Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whaley-Connell, A.; Pulakat, L.; DeMarco, V.G.; Hayden, M.R.; Habibi, J.; Henriksen, E.J.; Sowers, J.R. Overnutrition and the Cardiorenal Syndrome: Use of a Rodent Model to Examine Mechanisms. Cardiorenal Med. 2011, 1, 23–30. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 13 May 2025).
- OECD; European Union. Health at a Glance: Europe 2022: State of Health in the EU Cycle. In Health at a Glance: Europe; OECD: Paris, France, 2022. [Google Scholar] [CrossRef]
- Dee, A.; Kearns, K.; O’neill, C.; Sharp, L.; Staines, A.; O’dwyer, V.; Fitzgerald, S.; Perry, I.J. The direct and indirect costs of both overweight and obesity: A systematic review. BMC Res. Notes 2014, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Ulambayar, B.; Ghanem, A.S.; Tóth, Á.; Nagy, A.C. Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus. Nutrients 2025, 17, 1042. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, P. Ageing Population of Urban India & Psychological Well-being Issues. Int. J. Soc. Sci. 2020, 9, 169–184. [Google Scholar] [CrossRef]
- Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 13 May 2025).
- Moscatelli, F.; De Maria, A.; Marinaccio, L.A.; Monda, V.; Messina, A.; Monacis, D.; Toto, G.; Limone, P.; Monda, M.; Messina, G.; et al. Assessment of Lifestyle, Eating Habits and the Effect of Nutritional Education among Undergraduate Students in Southern Italy. Nutrients 2023, 15, 2894. [Google Scholar] [CrossRef]
- Roberts, S.B.; Rosenberg, I. Nutrition and Aging: Changes in the Regulation of Energy Metabolism with Aging. Physiol. Rev. 2006, 86, 651–667. [Google Scholar] [CrossRef]
- Boulos, C.; Salameh, P.; Barberger-Gateau, P. Social isolation and risk for malnutrition among older people. Geriatr. Gerontol. Int. 2017, 17, 286–294. [Google Scholar] [CrossRef]
- Story, M.; Kaphingst, K.M.; Robinson-O’Brien, R.; Glanz, K. Creating Healthy Food and Eating Environments: Policy and Environmental Approaches. Annu. Rev. Public Health 2008, 29, 253–272. [Google Scholar] [CrossRef]
- Tripathi, S.; Banerjee, D.; Murry, B. Estimation of over nutrition among the elderly population of India: A systematic review. Int. J. Res. Med. Sci. 2023, 11, 4471–4480. [Google Scholar] [CrossRef]
- Leung, D.Y.P.; Cheng, H.-L.; Tyrovolas, S.; Tang, A.S.K.; Liu, J.Y.W.; Tse, M.M.Y.; Lai, C.K.Y.; Molassiotis, A. Magnitude, Temporal Trends, and Inequalities in the DALYs and YLDs of Nutritional Deficiency among Older Adults in the Western Pacific Region: Findings from the Global Burden of Disease Study 1990–2019. Nutrients 2021, 13, 4421. [Google Scholar] [CrossRef]
- Mathur, P.; Pillai, R. Overnutrition: Current scenario & combat strategies. Indian J. Med. Res. 2019, 149, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Ren, X. The Impact of Family Income on Body Mass Index and Self-Rated Health of Illiterate and Non-illiterate Rural Elderly in China: Evidence from a Fixed Effect Approach. Front. Public Health 2021, 9, 722629. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hao, Y.; Ma, J. Family Income Level, Income Structure, and Dietary Imbalance of Elderly Households in Rural China. Foods 2024, 13, 190. [Google Scholar] [CrossRef]
- Okumiya, K.; Ishine, M.; Kasahara, Y.; Wada, T.; Sakamoto, R.; Kosaka, Y.; Ishimoto, Y.; Hirosaki, M.; Kimura, Y.; Fujisawa, M.; et al. The effects of socioeconomic globalization on health and aging in highlanders compared to lowlanders in Yunnan, China, and Kochi, Japan. Ecol. Res. 2011, 26, 1027–1038. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Kanter, R.; Caballero, B. Global Gender Disparities in Obesity: A Review. Adv. Nutr. Int. Rev. J. 2012, 3, 491–498. [Google Scholar] [CrossRef]
- Wardle, J.; Parmenter, K.; Waller, J. Nutrition knowledge and food intake. Appetite 2000, 34, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Specter, S. Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 2004, 79, 6–16. [Google Scholar] [CrossRef]
- Rurik, I.; Sandholzer, H. Obesity among Hungarian elderly. Acta Aliment. 2009, 38, 361–367. [Google Scholar] [CrossRef]
- Soós, R.; Bakó, C.; Gyebrovszki, Á.; Gordos, M.; Csala, D.; Ádám, Z.; Wilhelm, M. Nutritional Habits of Hungarian Older Adults. Nutrients 2024, 16, 1203. [Google Scholar] [CrossRef]
- OECD; European Observatory on Health Systems and Policies. Hungary: Country Health Profile 2023. In State of Health in the EU; OECD: Paris, France, 2023. [Google Scholar] [CrossRef]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Moore, T.H.; Hooper, L.; Gao, Y.; Zayegh, A.; Ijaz, S.; Elwenspoek, M.; Foxen, S.C.; Magee, L.; O’Malley, C.; et al. Interventions for preventing obesity in children. Cochrane Database Syst. Rev. 2019, 2024, CD001871. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Phillips, C.; Delgado-Lista, J.; Garcia-Rios, A.; Lopez-Miranda, J.; Perez-Jimenez, F. Nutrigenetics, Metabolic Syndrome Risk and Personalized Nutrition. Curr. Vasc. Pharmacol. 2014, 11, 946–953. [Google Scholar] [CrossRef] [PubMed]
- European Health Interview Survey―Methodology. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=European_health_interview_survey_-_methodology (accessed on 10 February 2025).
- Obesity. Available online: https://www.who.int/health-topics/obesity (accessed on 13 May 2025).
- Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 5 June 2025).
- Stata Statistical Software, Version 18.0; tataCorp LLC.: College Station, TX, USA, 2023.
- Leitão, C.; Mignano, A.; Estrela, M.; Fardilha, M.; Figueiras, A.; Roque, F.; Herdeiro, M.T. The Effect of Nutrition on Aging—A Systematic Review Focusing on Aging-Related Biomarkers. Nutrients 2022, 14, 554. [Google Scholar] [CrossRef]
- Hasan, M.; Sutradhar, I.; Shahabuddin, A.; Sarker, M. Double Burden of Malnutrition among Bangladeshi Women: A Literature Review. Cureus 2017, 9, e1986. [Google Scholar] [CrossRef]
- Kim, I.-H.; Chun, H.; Kwon, J.-W. Gender Differences in the Effect of Obesity on Chronic Diseases among the Elderly Koreans. J. Korean Med. Sci. 2011, 26, 250–257. [Google Scholar] [CrossRef]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Ferdous, T.; Kabir, Z.N.; Wahlin, Å.; Streatfield, K.; Cederholm, T. The multidimensional background of malnutrition among rural older individuals in Bangladesh―A challenge for the Millennium Development Goal. Public Health Nutr. 2009, 12, 2270–2278. [Google Scholar] [CrossRef]
- Selvamani, Y.; Singh, P. Socioeconomic patterns of underweight and its association with self-rated health, cognition and quality of life among older adults in India. PLoS ONE 2018, 13, e0193979. [Google Scholar] [CrossRef]
- Encalada-Torres, J.; Abril-Ulloa, V.; Wong, S.; Alvarado-Romero, S.; Bedoya-Ortega, M.; Encalada-Torres, L. Socioeconomic Status and Nutritional Status as Predictors of Food Insecurity in Older Adults: A Case Study from Southern Ecuador. Int. J. Environ. Res. Public Health 2022, 19, 5469. [Google Scholar] [CrossRef]
- Nazri, N.S.; Vanoh, D.; Leng, S.K. Malnutrition, low diet quality and its risk factors among older adults with low socio-economic status: A scoping review. Nutr. Res. Rev. 2020, 34, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Vagnetti, R.; Camp, N.; Story, M.; Ait-Belaid, K.; Mitra, S.; Davis, S.F.; Meese, H.; Zecca, M.; Di Nuovo, A.; Magistro, D. Social Robots and Sensors for Enhanced Aging at Home: Mixed Methods Study with a Focus on Mobility and Socioeconomic Factors. JMIR Aging 2024, 7, e63092. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Yoshida, D.; Honda, T.; Hirakawa, Y.; Shibata, M.; Sakata, S.; Furuta, Y.; Oishi, E.; Hata, J.; Kitazono, T.; et al. Influence of the Accumulation of Unhealthy Eating Habits on Obesity in a General Japanese Population: The Hisayama Study. Nutrients 2020, 12, 3160. [Google Scholar] [CrossRef]
- Rousset, S.; Mirand, P.P.; Brandolini, M.; Martin, J.-F.; Boirie, Y. Daily protein intakes and eating patterns in young and elderly French. Br. J. Nutr. 2003, 90, 1107–1115. [Google Scholar] [CrossRef]
- Lasheras, C.; González, C.; Patterson, A.M.; Fernández, S. Food Habits and Anthropometric Measurements in a Group of Independent and Institutionalized Elderly People in Spain. J. Nutr. Sci. Vitaminol. 1998, 44, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Laszlo, N.; Aboul-Enein, B.H.; Bernstein, J.; Kruk, J. Addressing Cardiovascular Disease Risk in HungarianAmerican Populations: A Cultural Exploration of Transdisciplinary Health Promotion. Cent. Eur. J. Sport Sci. Med. 2017, 19, 31–41. [Google Scholar] [CrossRef]
- Donini, L.M.; Poggiogalle, E.; Piredda, M.; Pinto, A.; Barbagallo, M.; Cucinotta, D.; Sergi, G. Anorexia and Eating Patterns in the Elderly. PLoS ONE 2013, 8, e63539. [Google Scholar] [CrossRef]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Higher Intake of Fruit, but Not Vegetables or Fiber, at Baseline Is Associated with Lower Risk of Becoming Overweight or Obese in Middle-Aged and Older Women of Normal BMI at Baseline. J. Nutr. 2015, 145, 960–968. [Google Scholar] [CrossRef]
- Guo, Q.; Fang, H.; Zhao, L.; Ju, L.; Xu, X.; Yu, D. Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017. Nutrients 2023, 15, 1431. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.-P.; Zheng, Y.; Li, Y.; Malik, V.; Pan, A.; Bhupathiraju, S.N.; Tobias, D.K.; Manson, J.E.; Willett, W.C.; Hu, F.B. Changes in Consumption of Sugary Beverages and Artificially Sweetened Beverages and Subsequent Risk of Type 2 Diabetes: Results from Three Large Prospective U.S. Cohorts of Women and Men. Diabetes Care 2019, 42, 2181–2189. [Google Scholar] [CrossRef]
- Heo, G.Y.; Koh, H.B.; Park, J.T.; Han, S.H.; Yoo, T.-H.; Kang, S.-W.; Kim, H.W. Sweetened Beverage Intake and Incident Chronic Kidney Disease in the UK Biobank Study. JAMA Netw. Open 2024, 7, e2356885. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Wang, D.-C.; Chang, Y.; Jiang, Z.-H.; Jiang, X.-M.; Xie, H.; Jia, X.-X.; Chen, M.-X.; Gu, Y. Associations of artificial sweetener intake with cardiometabolic disorders and mortality: A population-based study. Br. J. Nutr. 2024, 132, 1065–1072. [Google Scholar] [CrossRef]
- Debras, C.; Deschasaux-Tanguy, M.; Chazelas, E.; Sellem, L.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care 2023, 46, 1681–1690. [Google Scholar] [CrossRef]
- Sun, T.; Yang, J.; Lei, F.; Huang, X.; Liu, W.; Zhang, X.; Lin, L.; Sun, L.; Xie, X.; Zhang, X.-J.; et al. Artificial sweeteners and risk of incident cardiovascular disease and mortality: Evidence from UK Biobank. Cardiovasc. Diabetol. 2024, 23, 233. [Google Scholar] [CrossRef]
- Shil, A.; Zhang, J.; Chichger, H. Investigating the use and awareness of artificial sweeteners among diabetic patients in Bangladesh. PLoS ONE 2023, 18, e0295272. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kosaki, K.; Sugasawa, T.; Matsui, M.; Yoshioka, M.; Aoki, K.; Kuji, T.; Mizuno, R.; Kuro-O, M.; Yamagata, K.; et al. High Salt Diet Impacts the Risk of Sarcopenia Associated with Reduction of Skeletal Muscle Performance in the Japanese Population. Nutrients 2020, 12, 3474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Stamler, J.; Chan, Q.; Van Horn, L.; Daviglus, M.L.; Dyer, A.R.; Miura, K.; Okuda, N.; Wu, Y.; Ueshima, H.; et al. Salt intake and prevalence of overweight/obesity in Japan, China, the United Kingdom, and the United States: The INTERMAP Study. Am. J. Clin. Nutr. 2019, 110, 34–40. [Google Scholar] [CrossRef]
- Takase, H.; Takeuchi, Y.; Fujita, T.; Ohishi, T. Excessive salt intake reduces bone density in the general female population. Eur. J. Clin. Investig. 2023, 53, e14034. [Google Scholar] [CrossRef]
- Kojima, G.; Iliffe, S.; Walters, K. Smoking as a predictor of frailty: A systematic review. BMC Geriatr. 2015, 15, 131. [Google Scholar] [CrossRef]
- Xu, J.; Tian, G.; Zhang, T.; Zhang, H.; Liu, J.; Shi, Q.; Sun, J.; Wang, H.; Zhang, B.; Wu, Q.; et al. Assessing the income-related inequality in obesity among the elderly in China: A decomposition analysis. Front. Public Health 2022, 10, 918630. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.-H.; Lee, J.J.; Yu, E.W.-R.; Hu, H.-Y.; Lin, S.-Y.; Ho, C.-Y. Association between obesity and education level among the elderly in Taipei, Taiwan between 2013 and 2015: A cross-sectional study. Sci. Rep. 2020, 10, 20285. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Park, J.; Oh, S.-W.; Joh, H.-K.; Hwang, S.-S.; Kim, J.; Park, D. Association between Body Mass Index and Quality of Life in Elderly People over 60 Years of Age. Korean J. Fam. Med. 2017, 38, 181–191. [Google Scholar] [CrossRef]
- Shin, M.-H.; Kweon, S.-S.; Choi, J.-S.; Rhee, J.-A.; Nam, H.-S.; Jeong, S.-K.; Park, K.-S.; Ryu, S.-Y.; Choi, S.-W.; Kim, B.-H.; et al. Average Volume of Alcohol Consumed, Drinking Patterns, and Metabolic Syndrome in Older Korean Adults. J. Epidemiol. 2013, 23, 122–131. [Google Scholar] [CrossRef]
- Destro, J.S.F.; Marin, M.J.S.; Otani, M.A.P.; Selleti, J.D.D.N.; Higa, E.D.F.R. Experiences of alcohol-dependent elderly: Grounded theory. Rev. Esc. Enferm. USP 2022, 56, e20220064. [Google Scholar] [CrossRef] [PubMed]
- Amadea, V.C.; Dinata, M.; Sarvasti, D. Correlation of Physical Activity with Total Cholesterol Ratio to High-Density Lipoprotein in Hypertension Elderly at Puskesmas Gedangan Sidoarjo. J. Widya Med. Jr. 2022, 4, 156–162. [Google Scholar] [CrossRef]
- Sbardelotto, M.L.; Costa, R.R.; Malysz, K.A.; Pedroso, G.S.; Pereira, B.C.; Sorato, H.R.; Silveira, P.C.L.; Nesi, R.T.; Grande, A.J.; A Pinho, R. Improvement in muscular strength and aerobic capacities in elderly people occurs independently of physical training type or exercise model. Clinics 2019, 74, e833. [Google Scholar] [CrossRef]
- Wang, S.; Ma, W.; Wang, S.-M.; Yi, X. A Cross Sectional Examination of the Relation Between Depression and Frequency of Leisure Time Physical Exercise among the Elderly in Jinan, China. Int. J. Environ. Res. Public Health 2018, 15, 2041. [Google Scholar] [CrossRef] [PubMed]
- Justine, M.; Azizan, A.; Hassan, V.; Salleh, Z.; Manaf, H. Barriers to participation in physical activity and exercise among middle-aged and elderly individuals. Singap. Med. J. 2013, 54, 581–586. [Google Scholar] [CrossRef]
- Rosinger, A.Y. Biobehavioral variation in human water needs: How adaptations, early life environments, and the life course affect body water homeostasis. Am. J. Hum. Biol. 2020, 32, e23338. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z.; Zhang, Q.; Zhang, R.; Zhang, C.; Liu, J. Lower hydration status increased diabetic retinopathy among middle-aged adults and older adults: Results from NHANES 2005–2008. Front. Public Health 2022, 10, 1023747. [Google Scholar] [CrossRef] [PubMed]
- Padrão, P.; Sousa, A.S.; Guerra, R.S.; Álvares, L.; Santos, A.; Borges, N.; Afonso, C.; Amaral, T.F.; Moreira, P. A Cross-Sectional Study on the Association between 24-h Urine Osmolality and Weight Status in Older Adults. Nutrients 2017, 9, 1272. [Google Scholar] [CrossRef] [PubMed]
- Queirós, C.; Machado, F.B.; Barros, D.; Sampaio, J.; Sampaio, A.; Barros, R.; Moreira, P.; Ribeiro, Ó.; Carvalho, J.; Padrão, P. Urinary Hydration Biomarkers and Water Sources in Older Adults with Neurocognitive Disorder. Nutrients 2023, 15, 548. [Google Scholar] [CrossRef] [PubMed]
Variable | Category | Total n (%) | Body Weight | p Value | |
---|---|---|---|---|---|
Normal BMI < 25 | Overnutrition BMI ≥ 25 | ||||
Gender | Male | 662 (40.7) | 146 (22.2) | 511 (77.8) | <0.001 |
Female | 966 (59.3) | 296 (30.9) | 661 (69.1) | ||
Education | Primary | 830 (51.0) | 212 (25.7) | 612 (74.3) | 0.312 |
Secondary | 496 (30.5) | 143 (29.1) | 349 (70.1) | ||
High | 302 (18.5) | 87 (29.2) | 211 (70.8) | ||
Household income level | Lower than average | 766 (47.0) | 187 (24.6) | 575 (75.4) | 0.032 |
Average | 382 (23.5) | 107 (28.2) | 272 (71.8) | ||
Higher than average | 480 (29.5) | 148 (31.3) | 325 (68.7) | ||
Degree of urbanization | Urban | 317 (19.5) | 98 (31.2) | 215 (68.8) | 0.038 |
Suburban | 334 (20.5) | 91 (27.3) | 242 (72.7) | ||
Rural | 530 (32.6) | 153 (29.1) | 372 (70.9) | ||
Remote | 447 (27.4) | 100 (22.6) | 343 (77.4) | ||
Partner status | Living with a partner | 858 (53.5) | 202 (23.7) | 649 (76.3) | 0.001 |
Living without a partner | 746 (46.5) | 233 (31.5) | 506 (68.5) | ||
Self-perceived health status | Bad or very bad | 406 (25.0) | 111 (27.5) | 293 (72.5) | 0.163 |
Satisfactory | 854 (52.6) | 218 (25.8) | 628 (74.2) | ||
Good or very good | 363 (22.4) | 112 (31.1) | 248 (68.9) | ||
Long-term illness | Yes | 1245 (77.1) | 321 (26.0) | 914 (74.0) | 0.015 |
No | 369 (22.9) | 119 (32.4) | 248 (67.6) |
Variable Name | Category | Body Weight | p Value | |
---|---|---|---|---|
BMI < 25 | BMI ≥ 25 | |||
Fruit consumption per week | Every day | 309 (26.0) | 880 (74.0) | 0.031 |
4–6 times a week | 47 (27.8) | 122 (72.2) | ||
Less than 3 times a week | 86 (34.1) | 166 (65.9) | ||
Vegetable (except potato) consumption per week | Every day | 217 (24.9) | 655 (75.1) | 0.045 |
4–6 times a week | 95 (31.5) | 207 (68.5) | ||
Less than 3 times a week | 127 (29.5) | 304 (70.5) | ||
Water consumption per day | At least 2 L | 147 (21.6) | 533 (78.4) | <0.001 |
1–1.5 L | 148 (28.5) | 372 (71.5) | ||
1 L or less | 147 (35.7) | 265 (64.3) | ||
Fruit juice consumption per week | Every day | 43 (33.3) | 86 (66.7) | 0.037 |
4–6 times a week | 28 (37.3) | 47 (62.7) | ||
Less than 3 times a week | 370 (26.5) | 1028 (73.5) | ||
Sugary and soft drinks per week | Every day | 33 (34.0) | 64 (66.0) | 0.306 |
4–6 times a week | 11 (25.6) | 32 (74.4) | ||
Less than 3 times a week | 394 (26.9) | 1069 (73.1) | ||
Sugar-free and diet drinks per week | More than once a week | 42 (22.3) | 146 (77.7) | 0.091 |
Less than once a week | 399 (28.2) | 1016 (71.8) | ||
Sweetener for hot drinks (coffee, tea) | Natural (sugar, honey) | 253 (30.5) | 577 (69.5) | 0.002 |
Artificial | 83 (21.7) | 299 (78.3) | ||
Sweets and desserts consumption | More than once a day | 130 (28.9) | 319 (71.1) | 0.377 |
Less than once a day | 311 (26.8) | 851 (73.2) | ||
Red meat consumption | More than 4 times a week | 35 (24.6) | 107 (75.4) | 0.300 |
1–3 times a week | 152 (25.8) | 437 (74.2) | ||
Less than once a week | 254 (29.0) | 622 (71.0) | ||
White meat consumption | More than 4 times a week | 79 (29.9) | 185 (70.1) | 0.081 |
1–3 times a week | 244 (25.4) | 716 (74.6) | ||
Less than once a week | 119 (30.8) | 267 (69.2) | ||
Processed meat consumption | More than 4 times a week | 183 (27.3) | 486 (72.7) | 0.708 |
1–3 times a week | 138 (26.4) | 385 (73.6) | ||
Less than once a week | 121 (28.8) | 299 (71.2) | ||
Fish and seafood consumption | More than 4 times a week | 9 (28.1) | 23 (71.9) | 0.422 |
1–3 times a week | 19 (21.4) | 70 (78.6) | ||
Less than once a week | 412 (27.7) | 1074 (72.3) | ||
Dairy product consumption | More than 4 times a week | 285 (26.9) | 774 (73.1) | 0.195 |
1–3 times a week | 99 (26.3) | 278 (73.7) | ||
Less than once a week | 58 (33.1) | 117 (66.9) | ||
Salt consumption | Never or low salt use | 331 (28.9) | 816 (71.1) | 0.038 |
Moderate or high salt use | 109 (23.7) | 350 (76.3) |
Variable Name | Category | Body Weight | p Value | |
---|---|---|---|---|
BMI < 25 | BMI ≥ 25 | |||
Alcohol consumption | Heavy | 10 (14.5) | 59 (85.5) | 0.044 |
Moderate | 93 (26.8) | 254 (73.2) | ||
Rare or never | 336 (28.2) | 855 (71.8) | ||
Smoking status | Active | 92 (44.2) | 116 (55.8) | <0.001 |
Quit | 96 (21.9) | 343 (78.1) | ||
Never smoked | 251 (26.2) | 709 (73.8) | ||
General characteristics of daily physical activity | Mostly sitting or no movement | 170 (27.5) | 448 (72.5) | 0.996 |
Mostly standing | 30 (28.3) | 76 (71.7) | ||
Mostly walking or moderate | 229 (27.2) | 613 (72.8) | ||
Mostly heavy physical work | 8 (27.6) | 21 (72.4) | ||
Number of days walked for at least 10 min a week | Do not walk | 88 (27.5) | 232 (72.5) | 0.495 |
1–3 days | 78 (24.9) | 235 (75.1) | ||
4–7 days | 274 (28.4) | 692 (71.6) | ||
Number of days cycled for at least 10 min a week | Do not cycle | 322 (27.6) | 885 (72.4) | 0.930 |
1–3 days | 49 (26.6) | 135 (73.4) | ||
4–7 days | 65 (26.6) | 179 (73.4) | ||
Number of days performing sports for at least 10 min a week | Do not perform sports | 310 (26.0) | 883 (74.0) | 0.026 |
1–3 days | 51 (26.8) | 139 (73.2) | ||
4–7 days | 75 (34.9) | 140 (65.1) | ||
Number of days performing muscle strengthening exercises for at least 10 min a week | No exercise | 352 (26.8) | 961 (73.2) | 0.101 |
1–3 days | 33 (23.6) | 107 (76.4) | ||
4–7 days | 48 (34.3) | 92 (65.7) | ||
Sleep disturbances occurred in last 2 weeks | Never | 204 (26.8) | 558 (73.2) | 0.775 |
In a few days | 149 (27.2) | 399 (72.8) | ||
More than a week | 40 (31.2) | 88 (68.8) | ||
Almost every day | 44 (27.2) | 123 (73.6) |
Variable | Category/Level | OR | 95% CI | p-Value |
---|---|---|---|---|
Gender | Male (Reference) | |||
Female | 0.81 | 0.57–1.14 | 0.236 | |
Income levels | Lower than average (Reference) | |||
Average | 0.90 | 0.63–1.27 | 0.555 | |
Higher than average | 0.76 | 0.53–1.07 | 0.124 | |
Degree of urbanization | Urban (Reference) | |||
Suburban | 1.24 | 0.78–1.95 | 0.350 | |
Rural | 0.85 | 0.57–1.28 | 0.459 | |
Remote | 1.16 | 0.75–1.80 | 0.494 | |
Partner status | Living with a partner (Reference) | |||
Living without a partner | 0.78 | 0.57–1.06 | 0.118 | |
Long-term illness | Yes (Reference) | |||
None | 0.80 | 0.58–1.12 | 0.204 | |
Fruit consumption | Every day (Reference) | |||
4–6 times a week | 0.98 | 0.62–1.55 | 0.791 | |
Less than 3 times a week | 0.68 | 0.46–1.01 | 0.062 | |
Vegetable consumption | Every day (Reference) | |||
4–6 times/week | 0.83 | 0.57–1.22 | 0.360 | |
1–3 times/week | 0.92 | 0.65–1.30 | 0.651 | |
Water intake | More than 2 L (Reference) | |||
1.5–2 L | 0.68 | 0.48–0.95 | 0.025 | |
1–1.5 L | 0.47 | 0.33–0.65 | <0.001 | |
Fruit juice intake | Every day (Reference) | |||
4–6 times/week | 0.95 | 0.43–1.98 | 0.860 | |
1–3 times/week | 1.43 | 0.86–2.38 | 0.160 | |
Sweetener use for tea or coffee | Natural (Reference) | |||
Artificial | 1.54 | 1.13–2.11 | 0.006 | |
Salt use | Never or low salt use | |||
Moderate or high salt use | 1.45 | 1.06–1.99 | 0.020 | |
Smoking status | Active (Reference) | |||
Quit | 2.32 | 1.49–3.61 | <0.001 | |
Never smoked | 2.56 | 1.73–3.77 | <0.001 | |
Alcohol use | Heavy drinker (Reference) | |||
Moderate drinker | 0.26 | 0.09–0.80 | <0.019 | |
Rare drinker | 0.25 | 0.08–0.75 | <0.018 | |
Days of ten-minute sport per week | Do not perform sports (Reference) | |||
1–3 days | 0.92 | 0.58–1.43 | 0.714 | |
4–7 days | 0.74 | 0.48–1.13 | 0.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulambayar, B.; Ghanem, A.S.; Nagy, A.C. Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary. Nutrients 2025, 17, 1954. https://doi.org/10.3390/nu17121954
Ulambayar B, Ghanem AS, Nagy AC. Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary. Nutrients. 2025; 17(12):1954. https://doi.org/10.3390/nu17121954
Chicago/Turabian StyleUlambayar, Battamir, Amr Sayed Ghanem, and Attila Csaba Nagy. 2025. "Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary" Nutrients 17, no. 12: 1954. https://doi.org/10.3390/nu17121954
APA StyleUlambayar, B., Ghanem, A. S., & Nagy, A. C. (2025). Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary. Nutrients, 17(12), 1954. https://doi.org/10.3390/nu17121954