Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,299)

Search Parameters:
Keywords = vegetal proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2602 KiB  
Review
Resistance to Vip3Aa: A Growing Threat with Unclear Mechanisms and Management Implications
by Rajeev Roy, Dawson Kerns and Juan Luis Jurat-Fuentes
Insects 2025, 16(8), 820; https://doi.org/10.3390/insects16080820 - 7 Aug 2025
Abstract
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has become a key plant-incorporated protectant (PIP) in transgenic crops targeting lepidopteran pests, particularly as resistance increasingly compromises the efficacy of Cry protein PIPs. More than a decade after its commercial deployment, Vip3Aa performance [...] Read more.
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has become a key plant-incorporated protectant (PIP) in transgenic crops targeting lepidopteran pests, particularly as resistance increasingly compromises the efficacy of Cry protein PIPs. More than a decade after its commercial deployment, Vip3Aa performance remains efficacious but increasingly vulnerable. Field screens have detected unexpectedly high baseline frequencies of Vip3Aa-resistant alleles and have produced highly resistant strains in several major pests, including Helicoverpa spp., Spodoptera spp., and Mythimna separata. Although structure–function experiments and studies on resistance to Vip3Aa have identified altered midgut processing and impaired receptor binding as candidate resistance mechanisms, the underlying genetic determinants remain poorly understood. Moreover, resistance to Vip3Aa appears to diverge from canonical Cry protein resistance pathways, underscoring the need for dedicated mechanistic studies. This review critically examines the available experimental evidence on Vip3Aa resistance mechanisms, highlighting major knowledge gaps and proposing research priorities to inform resistance monitoring and extend the durability of Vip3Aa-based pest control. Full article
Show Figures

Graphical abstract

20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

20 pages, 450 KiB  
Article
Four Organic Protein Source Alternatives to Fish Meal for Pacific White Shrimp (Penaeus vannamei) Feeding
by Yosu Candela-Maldonado, Imane Megder, Eslam Tefal, David S. Peñaranda, Silvia Martínez-Llorens, Ana Tomás-Vidal, Miguel Jover-Cerdá and Ignacio Jauralde
Fishes 2025, 10(8), 384; https://doi.org/10.3390/fishes10080384 - 5 Aug 2025
Viewed by 39
Abstract
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body [...] Read more.
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body composition, retention efficiency, enzyme activity, and nutrient digestibility of white shrimp Penaeus vannamei. The four dietary formulations tested were formulated with organic ingredients and the fish meal was replaced by the following organic protein meals: Iberian pig viscera meal (PIG), trout by-product meal (TRO), insect meal (FLY), and organic vegetable meal (WHT), in addition to a control diet (CON) that included 15% fish meal. A growth trial was carried out for 83 days, raising 1 g shrimp to commercial size (20 g). Shrimp were stocked at 167 shrimp/m3 (15 individuals per 90 L tank). The results showed that the growth obtained by shrimp fed with TRO (19.27 g) and PIG (19.35 g) were similar in weight gain to the control diet (20.76 g), while FLY (16.04 g) and WHT (16.73 g) meals resulted in a significant lower final weight. The FLY diet showed significantly lower protein digestibility (68.89%) compared to the CON, PIG, TRO, and WHT diets, and significantly higher trypsin activity (0.17 mU/g) compared to shrimp fed with the PIG, TRO, and WHT diets. Shrimp fed with WHT have a significantly lower body weight percentage of protein (19.69%) than shrimp fed with the WHT and TRO diets, and some significant differences in dietary aminoacidic levels affecting amino acid body composition. These results indicate that Iberian pig viscera and trout by-product meal can successfully replace fish meal in Pacific white shrimp aquaculture. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 298
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

19 pages, 1134 KiB  
Article
Application of Animal- and Plant-Derived Coagulant in Artisanal Italian Caciotta Cheesemaking: Comparison of Sensory, Biochemical, and Rheological Parameters
by Giovanna Lomolino, Stefania Zannoni, Mara Vegro and Alberto De Iseppi
Dairy 2025, 6(4), 43; https://doi.org/10.3390/dairy6040043 - 1 Aug 2025
Viewed by 101
Abstract
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract [...] Read more.
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract (PC) with traditional bovine rennet rich in chymosin (AC) during manufacture and 60-day ripening of Caciotta cheese. Classical compositional assays (ripening index, texture profile, color, solubility) were integrated with scanning electron microscopy, three-dimensional surface reconstruction, and descriptive sensory analysis. AC cheeses displayed slower but sustained proteolysis, yielding a higher and more linear ripening index, softer body, greater solubility, and brighter, more yellow appearance. Imaging revealed a continuous protein matrix with uniformly distributed, larger pores, consistent with a dairy-like sensory profile dominated by milky and umami notes. Conversely, PC cheeses underwent rapid early proteolysis that plateaued, producing firmer, chewier curds with lower solubility and darker color. Micrographs showed a fragmented matrix with smaller, heterogeneous pores; sensory evaluation highlighted vegetal, bitter, and astringent attributes. The data demonstrate that thistle coagulant can successfully replace animal rennet but generates cheeses with distinct structural and sensory fingerprints. The optimization of process parameters is therefore required when targeting specific product styles. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

18 pages, 2531 KiB  
Article
Inhibitory Effect of Allyl Isothiocyanate on Cariogenicity of Streptococcus mutans
by Tatsuya Akitomo, Ami Kaneki, Masashi Ogawa, Yuya Ito, Shuma Hamaguchi, Shunya Ikeda, Mariko Kametani, Momoko Usuda, Satoru Kusaka, Masakazu Hamada, Chieko Mitsuhata, Katsuyuki Kozai and Ryota Nomura
Int. J. Mol. Sci. 2025, 26(15), 7443; https://doi.org/10.3390/ijms26157443 - 1 Aug 2025
Viewed by 116
Abstract
Allyl isothiocyanate (AITC) is a naturally occurring, pungent compound abundant in cruciferous vegetables and functions as a repellent for various organisms. The antibacterial effect of AITC against various bacteria has been reported, but there are no reports on the effect on Streptococcus mutans [...] Read more.
Allyl isothiocyanate (AITC) is a naturally occurring, pungent compound abundant in cruciferous vegetables and functions as a repellent for various organisms. The antibacterial effect of AITC against various bacteria has been reported, but there are no reports on the effect on Streptococcus mutans, a major bacterium contributing to dental caries. In this study, we investigated the inhibitory effect and mechanism of AITC on the survival and growth of S. mutans. AITC showed an antibacterial effect in a time- and concentration-dependent manner. In addition, bacterial growth was delayed in the presence of AITC, and there were almost no bacteria in the presence of 0.1% AITC. In a biofilm assay, the amount of biofilm formation with 0.1% AITC was significantly decreased compared to the control. RNA sequencing analysis showed that the expression of 39 genes (27 up-regulation and 12 down-regulation) and 38 genes (24 up-regulation and 14 down-regulation) of S. mutans was changed during the survival and the growth, respectively, in the presence of AITC compared with the absence of AITC. Protein–protein interaction analysis revealed that AITC mainly interacted with genes of unknown function in S. mutans. These results suggest that AITC may inhibit cariogenicity of S. mutans through a novel mechanism. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 - 31 Jul 2025
Viewed by 193
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

16 pages, 4154 KiB  
Article
Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea
by Lifeng Wu, Chunquan Chen, Xiaoyu Zhou, Kailun Zheng, Xiaohan Liang and Jing Wei
Molecules 2025, 30(15), 3176; https://doi.org/10.3390/molecules30153176 - 29 Jul 2025
Viewed by 245
Abstract
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth [...] Read more.
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth patterns at different nitrogen levels have yet to be elucidated. In this research, in addition to conventional growth monitoring and quality evaluation, a comparative proteomics method was applied to investigate the molecular mechanisms of mung bean in response to 0, 0.025, 0.05, 0.075, and 0.1% urea concentrations. Our results indicated that mung bean sprout height and yield increased with rising urea concentrations but were suppressed beyond the L3 level (0.075% urea). Nitrate nitrogen and free amino acid content rose steadily with urea levels, whereas protein content, nitrate reductase activity, and nitrite levels followed a peak-then-decline trend, peaking at intermediate concentrations. Differential expression protein analysis was conducted on mung bean sprouts treated with different concentrations of urea, and more differentially expressed proteins participated in the L3 urea concentration. Analysis of common differential proteins among comparison groups showed that the mung bean sprouts enhanced their adaptability to urea stress environments by upregulating chlorophyll a-b binding protein and cationic amino acid transporter and downregulating the levels of glycosyltransferase, L-ascorbic acid, and cytochrome P450. The proteomic analysis uncovered the regulatory mechanisms governing these metabolic pathways, identifying 47 differentially expressed proteins (DEPs) involved in the biosynthesis of proteins, free amino acids, and nitrogen-related metabolites. Full article
Show Figures

Figure 1

13 pages, 1599 KiB  
Article
Differential Expression of Hsp100 Gene in Scrippsiella acuminata: Potential Involvement in Life Cycle Transition and Dormancy Maintenance
by Fengting Li, Lixia Shang, Hanying Zou, Chengxing Sun, Zhangxi Hu, Ying Zhong Tang and Yunyan Deng
Diversity 2025, 17(8), 519; https://doi.org/10.3390/d17080519 - 26 Jul 2025
Viewed by 193
Abstract
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from [...] Read more.
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from aggregated states in an ATP-dependent manner. To date, they are primarily known to mediate heat stress adaptation and enhance cellular survival under extreme conditions in higher plants and algae. Resting cyst formation in dinoflagellates is widely recognized as a response to adverse conditions, which offers an adaptive advantage to endure harsh environmental extremes that are unsuitable for vegetative cell growth and survival. In this study, based on a full-length cDNA sequence, we characterized an Hsp100 gene (SaHsp100) from the cosmopolitan bloom-forming dinoflagellate Scrippsiella acuminata, aiming to examine its life stage-specific expression patterns and preliminarily explore its potential functions. The qPCR results revealed that Hsp100 transcript levels were significantly elevated in newly formed resting cysts compared to vegetative cells and continued to increase during storage under simulated marine sediment conditions (darkness, low temperature, and anoxia). Parallel reaction monitoring (PRM)-based quantification further confirmed that Hsp100 protein levels were significantly higher in resting cysts than in vegetative cells and increased after three months of storage. These findings collectively highlighted the fundamental role of Hsp100 in the alteration of the life cycle and dormancy maintenance of S. acuminata, likely by enhancing stress adaptation and promoting cell survival through participation in proteostasis maintenance, particularly under natural sediment-like conditions that trigger severe abiotic stress. Our work deepens the current understanding of Hsp family members in dinoflagellates, paving the way for future investigations into their ecological relevance within this ecologically significant group. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

30 pages, 4839 KiB  
Article
Acceptability of a Colorectal Cancer-Preventive Diet Promoting Red Meat Reduction and Increased Fiber and Micronutrient Intake: A Cross-Sectional Study in Romanian Adults
by Marius-Cătălin Belean, Teodor-Andrei Maghiar, Anca-Maria Căpraru, Andreea-Adriana Neamțu, Dan Iliescu, Valentin-Cristian Iovin, Flaviu-Ionuț Faur, Meda-Ada Bugi, Alina Totorean, Sorina Tăban, Sorin Dema, Cristina-Adriana Dehelean, Bogdan Dan Totolici, Ovidiu Laurian Pop, Octavian Crețu and Carmen Neamțu
Nutrients 2025, 17(14), 2386; https://doi.org/10.3390/nu17142386 - 21 Jul 2025
Viewed by 570
Abstract
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting [...] Read more.
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting CRC through dietary interventions. Methods: A one-day sample diet for colorectal cancer prevention, consisting of fiber-rich meals excluding red meat and incorporating whole grains, legumes, vegetables, fruits, nuts, and lean protein alternatives (such as fish and poultry), was developed. Its acceptability was assessed in a cross-sectional study using an online questionnaire among healthy Romanian adults aged 18–50, with a total of 395 included participants. Results: Of the 395 respondents meeting the inclusion criteria (aged 18–50, no cancer or chronic gastrointestinal disorders), 63.5% were females, predominantly urban (90.1%), and highly educated. Mean age was 32.4 years; mean BMI was 25.07 kg/m2. The proposed colorectal cancer-preventive diet was rated as “quite attractive” and “very attractive” by 74.9% of participants. All meals received high ratings, with dinner and the first snack being most favored. Most respondents (77.2%) found the diet satisfying and the satiety level and energy adequate, and 90.4% were willing to adopt it at least a few times per week. Financial accessibility was affirmed by 77.2% of the respondents. However, 61.8% reported difficulty eliminating red meat consumption. Female participants rated the diet significantly more attractive than males did (p = 0.041). Willingness to adopt the diet strongly correlated with higher acceptability (p < 0.0001), while BMI and education level showed no significant effect. Conclusions: The proposed colorectal cancer-preventive diet was well accepted by Romanian adults aged 18–50, with higher receptivity among women and those with higher education; willingness to adopt the diet at least a few days per week was high, especially among those psychologically ready for dietary change, while key barriers included red meat reduction and perceived cost, underscoring the need for gender-sensitive, culturally adapted interventions and further research on long-term adherence and clinical impact. Full article
(This article belongs to the Special Issue Nutrition and Dietary Guidelines for Colorectal Cancer Patients)
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus
by Alain Tseke Inkabanga, Qiheng Zhang, Shanshan Wang, Yanni Li, Jingyi Chen, Li Huang, Xiang Li, Zihan Deng, Xiao Yang, Mengxin Luo, Lingxia Peng, Keran Ren, Yourong Chai and Yufei Xue
Plants 2025, 14(14), 2247; https://doi.org/10.3390/plants14142247 - 21 Jul 2025
Viewed by 294
Abstract
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and [...] Read more.
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and recent research suggests that they have similar functions in higher plants. Brassica contains many important oilseeds, vegetables, and ornamental plants, but there are no reports on the G3BP family in Brassica species. In this study, we identified G3BP family genes from six species of the U’s triangle (B. rapa, B. oleracea, B. nigra, B. napus, B. juncea, and B. carinata) at the genome-wide level. We then analyzed their gene structure, protein motifs, gene duplication type, phylogeny, subcellular localization, SSR loci, and upstream miRNAs. Based on transcriptome data, we analyzed the expression patterns of B. napus G3BP (BnaG3BP) genes in various tissues/organs in response to Sclerotinia disease, blackleg disease, powdery mildew, dehydration, drought, heat, cold, and ABA treatments, and its involvement in seed traits including germination, α-linolenic acid content, oil content, and yellow seed. Several BnaG3BP DEGs might be regulated by BnaTT1. The qRT-PCR assay validated the inducibility of two cold-responsive BnaG3BP DEGs. This study will enrich the systematic understanding of Brassica G3BP family genes and lay a molecular basis for the application of BnaG3BP genes in stress tolerance, disease resistance, and quality improvement in rapeseed. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Molecular Evolution)
Show Figures

Figure 1

29 pages, 1814 KiB  
Article
Comparative Evaluation of Nutritional Quality and In Vitro Protein Digestibility in Selected Vegetable Soybean Genotypes at R6 and R8 Maturity
by Kanneboina Soujanya, T. Supraja, Aparna Kuna, Ramakrishnan M. Nair, S. Triveni and Kalenahalli Yogendra
Foods 2025, 14(14), 2549; https://doi.org/10.3390/foods14142549 - 21 Jul 2025
Viewed by 371
Abstract
The nutritional and quality characteristics of improved vegetable soybean genotypes were evaluated and compared with those of a grain-type soybean at the R6 (green maturity) and R8 (physiological maturity) stages. Significant variation (p < 0.05) was observed among genotypes for all measured [...] Read more.
The nutritional and quality characteristics of improved vegetable soybean genotypes were evaluated and compared with those of a grain-type soybean at the R6 (green maturity) and R8 (physiological maturity) stages. Significant variation (p < 0.05) was observed among genotypes for all measured traits. The overall quality parameters increased from the R6 (green maturity) stage to the R8 (physiological maturity) stage. Among the R6-stage genotypes, AVSB2001 recorded the highest contents of protein (15.30 ± 0.57 g/100 g), ash (2.31 ± 0.06 g/100 g), fat (8.05 ± 0.17 g/100 g), and calcium (140.78 ± 0.97 mg/100 g). The genotype Karune exhibited significantly higher levels of total sugars, non-reducing sugars, iron, and magnesium than the other entries. At the R8 stage, Swarna Vasundhara showed the highest protein content (39.23%), while AGS 447 recorded the highest values for fat, total sugars, in vitro protein digestibility, iron, copper, magnesium, and manganese. Notably, in vitro protein digestibility was lower across all genotypes at the R8 stage compared to the R6 stage. These findings suggest that selected vegetable soybean genotypes possess substantial nutritional value and can contribute meaningfully to meeting the recommended dietary allowance (RDA) across different age and occupational groups, underscoring this research’s potential public health impact. Based on stage-specific quality profiles, R6-stage genotypes may be better suited for fresh vegetables, whereas R8-stage genotypes can be utilized similarly to grain-type soybean for processing into products such as dhal, oil, flour, and other value-added foods. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 279
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

15 pages, 1142 KiB  
Article
The Estimated Intake of S100B Relates to Microbiota Biodiversity in Different Diets
by Tehreema Ghaffar, Veronica Volpini, Serena Platania, Olga Vassioukovitch, Alessandra Valle, Federica Valeriani, Fabrizio Michetti and Vincenzo Romano Spica
Biomolecules 2025, 15(7), 1047; https://doi.org/10.3390/biom15071047 - 18 Jul 2025
Viewed by 378
Abstract
The S100B protein, known for its role in the central and enteric nervous systems, has recently been identified in dietary sources such as milk, dairy products, fruits, and vegetables. Given its potential interaction with the gut microbiota, this study explores the relationship between [...] Read more.
The S100B protein, known for its role in the central and enteric nervous systems, has recently been identified in dietary sources such as milk, dairy products, fruits, and vegetables. Given its potential interaction with the gut microbiota, this study explores the relationship between dietary intake of S100B and microbiota biodiversity across different diets. A comprehensive study was conducted, estimating S100B concentrations in 13 dietary patterns recommended in different countries. This is the first study to provide a comparative estimation of S100B exposure from the diet and to explore its potential ecological and epidemiological relevance. The association between S100B levels and microbiota biodiversity was statistically analyzed, showing a direct correlation. Microbial diversity was assessed using the Shannon index, based on data extracted from studies reporting microbiota composition across dietary patterns. Additionally, the relative risk of Crohn’s disease was assessed in different populations to examine potential links between dietary patterns, S100B, and chronic disease prevention. A moderate positive correlation (R2 = 0.537) was found between S100B concentration and Shannon index, suggesting that diets higher in S100B (e.g., Mediterranean diet) were associated with higher microbial alpha-diversity. Furthermore, Western-style diets, with the lowest S100B levels, exhibited a higher relative risk for Crohn’s disease (R2 = 0.780). These findings highlight the potential role of dietary S100B content in modulating gut microbiota diversity and reducing chronic disease risk. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

20 pages, 1125 KiB  
Review
Dietary Principles, Interventions and Oxidative Stress in Psoriasis Management: Current and Future Perspectives
by Oana-Georgiana Vaduva, Aristodemos-Theodoros Periferakis, Roxana Elena Doncu, Vlad Mihai Voiculescu and Calin Giurcaneanu
Medicina 2025, 61(7), 1296; https://doi.org/10.3390/medicina61071296 - 18 Jul 2025
Viewed by 551
Abstract
Psoriasis is a chronic inflammatory autoimmune disease that causes significant deterioration of the quality of life, and due to its multifactorial causes, it is often difficult to manage. Apart from genetic and environmental components, an important part of its pathophysiology comprises an oxidative [...] Read more.
Psoriasis is a chronic inflammatory autoimmune disease that causes significant deterioration of the quality of life, and due to its multifactorial causes, it is often difficult to manage. Apart from genetic and environmental components, an important part of its pathophysiology comprises an oxidative stress induction that the standard antioxidative mechanisms of the human body cannot compensate for. Moreover, in many psoriatic patients, there is a documented imbalance between antioxidant and pro-oxidative factors. Usually, psoriasis is evaluated using the Psoriasis Area and Severity Index (PASI) score. It has been demonstrated that dietary choices can lead to significant modification of PASI scores. Hypocaloric diets that are rich in antioxidants are highly effective in this regard, especially when focusing on vegetables and restricting consumption of animal-derived protein. Specific dietary regimens, namely the Mediterranean diet and potentially the ketogenic diet, are very beneficial, in the former case owing in large part to the omega-three fatty acids it provides and its ability to alter gut microbiome, a factor which seems to play a notable role in the pathogenesis of the disease. Another option is the topical application of vitamin D and its analogues, combined with corticosteroids, which can ameliorate the manifestations of psoriasis at the level of the skin. Finally, oral vitamin D supplementation has a positive impact on psoriatic arthritis and can mitigate the risk of associated comorbidities. Full article
(This article belongs to the Special Issue Recent Advances in Autoimmune Rheumatic Diseases: 2nd Edition)
Show Figures

Figure 1

Back to TopTop