. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Galvão, M.A.M.; de Arruda, A.O.; Bezerra, I.C.F.; Ferreira, M.R.A.; Soares, L.A.L. Evaluation of the Folin-Ciocalteu Method and Quantification of Total Tannins in Stem Barks and Pods from Libidibia ferrea (Mart. ex Tul) L. P. Queiroz. Braz. Arch. Biol. Technol. 2018, 61, e18170586. [Google Scholar] [CrossRef]
- Weidner, S.; Karolak, M.; Karamać, M.; Amarowicz, R. Phenolic Compounds and Properties of Antioxidants in Grapevine Roots (Vitis vinifera L.) under Drought Stress Followed by Recovery. Acta Soc. Bot. Pol. 2011, 78, 97–103. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Mawlong, I.; Sujith Kumar, M.S.; Gurung, B.; Singh, K.H.; Singh, D. A Simple Spectrophotometric Method for Estimating Total Glucosinolates in Mustard De-Oiled Cake. Int. J. Food Prop. 2017, 20, 3274–3281. [Google Scholar] [CrossRef]
- Junglee, S.; Urban, L.; Sallanon, H.; Lopez-Lauri, F. Optimized Assay for Hydrogen Peroxide Determination in Plant Tissue Using Potassium Iodide. Am. J. Anal. Chem. 2014, 5, 730–736. [Google Scholar] [CrossRef]
- Sumanta, N.; Imranul Haque, C.; Nishika, J.; Suprakash, R. Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Kadooka, C.; Oka, T. Construction of a Cosmid-Based Ultraefficient Genomic Library System for Filamentous Fungi of the Genus Aspergillus. J. Fungi. 2024, 10, 188. [Google Scholar] [CrossRef]
- Jana Lang, T.; Brodsky, S.; Manadre, W.; Vidavski, M.; Valinsky, G.; Mindel, V.; Ilan, G.; Carmi, M.; Jonas, F.; Barkai, N. Massively parallel binding assay (MPBA) reveals limited transcription factor binding cooperativity, challenging models of specificity. Nucleic Acids Res. 2024, 11, 12227–12243. [Google Scholar] [CrossRef] [PubMed]
- Denoth-Lippuner, A.; Royall, L.N.; Gonzalez-Bohorquez, D.; Machado, D.; Jessberger, S. Injection and electroporation of plasmid DNA into human cortical organoids. STAR Protoc. 2022, 20, 101129. [Google Scholar] [CrossRef]
- Andonova, T.; Muhovski, Y.; Vrancheva, R.; Slavov, I.; Apostolova, E.; Naimov, S.; Pavlov, A.; Dimitrova-Dyulgerova, I. Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts. Antioxidants 2022, 11, 1154. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeon, M.H.; Hwang, H.J.; Park, M.R.; Lee, S.H.; Kim, S.G.; Kim, M. Antioxidant Activity and Analysis of Proanthocyanidins from Pine (Pinus densiflora) Needles. Nutr. Res. Pract. 2011, 5, 281. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Mota, F.L.; Queimada, A.J.; Pinho, S.P.; Macedo, E.A. Aqueous Solubility of Some Natural Phenolic Compounds. Ind. Eng. Chem. Res. 2008, 47, 5182–5189. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Paciulli, M.; Dall’Asta, C.; Rinaldi, M.; Pellegrini, N.; Pugliese, A.; Chiavaro, E. Application and Optimisation of Air–Steam Cooking on Selected Vegetables: Impact on Physical and Antioxidant Properties. J. Sci. Food Agric. 2018, 98, 2267–2276. [Google Scholar] [CrossRef] [PubMed]
- Salamatullah, A.M.; Ahmed, M.A.; Alkaltham, M.S.; Hayat, K.; Aloumi, N.S.; Al-Dossari, A.M.; Al-Harbi, L.N.; Arzoo, S. Effect of Air-Frying on the Bioactive Properties of Eggplant (Solanum melongena L.). Processes 2021, 9, 435. [Google Scholar] [CrossRef]
- Eyarkai Nambi, V.; Gupta, R.K.; Kumar, S.; Sharma, P.C. Degradation Kinetics of Bioactive Components, Antioxidant Activity, Colour and Textural Properties of Selected Vegetables During Blanching. J. Food Sci. Technol. 2016, 53, 3073. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total Antioxidant Activity and Phenolic Content in Selected Vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Sahlin, E.; Savage, G.P.; Lister, C.E. Investigation of the Antioxidant Properties of Tomatoes After Processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The Effect of Cooking Methods on Total Phenolics and Antioxidant Activity of Selected Green Vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, Ascorbic Acid, Carotenoids and Antioxidant Activity of Broccoli and Their Changes During Conventional and Microwave Cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Factors Influencing Levels of Phytochemicals in Selected Fruit and Vegetables During Pre- and Post-Harvest Food Processing Operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Hossain, A.; Khatun, M.A.; Islam, M.; Huque, R. Enhancement of Antioxidant Quality of Green Leafy Vegetables upon Different Cooking Method. Prevent. Nutr. Food Sci. 2017, 22, 216. [Google Scholar]
- Adefegha, S.A.; Oboh, G. Enhancement of Total Phenolics and Antioxidant Properties of Some Tropical Green Leafy Vegetables by Steam Cooking. J. Food Process. Preserv. 2011, 35, 615–622. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Kong, W.Q.; Qin, Z.; Liu, H.M.; Wang, X.D. Modified Chinese Quince Oligomeric Proanthocyanidin Protects Deep-Frying Oil Quality by Inhibiting Oxidation. Food Chem. 2024, 444, 130488. [Google Scholar] [CrossRef]
- Cattivelli, A.; Nissen, L.; Casciano, F.; Tagliazucchi, D.; Gianotti, A. Impact of Cooking Methods of Red-Skinned Onion on Metabolic Transformation of Phenolic Compounds and Gut Microbiota Changes. Food Funct. 2023, 14, 3509–3525. [Google Scholar] [CrossRef]
- Ruiz, A.; Aguilera, A.; Ercoli, S.; Parada, J.; Winterhalter, P.; Contreras, B.; Cornejo, P. Effect of the Frying Process on the Composition of Hydroxycinnamic Acid Derivatives and Antioxidant Activity in Flesh Colored Potatoes. Food Chem. 2018, 268, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Tajner-Czopek, A.; Rytel, E.; Kita, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Content and Stability of Hydroxycinnamic Acids during the Production of French Fries Obtained from Potatoes of Varieties with Light-Yellow, Red and Purple Flesh. Antioxidants 2023, 12, 311. [Google Scholar] [CrossRef]
- Maqbool, N.; Sofi, S.A.; Makroo, H.A.; Mir, S.A.; Majid, D.; Dar, B.N. Cooking methods affect eating quality, bio-functional components, antinutritional compounds and sensory attributes of selected vegetables. Ital. J. Food Sci. 2021, 33, 150–162. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Iqbal, S. Effect of different cooking methods on the antioxidant activity of some vegetables from Pakistan. Int. J. Food Sci. Technol. 2008, 43, 560–567. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomas-Barberan, F.A.; Garcıa-Viguera, C. Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J. Sci. Food Agric. 2003, 83, 1511–1516. [Google Scholar] [CrossRef]
- Tsamesidis, I.; Kalogianni, E.P. The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions. Pharmaceutics 2023, 15, 869. [Google Scholar] [CrossRef]
- Bartosz, G.; Rajzer, K.; Grzesik-Pietrasiewicz, M.; Sadowska-Bartosz, I. Hydrogen Peroxide Is Formed upon Cooking of Vegetables. Acta Biochim. Pol. 2022, 69, 471–474. [Google Scholar] [CrossRef]
- Zielinska, S.; Staniszewska, I.; Cybulska, J.; Zdunek, A.; Szymanska-Chargot, M.; Zielinska, D.; Liu, Z.L.; Xiao, H.W.; Pan, Z.; Zielinska, M. The Effect of High Humidity Hot Air Impingement Blanching on the Changes in Cell Wall Polysaccharides and Phytochemicals of Okra Pods. J. Sci. Food Agric. 2022, 102, 5965–5973. [Google Scholar] [CrossRef]
- Lane, B.G. Oxalate, Germin, and the Extracellular Matrix of Higher Plants. FASEB J. 1994, 8, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Kachhadiya, S.; Kumar, N.; Seth, N. Process Kinetics on Physico-Chemical and Peroxidase Activity for Different Blanching Methods of Sweet Corn. J. Food Sci. Technol. 2018, 55, 4823–4832. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, T.; Verkerk, R.; Dekker, M. Effect of Water Content and Temperature on Glucosinolate Degradation Kinetics in Broccoli (Brassica oleracea var. italica). Food Chem. 2012, 132, 2037–2045. [Google Scholar] [CrossRef]
- Charron, C.S.; Sams, C.E. Glucosinolate Content and Myrosinase Activity in Rapid-cycling Brassica oleracea Grown in a Controlled Environment. J. Amer. Soc. Hort. Sci. 2004, 129, 321–330. [Google Scholar] [CrossRef]
- Cieślik, E.; Leszczyńska, T.; Filipiak-Florkiewicz, A.; Sikora, E.; Pisulewski, P.M. Effects of Some Technological Processes on Glucosinolate Contents in Cruciferous Vegetables. Food Chem. 2007, 105, 976–981. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Kusznierewicz, B.; Leszczyńska, T.; Borczak, B. Effect of Cooking on the Contents of Glucosinolates and Their Degradation Products in Selected Brassica Vegetables. J. Funct. Foods 2016, 23, 412–422. [Google Scholar] [CrossRef]
- Tiwari, U.; Sheehy, E.; Rai, D.; Gaffney, M.; Evans, P.; Cummins, E. Quantitative Human Exposure Model to Assess the Level of Glucosinolates upon Thermal Processing of Cruciferous Vegetables. LWT—Food Sci. Technol. 2015, 63, 253–261. [Google Scholar] [CrossRef]
- Song, L.; Thornalley, P.J. Effect of Storage, Processing and Cooking on Glucosinolate Content of Brassica Vegetables. Food Chem. Toxicol. 2007, 45, 216–224. [Google Scholar] [CrossRef]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; de Schrijver, R.; Hansen, M.; Gerhäuser, C.; Mithen, R.; et al. Glucosinolates in Brassica Vegetables: The Influence of the Food Supply Chain on Intake, Bioavailability and Human Health. Mol. Nutr. Food Res. 2009, 53, 219. [Google Scholar] [CrossRef]
- Roqué-Sala, N. Thermal Breakdown of Glucosinolates in Brussels Sprouts. Modelling and Validation in a Canning Process. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2005. [Google Scholar]
- Hanschen, F.S.; Lamy, E.; Schreiner, M.; Rohn, S. Reactivity and Stability of Glucosinolates and Their Breakdown Products in Foods. Angew. Chem. Int. Ed. 2014, 53, 11430–11450. [Google Scholar] [CrossRef]
- Korus, A.; Słupski, J.; Gebczyński, P.; Banaś, A. Effect of Preliminary Processing and Method of Preservation on the Content of Glucosinolates in Kale (Brassica oleracea L. var. acephala) Leaves. LWT—Food Sci. Technol. 2014, 59, 1003–1008. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ji, R.; Hu, Y.Q.; Chen, J.C.; Ye, X.Q. Effect of Three Cooking Methods on Nutrient Components and Antioxidant Capacities of Bamboo Shoot (Phyllostachys praecox C.D. Chu et C.S. Chao). J. Zhejiang Univ. Sci. B 2011, 12, 752. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of Different Cooking Methods on Color, Phytochemical Concentration, and Antioxidant Capacity of Raw and Frozen Brassica Vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
- Mayeaux, M.; Xu, Z.; King, J.M.; Prinyawiwatkul, W. Effects of Cooking Conditions on the Lycopene Content in Tomatoes. J. Food Sci. 2006, 71, 461–464. [Google Scholar] [CrossRef]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The Effect of Cooking on the Phytochemical Content of Vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Hu, T.; Zhang, P.; Zhang, S.; Xu, Y.; Zhang, Z.; Pan, S. Thermal Conditions and Active Substance Stability Affect the Isomerization and Degradation of Lycopene. Food Res. Int. 2022, 162, 111987. [Google Scholar] [CrossRef]
- Carvalho, G.C.; de Camargo, B.A.F.; de Araújo, J.T.C.; Chorilli, M. Lycopene: From Tomato to Its Nutraceutical Use and Its Association with Nanotechnology. Trends Food Sci. Technol. 2021, 118, 447–458. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry Behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Jia, Y.; Feng, C.; Zhang, H.; Ren, F.; Zhao, G. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Res. Int. 2024, 192, 114797. [Google Scholar] [CrossRef]
- Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on the antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2018, 56, 8600–8608. [Google Scholar] [CrossRef]
- Prieto, M.A.; Vázquez, V.A. In vitro determination of the lipophilic and hydrophilic antioxidant capacity of unroasted coffee bean extracts and their synergistic and antagonistic effects. Food Res. Int. 2014, 62, 1183–1196. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Hou, H.; Zhuang, Y.; Sun, L. Metal Chelating, Inhibitory DNA Damage, and Anti-Inflammatory Activities of Phenolics from Rambutan (Nephelium lappaceum) Peel and the Quantifications of Geraniin and Corilagin. Molecules 2018, 23, 2263. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M.; Velasco, P.; Moreno, D.A.; Garcıa-Viguera, C.; Cartea, M.E. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int. 2010, 43, 1455–1463. [Google Scholar] [CrossRef]
- Cheng, Z.; Su, L.; Moore, J.; Zhou, K.; Luther, M.; Yin, J.J.; Yu, L. Effects of postharvest treatment and heat stress on availability of wheat antioxidants. J. Agric. Food Chem. 2006, 54, 5623–5629. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, G.; Rachel, N.M.; Kng, K.; Sen, A.; Gieg, L.M. Preparation and identification of carboxymethyl cellulose-degrading enzyme candidates for oilfield applications. J. Biotechnol. 2022, 10, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Lee, C.C.; Chan, Y.T.; Trudeau, D.L.; Wu, M.H.; Tsai, C.H.; Yu, S.M.; Ho, T.H.D.; Wang, A.H.J.; Hsiao, C.D.; et al. Exploring the mechanism responsible for cellulase thermostability by structure-guided recombination. PLoS ONE 2016, 11, 0147485. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Geng, M.; Shi, D.; Liu, D.; Jiao, Y.; Lei, Z.; Peng, Y. The Impact of Cooking on Antioxidant and Enzyme Activities in Ruichang Yam Polyphenols. Foods 2025, 14, 14. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Özcan, M.M.; Uslu, N.; Karrar, E. The Effects of Different Cooking Systems on Changes in the Bioactive Compounds, Polyphenol Profiles, Biogenic Elements, and Protein Contents of Cauliflower Florets. Processes 2024, 12, 2114. [Google Scholar] [CrossRef]
- Tian, R.; Han, X.; Tian, B.; Li, G.; Sun, L.; Tian, S.; Qin, L.; Wang, S. Effects of covalent binding of different polyphenols on structure, rheology and functional properties of whey protein isolate. LWT 2023, 184, 114968. [Google Scholar] [CrossRef]
TP (mg GAE/g fw) | TF (mg QE/g fw) | THCA (mg CAE/g fw) | TT (mg GAE/g fw) | TPAN (mg CatE/g fw) | |
---|---|---|---|---|---|
BO | 0.37 ± 0.18 bc | 0.54 ± 0.13 c | 0.72 ± 0.40 bc | 0.18 ± 0.09 cd | 0.13 ± 0.03 b |
BOW | 0.39 ± 0.20 bc | 2.72 ± 0.59 a | 0.92 ± 0.50 abc | 0.29 ± 0.05 bc | 0.96 ± 0.89 a |
BL | 0.47 ± 0.21 b | 0.86 ± 0.25 c | 0.50 ± 0.35 c | 0.22 ± 0.10 bcd | 0.15 ± 0.06 b |
BLW | 0.25 ± 0.16 c | 0.74 ± 0.25 c | 0.64 ± 0.38 bc | 0.10 ± 0.08 d | 0.41 ± 0.45 b |
ST | 0.72 ± 0.12 a | 1.49 ± 0.47 b | 1.19 ± 0.56 ab | 0.46 ± 0.19 a | 0.31 ± 0.04 b |
STW | 0.43 ± 0.34 bc | 0.75 ± 0.25 c | 1.50 ± 0.64 a | 0.27 ± 0.23 bc | 0.07 ± 0.05 b |
AF | 0.65 ± 0.15 a | 1.71 ± 0.70 b | 1.58 ± 0.71 a | 0.27 ± 0.10 bc | 0.42 ± 0.13 b |
PF | 0.39 ± 0.20 bc | 1.42 ± 0.66 b | 0.98 ± 0.37 abc | 0.35 ± 0.15 ab | 0.21 ± 0.06 b |
mg/kg fw | BO | BL | ST | AF | PF |
---|---|---|---|---|---|
Chlorophyll a | 7.27 ± 2.59 a | 12.26 ± 2.05 a | 11.93 ± 1.58 a | 10.53 ± 4.99 a | 13.20 ± 5.48 a |
Chlorophyll b | 4.18 ± 3.25 a | 3.32 ± 0.54 a | 5.84 ± 4.80 a | 4.20 ± 1.08 a | 15.93 ± 11.22 a |
Carotenoids | 3.65 ± 0.03 ab | 4.02 ± 0.92 ab | 3.53 ± 1.17 ab | 6.73 ± 2.89 a | 1.77 ± 0.43 b |
Porphyrins | 31.73 ± 25.84 a | 23.70 ± 5.41 a | 43.86 ± 37.87 a | 53.38 ± 6.38 a | 125.85 ± 83.70 a |
β-Carotene | 0.43 ± 0.03 a | 0.51 ± 0.14 a | 0.54 ± 0.02 a | 0.56 ± 0.26 a | 0.17 ± 0.00 a |
Lycopene | 0.47 ± 0.22 b | 0.81 ± 0.16 ab | 0.80 ± 0.04 ab | 0.91 ± 0.19 a | 0.72 ± 0.17 ab |
BO | BOW | BL | BLW | ST | STW | AF | PF | |
---|---|---|---|---|---|---|---|---|
ABTS (% inhibition) | 26.73 ± 8.01 c | 57.57 ± 18.22 a | 20.04 ± 7.34 c | 21.90 ± 14.97 c | 50.17 ± 12.05 ab | 20.71 ± 14.84 c | 43.04 ± 9.92 b | 27.41 ± 21.59 c |
DPPH (% inhibition) | 27.14 ± 10.43 ab | 18.26 ± 12.52 bc | 15.51 ± 9.68 c | 10.71 ± 8.06 cd | 35.48 ± 2.28 a | 4.38 ± 3.74 d | 36.12 ± 15.71a | 17.54 ± 2.74bc |
FRAP (% reduction) | 47.79 ± 6.34 d | 79.34 ± 3.28 a | 48.33 ± 10.49 d | 35.37 ± 8.86 e | 73.87 ± 3.46 ab | 14.59 ± 8.30 f | 67.79 ± 8.71 b | 56.22 ± 8.63 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miškec, K.; Frlin, M.; Šola, I. Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli. Appl. Sci. 2025, 15, 7469. https://doi.org/10.3390/app15137469
Miškec K, Frlin M, Šola I. Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli. Applied Sciences. 2025; 15(13):7469. https://doi.org/10.3390/app15137469
Chicago/Turabian StyleMiškec, Karlo, Marta Frlin, and Ivana Šola. 2025. "Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli" Applied Sciences 15, no. 13: 7469. https://doi.org/10.3390/app15137469
APA StyleMiškec, K., Frlin, M., & Šola, I. (2025). Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli. Applied Sciences, 15(13), 7469. https://doi.org/10.3390/app15137469